Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4775-2016
https://doi.org/10.5194/hess-20-4775-2016
Research article
 | 
05 Dec 2016
Research article |  | 05 Dec 2016

The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?

Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz

Related authors

Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Technical note: Do different projections matter for the Budyko framework?
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022,https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022,https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Causal relationships of vegetation productivity with root zone water availability and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025,https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Catchment hydrological response and transport are affected differently by precipitation intensity and antecedent wetness
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-371,https://doi.org/10.5194/hess-2024-371, 2024
Revised manuscript accepted for HESS
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary

Cited articles

Alila, Y., Kuraś, P. K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm sheds light on age-old controversies, Water Resour. Res., 45, W08416, https://doi.org/10.1029/2008WR007207, 2009.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecol. Manage., 259, 660–684, https://doi.org/0.1016/j.foreco.2009.09.001, 2010.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, D05109, 1998.
Allison, G. B., Cook, P. G., Barnett, S. R., Walker, G. R., Jolly, I. D., and Hughes, M. W.: Land clearance and river salinisation in the western Murray Basin, Australia, J. Hydrol., 119, 1–20, https://doi.org/10.1016/0022-1694(90)90030-2, 1990.
Andersson, L. and Arheimer, B.: Consequences of changed wetness on riverine nitrogen – human impact on retention vs. natural climatic variability, Reg. Environ. Change, 2, 93–105, https://doi.org/10.1007/s101130100024, 2001.
Download
Short summary
The core component of many hydrological systems, the moisture storage capacity available to...
Share