Where can rewetting of forested peatland reduce extreme flows?
Abstract. Historical drainage to improve forestry practices has resulted in 0.6–0.7 million hectares drained forested peatland in Sweden. This has reduced the storage of water in the landscape and may impact greenhouse gas emissions, biodiversity and the damping of extreme water flows. National restoration actions therefore aim at rewetting 0.1 million hectares of forested peatland in Sweden, despite the limited and sometimes contradictory evidence in the impacts of rewetting. To clarify the potential impact on extreme flows and their cause-effects relationships from rewetting, we simulated flow under various conditions of the climate, local hydrology and rewetting practices (ditch blocking alone or combined with reduced tree cover). For this, we used the HYPE model setup across Sweden (450 000 km2) with improved calculations of runoff in drained forest and routines for inflow and outflow regions. National evaluation of changes in discharge extremes was combined with a detailed study in south-east Sweden, with the aim to understand rewetting impacts at various scales. We found that the change in discharge extremes from catchments of 10 km2 is small, because there is considerable mixing with runoff from various landcover. Hence, at the larger scale, rewetting is not an efficient measure to combat droughts or floods. However, for ecosystems in the streams only draining peatlands, rewetting can have an impact if appropriate sites for restoration are selected. The results show that groundwater level prior to rewetting and reduced tree cover are governing the effect on water runoff. Wetland allocation and management practices are thus crucial if the purpose is to reduce flow extremes in peatland streams.