Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
Catchment and Ecohydrology Group (CAT), Environmental Research and
Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux
4422, Luxembourg
Faculty of Science, Technology and Medicine (FSTM), University of
Luxembourg, Esch-sur-Alzette 4365, Luxembourg
Malte Neuper
Institute of Water Resources and River Basin Management – Hydrology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
Luca Mathias
MeteoLux, Air Navigation Administration, Findel 2632, Luxembourg
Erwin Zehe
Institute of Water Resources and River Basin Management – Hydrology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
Laurent Pfister
Catchment and Ecohydrology Group (CAT), Environmental Research and
Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux
4422, Luxembourg
Faculty of Science, Technology and Medicine (FSTM), University of
Luxembourg, Esch-sur-Alzette 4365, Luxembourg
Related authors
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482, https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Short summary
The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUXembourg) contains hydrologic, meteorologic and thunderstorm formation relevant atmospheric time series of 56 Luxembourgish catchments (2004–2021). These catchments are characterized by a large physiographic variety on a relatively small scale in a homogeneous climate. The dataset can be applied for (regional) hydrological analyses.
Dan Elhanati, Erwin Zehe, Ishai Dror, and Brian Berkowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3365, https://doi.org/10.5194/egusphere-2025-3365, 2025
Short summary
Short summary
Measurements of water isotopes are often used to estimate water transit time distributions and aquifer storage thickness in catchments. However, laboratory-scale measurements show that water isotopes exhibit transport behavior identical to that of inert chemical tracers rather than of pure water. The measured mean tracer and apparent mean water velocities are not necessarily equal; recognition of this inequality is critical when estimating catchment properties such as aquifer storage thickness.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482, https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Short summary
The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUXembourg) contains hydrologic, meteorologic and thunderstorm formation relevant atmospheric time series of 56 Luxembourgish catchments (2004–2021). These catchments are characterized by a large physiographic variety on a relatively small scale in a homogeneous climate. The dataset can be applied for (regional) hydrological analyses.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Svenja Hoffmeister, Sibylle Kathrin Hassler, Friederike Lang, Rebekka Maier, Betserai Isaac Nyoka, and Erwin Zehe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1719, https://doi.org/10.5194/egusphere-2025-1719, 2025
Short summary
Short summary
Combining trees and crops in agroforestry systems can potentially be a sustainable option for agriculture facing climate change impacts. We used methods from soil science and hydrology to assess the effect of adding gliricidia trees to maize fields, on carbon content, soil properties and water availability. Our results show a clear increase in carbon contents and effects on physical soil characteristics and water uptake and retention as a consequence of the agroforestry treatment.
Evgeny Shavelzon, Erwin Zehe, and Yaniv Edery
EGUsphere, https://doi.org/10.22541/essoar.173687429.91307309/v1, https://doi.org/10.22541/essoar.173687429.91307309/v1, 2025
Short summary
Short summary
We analyze how chemical reactions and fluid movement interact in porous materials, focusing on how water paths form in underground environments. Using a thermodynamic approach, we track energy dissipation and entropy changes to understand this process. Over time, water channels become more defined, reducing chemical mixing and energy loss. Eventually, the system stabilizes, with flow concentrated in efficient pathways, minimizing further reactions and energy use.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Guilhem Türk, Christoph Johannes Gey, Bernd Reinhard Schöne, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2024-4169, https://doi.org/10.5194/egusphere-2024-4169, 2025
Short summary
Short summary
Past stream flow dynamics can be assessed using the stable isotopes of oxygen (O16/O18) in streams and precipitation from various proxy sources. Here, we show how they are retrieved in precipitation for ~150 years using temperature records and an atmospheric circulation classification scheme. Our robust and assumption-lean approach compares to model performances in the literature, demonstrating atmospheric controls of the temperature influence on precipitation O16/O18 compositions.
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613, https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary
Short summary
Some streams respond to rainfall with flow that peaks twice: a sharp first peak followed by a broad second peak. We analyzed data from a catchment in Luxembourg to better understand the processes behind this phenomenon. Our results show that the first peak is mostly driven directly by rainfall, and the second peak is mostly driven by rain that infiltrates to groundwater. We also show that the relative importance of these two processes depends on how wet the landscape is before the rain falls.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci., 25, 1785–1812, https://doi.org/10.5194/hess-25-1785-2021, https://doi.org/10.5194/hess-25-1785-2021, 2021
Short summary
Short summary
Electrical resistivity tomography (ERT) is a remarkable tool for characterizing the regolith, but its use over large areas remains cumbersome due to the requirement of small electrode spacing (ES). In this study we document the issues of using oversized ESs and propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles using large ES and offers a cost-effective means for carrying out large-scale surveys.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Cited articles
Ashley, S. T. and Ashley, W. S.: The storm morphology of deadly flooding
events in the United States, Int. J. Climatol., 28, 493–503,
https://doi.org/10.1002/joc.1554, 2008.
Bertola, M., Viglione, A., Lun, D., Hall, J., and Blöschl, G.: Flood trends in Europe: are changes in small and big floods different?, Hydrol. Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, 2020.
Bertola, M., Viglione, A., Vorogushyn, S., Lun, D., Merz, B., and Blöschl, G.: Do small and large floods have the same drivers of change?, A regional attribution analysis in Europe, Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, 2021.
Brauer, C. C., Teuling, A. J., Overeem, A., van der Velde, Y., Hazenberg, P., Warmerdam, P. M. M., and Uijlenhoet, R.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991–2005, https://doi.org/10.5194/hess-15-1991-2011, 2011.
Bronstert, A., Agarwal, A., Boessenkool, B., Fischer, M., Heistermann, M.,
and Köhn-Reich, L.: Die Sturzflut von Braunsbach am 29. Mai 2016 –
Entstehung, Ablauf und Schäden eines “Jahrhundertereignisses”, Teil 1: Meteorologische und hydrologische Analyse,
Hydrol. und Wasserbewirtschaftung, 61, 150–162, https://doi.org/10.5675/HyWa, 2017.
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M.,
Heistermann, M., Köhn-Reich, L., López-Tarazón, J. A., Moran,
T., Ozturk, U., Reinhardt-Imjela, C., and Wendi, D.: Forensic
hydro-meteorological analysis of an extreme flash flood: The 2016-05-29
event in Braunsbach, SW Germany, Sci. Total Environ., 630, 977–991,
https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.
Brooks, H. E.: Severe thunderstorms and climate change, Atmos. Res., 123,
129–138, https://doi.org/10.1016/j.atmosres.2012.04.002, 2013.
Brooks, H. E.: Proximity soundings for severe convection for Europe and the
United States from reanalysis data, Atmos. Res., 93, 546–553,
https://doi.org/10.1016/j.atmosres.2008.10.005, 2009.
Bucała-Hrabia, A., Kijowska-Strugała, M., Bryndal, T., Cebulski, J.,
Kiszka, K., and Kroczak, R.: An integrated approach for investigating
geomorphic changes due to flash flooding in two small stream channels
(Western Polish Carpathians), J. Hydrol. Reg. Stud., 31, 100731,
https://doi.org/10.1016/j.ejrh.2020.100731, 2020.
Caisse Centrale de Réassurance (CCR): Événements – inondations, Paris, https://catastrophes-naturelles.ccr.fr/les-evenements, last access: 24 September 2021.
Chen, J., Dai, A., Zhang, Y., and Rasmussen, K. L.: Changes in convective
available potential energy and convective inhibition under global warming,
J. Climate, 33, 2025–2050, https://doi.org/10.1175/JCLI-D-19-0461.1, 2020.
Detring, C., Müller, A., Schielicke, L., Névir, P., and Rust, H. W.:
Occurrence and transition probabilities of omega and high-over-low blocking
in the Euro-Atlantic region, Weather Clim. Dyn., 2, 927–952,
https://doi.org/10.5194/wcd-2-927-2021, 2021.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe
thunderstorm environments in response to greenhouse forcing, P. Natl. Acad. Sci. USA, 110, 16361–16366, https://doi.org/10.1073/pnas.1307758110,
2013.
Doswell, C. A. and Schultz, D. M.: On the use of indices and parameters in
forecasting severe storms, E-Journal Sev. Storms Meteorol., 1, 1–22,
2006.
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting: An
ingredients-based methodology, Weather Forecast., 11, 560–581,
https://doi.org/10.1175/1520-0434(1996)011< 0560:FFFAIB>2.0.CO;2,
1996.
Dougherty, E. and Rasmussen, K. L.: Climatology of flood-producing storms
and their associated rainfall characteristics in the United States, Mon.
Weather Rev., 147, 3861–3877, https://doi.org/10.1175/MWR-D-19-0020.1, 2019.
Eden, J. M., Kew, S. F., Bellprat, O., Lenderink, G., Manola, I., Omrani, H.,
and van Oldenborgh, G. J.: Extreme precipitation in the Netherlands: An
event attribution case study, Weather Clim. Extrem., 21, 90–101,
https://doi.org/10.1016/j.wace.2018.07.003, 2018.
Franceinfo: 3 grand est,
https://france3-regions.francetvinfo.fr/meteo/inondations?r=grand-est (last access: 18 November 2022),
2021.
Funk, T. W.: Forecasting Techniques Utilized by the Forecast Branch of the
National Meteorological Center During a Major Convective Rainfall Event,
Weather Forecast., 6, 548–564, 1991.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A.,
Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J.,
Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina,
V., Preciso, E., Sempere-torres, D., Stancalie, G., Szolgay, J., Tsanis, I.,
Velasco, D., and Viglione, A.: A compilation of data on European flash
floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009.
George, J. J.: Weather forecasting for aeronautics, Academic Press, New York City, ISBN 9781483233208, 1960.
German Weather Service (DWD): Starkregen, Wetter- und Klimalexikon,
https://www.dwd.de/DE/service/lexikon/begriffe/S/Starkregen.html, last access: 20 May 2021.
German Weather Service (DWD) and Gesamtverband der Deutschen
Versicherungswirtschaft e.V (GDV): Forschungsprojekt “Starkregen” – Fachbericht: Eine Zusammenfassung der wichtigsten Ergebnisse
des Projekts zum Zusammenhang zwischen Starkregen und versicherten
Schäden untersucht von GDV und DWD,
https://www.gdv.de/resource/blob/63746/ac53789625df198043ea0779329b42d9/fachbericht-data.pdf (last access: 18 November 2022),
2019.
Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J.,
Ikeda, K., Lindsey, D., Wood, A., Dolan, B., Matrosov, S., Newman, A.,
Mahoney, K., Rutledge, S., Johnson, R., Kucera, P., Kennedy, P.,
Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W.,
Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B.: The great
Colorado flood of September 2013, B. Am. Meteorol. Soc., 96,
1461–1487, https://doi.org/10.1175/BAMS-D-13-00241.1, 2015.
Göppert, H.: Auswertung von abgelaufenen Starkregenereignissen über
Radarmessungen, Wasserwirtschaft, 108, 44–50,
https://doi.org/10.1007/s35147-018-0223-8, 2018.
Groenemeijer, P. H. and van Delden, A.: Sounding-derived parameters
associated with large hail and tornadoes in the Netherlands, Atmos. Res.,
83, 473–487, https://doi.org/10.1016/j.atmosres.2005.08.006, 2007.
Hall, A. J.: Flash Flood Forecasting, World Meteorological Organization, 577, 18, 1–38, ISBN 92-63-10577-4, 1981.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on pressure levels from 1979 to present, Copernicus Clim. Chang.
Serv. Clim. Data Store, [data set], https://doi.org/10.24381/cds.bd0915c6, 2018a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on single levels from 1979 to present, Copernicus Clim. Chang.
Serv. Clim. Data Store, [data set], https://doi.org/10.24381/cds.adbb2d47, 2018b.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, [data set], Q. J. R. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Johst, M., Gerlach, N., and Demuth, N.: Starkregen und Hochwasser im Mai/Juni
2018, Mainz, Germany,
http://www.hochwasser-rlp.de/publikationen/bericht_juni_2018.pdf (last access: 18 November 2022), 2018.
Junker, N. W., Schneider, R. S., and Fauver, S. L.: A study of heavy rainfall
events during the great midwest flood of 1993, Weather Forecast., 14,
701–712, https://doi.org/10.1175/1520-0434(1999)014< 0701:ASOHRE>2.0.CO;2, 1999.
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S.
I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst, M., Van den Bergh, J., Van de Vyver, H., Vannitsem, S., van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021, R. Netherlands Meteorol. Inst., 13 (July), 18, https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf (last access: 18 November 2022), 2021.
Lenderink, G. and Van Meijgaard, E.: Increase in hourly precipitation
extremes beyond expectations from temperature changes, Nat. Geosci., 1,
511–514, https://doi.org/10.1038/ngeo262, 2008.
Llasat, M. C., Marcos, R., Llasat-Botija, M., Gilabert, J., Turco, M., and
Quintana-Seguí, P.: Flash flood evolution in North-Western
Mediterranean, Atmos. Res., 149, 230–243,
https://doi.org/10.1016/j.atmosres.2014.05.024, 2014.
Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., and Llasat-Botija, M.:
Trends in flash flood events versus convective precipitation in the
Mediterranean region: The case of Catalonia, J. Hydrol., 541, 24–37,
https://doi.org/10.1016/j.jhydrol.2016.05.040, 2016.
Lupo, A. R.: Atmospheric blocking events: a review, Ann. N. Y. Acad. Sci.,
https://doi.org/10.1111/nyas.14557, 2020.
Luxemburger Wort: Luxemburger Wort – Archiv, https://www.wort.lu/de/archive (last access: 18 November 2022), 2021.
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of
selected extreme flash floods in Europe and implications for flood risk
management, J. Hydrol., 394, 118–133,
https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.
Markowski, P. M., and Richardson, Y. P.: Hazards associated with deep moist convection. Mesoscale Meteorology in Midlatitudes, John Wiley & Sons, Ltd, 273–312, ISBN 978-0-470-74213-6, 2010.
Martinkova, M. and Kysely, J.: Overview of observed clausius-clapeyron
scaling of extreme precipitation in midlatitudes, Atmosphere,
11, 1–16, https://doi.org/10.3390/ATMOS11080786, 2020.
Mathias, L.: Major flood event in the Mullerthal region on 1 June 2018:
event analysis and predictability, MeteoLux, (June 2018), 1–17, 2019.
Mathias, L.: Synoptic-mesoscale analysis of the flash-flood-producing
thunderstorm over the Vallée de l'Ernz on 22 July 2016, MeteoLux, (July
2016), 1–18, 2021.
Meischner, P.: Weather Radar: Principles and Advanced Applications, Springer Berlin Heidelberg, Berlin, ISBN 3-540-00328-2, 2014.
Meyer, J., Douinot, A., Zehe, E., Tamez-Meléndez, C., Francis, O., and Pfister, L.: Impact of Atmospheric Circulation on Flooding Occurrence and Type in Luxembourg (Central Western Europe), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13953, https://doi.org/10.5194/egusphere-egu2020-13953, 2020.
Michaelides, S. C.: Precipitation: Advances in measurement, estimation, and prediction, 1st ed., edited by: Michaelides, S. C., Springer, ISBN 978-3-540-77654-3, 2008.
Mishra, V., Wallace, J. M., and Lettenmaier, D. P.: Relationship between
hourly extreme precipitation and local air temperature in the United States,
Geophys. Res. Lett., 39, L16403, https://doi.org/10.1029/2012GL052790, 2012.
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J.,
Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale
dynamics in an exceptional sequence of severe thunderstorms in Europe
May–June 2018, Weather Clim. Dynam., 1, 325–348,
https://doi.org/10.5194/wcd-1-325-2020, 2020.
Müller, E. N. and Pfister, A.: Increasing occurrence of high-intensity
rainstorm events relevant for the generation of soil erosion in a temperate
lowland region in Central Europe, J. Hydrol., 411, 266–278,
https://doi.org/10.1016/j.jhydrol.2011.10.005, 2011.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present,
Copernicus Clim. Chang. Serv. Clim. Data Store, [data set], https://doi.org/10.24381/cds.e2161bac,
2019.
NWS: National Weather Service Glossary,
https://forecast.weather.gov/glossary.php (last access: 22 August 2022), 2021.
Owen, P. W., Roberts, G., Prigent, O., Markus, R., Tanguy, B., Bridgford,
M., Katharina, B., Ciabatti, I., Gatter, L., Gilson, V., Kubat, J., Laanes,
L., Simeonova, R., Critoph, H., and Annette, Z.: Flood Directive: progress in
assessing risks, while planning and implementation need to improve,
Special Report No. 25, Luxembourg, https://doi.org/10.2865/12240, 2018.
Pfister, L., Kwadijk, J., Musy, A., Bronstert, A., and Hoffmann, L.: Climate
change, land use change and runoff prediction in the Rhine-Meuse basins,
River Res. Appl., 20, 229–241, https://doi.org/10.1002/rra.775, 2004.
Pfister, L., Faber, O., Hostache, R., Iffly, J. F., Matgen, P., Minette, F.,
Trebs, I., Bastian, C., Göhlhausen, D., Meisch, C., and Patz, N.: Crue
éclair du 22 juillet 2016 dans la region de Larochette – Étude
méchanistique et fréquentielle réalisée en 2018 pour le
compte de l'Administration de la gestion de l'eau, Esch-sur-Alzette,
https://eau.gouvernement.lu/dam-assets/publications/crue-éclair-du-22-juillet-2016/1812-LIST-BrochureCrueEclair.pdf (last access: 18 November 2022),
2018.
Pfister, L., Douinot, A., Hostache, R., François, I. J., Matgen, P.,
Minette, F., Bastian, C., Gilbertz, C., Göhlhausen, D., Meisch, C., and
Patz, N.: Crues subites 2018 – Étude méchanistique et
fréquentielle des crues subites de 2018 au Luxembourg, Esch-sur-Alzette,
https://eau.gouvernement.lu/fr/services-aux-citoyens/publications/2021/brochures/Crues-subites-2018.html (last access: 18 November 2022),
2020.
Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A., and Daniell, J.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background, Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, 2016.
Púčik, T., Groenemeijer, P., Riva, D., and Kolář, M.:
Proximity soundings of severe and nonsevere thunderstorms in central Europe,
Mon. Weather Rev., 143, 4805–4821, https://doi.org/10.1175/MWR-D-15-0104.1, 2015.
Púčik, T., Groenemeijer, P., Rädler, A. T., Tijssen, L.,
Nikulin, G., Prein, A. F., van Meijgaard, E., Fealy, R., Jacob, D., and
Teichmann, C.: Future changes in European severe convection environments in
a regional climate model ensemble, J. Climate, 30, 6771–6794,
https://doi.org/10.1175/JCLI-D-16-0777.1, 2017.
Rädler, A. T., Groenemeijer, P., Faust, E., and Sausen, R.: Detecting
severe weather trends using an additive regressive convective hazard model
(AR-CHaMo), J. Appl. Meteorol. Clim., 57, 569–587,
https://doi.org/10.1175/JAMC-D-17-0132.1, 2018.
Rasmussen, K. L., Rasmussen, A. F. P. R. M., and Liu, K. I. C.: Changes in
the convective population and thermodynamic environments in
convection-permitting regional climate simulations over the United States,
Clim. Dynam., 55, 383–408, https://doi.org/10.1007/s00382-017-4000-7, 2017.
Rauber, R. M., Charlevoix, D. J., and Walsh, J. E.: Severe and hazardous
weather: an introduction to high impact meteorology, 3rd ed., Kendall/Hunt
Publishing Company, Dubuque, Iowa, ISBN 0757550436, 2008.
Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and Ehret, U.: Extreme flood response to short-duration convective rainfall in South-West Germany, Hydrol. Earth Syst. Sci., 16, 1543–1559, https://doi.org/10.5194/hess-16-1543-2012, 2012.
Schroeder, A., Basara, J., and Shepherd, J. Marshall, Nelson, S.: Insights
into Atmospheric Contributors to Urban Flash Flooding across the United
States Using an Analysis of Rawinsonde Data and Associated Calculated
Parameters, J. Appl. Meteorol. Clim., 55, 313–323,
https://doi.org/10.1175/JAMC-D-14-0232.1, 2016.
Schumacher, R. S. and Johnson, R. H.: Characteristics of U. S. Extreme
Rain Events during 1999 – 2003, Weather Forecast., 21, 69–85,
https://doi.org/10.1175/WAF900.1, 2006.
Sevruk, B.: Correction of precipitation measurements, summary report. In: Sevruk, B. (Eds.): Correction Of Precipitation Measurements. ETH/IASH/WMO Workshop on the Correction of Precipitation Measurements, Zürich, April 1–3, 1985, Züricher Geographische Schriften 23, ETH, Geographisches Institut, Zürich, 13–23, 1986.
Sikorska-Senoner, A. E. and Seibert, J.: Flood-type trend analysis for
alpine catchments, Hydrol. Sci. J., 65, 1281–1299,
https://doi.org/10.1080/02626667.2020.1749761, 2020.
Strangeways, I.: Precipitation: theory, measurement and distribution,
Cambridge University Press, Cambridge, ISBN 13978-0-521-85117-6, 2007.
Taszarek, M., Brooks, H. E., and Czernecki, B.: Sounding-derived parameters
associated with convective hazards in Europe, Mon. Weather Rev., 145,
1511–1528, https://doi.org/10.1175/MWR-D-16-0384.1, 2017.
Taszarek, M., Allen, J. T., Brooks, H. E., Pilguj, N., and Czernecki, B.:
Differing trends in United States and European Severe Thunderstorm
Environments in a Warming Climate, B. Am. Meteorol. Soc., 102,
296–322, https://doi.org/10.1175/BAMS-D-20-0004.1, 2021a.
Taszarek, M., Allen, J. T., Marchio, M., and Brooks, H. E.: Global
climatology and trends in convective environments from ERA5 and rawinsonde
data, Clim. Atmos. Sci., 4, 1–11, https://doi.org/10.1038/s41612-021-00190-x, 2021b.
Van Campenhout, J., Hallot, E., Houbrechts, G., Peeters, A., Levecq, Y.,
Gérard, P., and Petit, F.: Flash floods and muddy floods in Wallonia:
Recent temporal trends, spatial distribution and reconstruction of the
hydrosedimentological fluxes using flood marks and sediment deposits,
Belgeo, 1, 1–26, https://doi.org/10.4000/belgeo.16409, 2015.
Van Delden, A.: The synoptic setting of thunderstorms in Western Europe,
Atmos. Res., 56, 89–110, https://doi.org/10.1016/S0169-8095(00)00092-2, 2001.
Vogel, K., Ozturk, U., Riemer, A., Laudan, J., Sieg, T., Wendi, D., and
Agarwal, A.: Die Sturzflut von Braunsbach am 29. Mai 2016 – Entstehung,
Ablauf und Schäden eines “Jahrhundertereignisses”, Teil
2: Geomorphologische Prozesse und Schadensanalyse, Hydrol. und
Wasserbewirtschaftung, 61, 163–175, https://doi.org/10.5675/HyWa, 2017.
Weigl, E. and Winterrath, T.: Radargestütze Niederschlagsanalyse und
vorhersage (RADOLAN, RADVOR-OP), Promet, 35, 76–86, 2009.
Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., Gerlach, N., and
Bartels, H.: Routineverfahren zur Online-Aneichung der
Radarniederschlagsdaten mithilfe von automatischen
Bodenniederschlagsstationen (Ombrometer), German Weather Service:
Hydrometeorology department, Offenbach am Main, https://www.dwd.de/DE/leistungen/radolan/radolan_info/abschlussbericht_pdf.pdf?_blob=publicationFile&v=2 (last access: 18 November 2022), 2004.
Westermayer, A. T., Groenemeijer, P., Pistotnik, G., Sausen, R., and Faust,
E.: Identification of favorable environments for thunderstorms in reanalysis
data, Meteorol. Z., 26, 59–70, https://doi.org/10.1127/metz/2016/0754,
2017.
Whiteman, C. D.: Mountain Meteorology – Fundamentals and Applications,
Oxford University Press, ISBN 9780195132717, 2000.
Wilson, J. W. and Brandes, E. A.: Radar Measurement of Rainfall – A Summary,
Am. Meteorol. Soc., 60, 1048–1058, 1979.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Walawender, E., Weigl, E., and Becker, A.: Erstellung einer
radargestützten Niederschlagsklimatologie, Reports of the German Weather
Service, No. 251, Offenbach am Main, ISBN 978-3-88148-499-2, 2017.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: RADKLIM Version
2017.002: Reprocessed quasi gauge-adjusted radar data, 5-minute
precipitation sums (YW), https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002, [data set], 2018.
WMO: Flash Flood Guidance System (FFGS) with Global Coverage, World
Meteorol. Organ.,
https://public.wmo.int/en/projects/ffgs (last access: 16 December 2021), 2017.
Wood, S. J., Jones, D. A., and Moore, R. J.: Static and dynamic calibration of radar data for hydrological use, Hydrol. Earth Syst. Sci., 4, 545–554, https://doi.org/10.5194/hess-4-545-2000, 2000.
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
We identified and analysed the major atmospheric components of rain-intense thunderstorms that...