Applebaum, D.: Probability and Information, 1st Edn., Cambridge University
Press, Cambridge, 1996.

Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall
spatial variability on flood prediction, J. Hydrol., 260, 216–230, https://doi.org/10.1016/S0022-1694(01)00611-4, 2002.

Ben-Naim, A.: A Farewell to Entropy, World Scientific, https://doi.org/10.1142/6469, 2008.

Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns
of similarity of seasonal water balances: A window into streamflow variability
over a range of time scales, Water Resour. Res. 50, 5638–5661, https://doi.org/10.1002/2014WR015692, 2014.

Beven, K. J.: Changing ideas in hydrology – The case of physically-based models,
J. Hydrol., 105, 157–172, https://doi.org/10.1016/0022-1694(89)90101-7, 1989.

Beven, K. J.: Uniqueness of place and process representations in hydrological
modelling, Hydrol. Earth Syst. Sci., 4, 203–213, https://doi.org/10.5194/hess-4-203-2000, 2000.

Beven, K. J. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using the
GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.

Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A
review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.

Brunsell, N. A.: A multiscale information theory approach to assess spatial-temporal
variability of daily precipitation, J. Hydrol., 385, 165–172, https://doi.org/10.1016/j.jhydrol.2010.02.016, 2010.

Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative
numerical solution for the unsaturated flow equation, Water Resour. Res., 26,
1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990.

Chaubey, I., Cotter, A. S., Costello, T. A., and Soerens, T. S.: Effect of DEM
data resolution on SWAT output uncertainty, Hydrol. Process., 19, 621–628,
https://doi.org/10.1002/hyp.5607, 2005.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual
hydrological modeling: 1. Fidelity and efficiency of time stepping schemes,
Water Resour. Res., 46, W10510, https://doi.org/10.1029/2009WR008894, 2010.

Clark, M. P., Schaefli, B., Schymanski, S. J., Samaniego, L., Luce, C. H.,
Jackson, B. M., Freer, J. E., Arnold, J. R., Moore, R. D., Istanbulluoglu, E.,
and Ceola, S.: Improving the theoretical underpinnings of process-based
hydrologic models, Water Resour. Res., 52, 2350–2365, https://doi.org/10.1002/2015WR017910, 2016.

Cover, T. M. and Thomas, J. A.: Elements of Information Theory, Elements of
Information Theory, John Wiley & Sons, Inc., Hoboken, NJ, USA, https://doi.org/10.1002/047174882X, 2005.

Das, T., Bárdossy, A., Zehe, E., and He, Y.: Comparison of conceptual model
performance using different representations of spatial variability, J. Hydrol.,
356, 106–118, https://doi.org/10.1016/j.jhydrol.2008.04.008, 2008.

Davies, P.: Why is the physical world so comprehensible? Complexity, entropy,
Phys. Inf., VIII, 61–71, 1990.

Dooge, J. C. I.: Looking for hydrologic laws, Water Resour. Res., 22, 46S–58S,
https://doi.org/10.1029/WR022i09Sp0046S, 1986.

Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J.,
Blöschl, G., Gelfan, A.N., Harman, C., Kleidon, A., Bogaard, T.A., Wang, D.,
Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Di Baldassarre, G.,
Parajka, J., van Beek, L. P. H., van Griensven, A., Westhoff, M. C., and
Winsemius, H. C.: Advancing catchment hydrology to deal with predictions under
change, Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, 2014.

Emmanuel, I., Andrieu, H., Leblois, E., Janey, N., and Payrastre, O.: Influence
of rainfall spatial variability on rainfall-runoff modelling: Benefit of a
simulation approach?, J. Hydrol., 531, 337–348, https://doi.org/10.1016/j.jhydrol.2015.04.058, 2015.

Faigle, B., Helmig, R., Aavatsmark, I., and Flemisch, B.: Efficient multiphysics
modelling with adaptive grid refinement using a MPFA method, Comput. Geosci.,
18, 625–636, https://doi.org/10.1007/s10596-014-9407-1, 2014.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.

Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From spatially
variable streamflow to distributed hydrological models: Analysis of key modeling
decisions, Water Resour. Res., 52, 954–989, https://doi.org/10.1002/2015WR017398, 2016.

Francke, T., Güntner, A., Mamede, G., Müller, E. N., and Bronstert, A.:
Automated catena-based discretization of landscapes for the derivation of
hydrological modelling units, Int. J. Geogr. Inf. Sci., 22, 111–132,
https://doi.org/10.1080/13658810701300873, 2008.

Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based,
digitally-simulated hydrologic response model, J. Hydrol., 9, 237–258,
https://doi.org/10.1016/0022-1694(69)90020-1, 1969.

Gong, W., Yang, D., Gupta, H. V., and Nearing, G.: Estimating information
entropy for hydrological data: One-dimensional case, Water Resour. Res., 50,
5003–5018, https://doi.org/10.1002/2014WR015874, 2014.

Gupta, H. V. and Nearing, G. S.: Debates-the future of hydrological sciences:
A (common) path forward? Using models and data to learn: A systems theoretic
perspective on the future of hydrological science, Water Resour. Res., 50,
5351–5359, https://doi.org/10.1002/2013WR015096, 2014.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving
hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning,
2nd Edn., Springer, New York, NY, 2009.

Hrachowitz, M. and Clark, M.: HESS Opinions: The complementary merits of
top-down and bottom-up modelling philosophies in hydrology. Hydrol. Earth Syst.
Sci. Discuss., https://doi.org/10.5194/hess-2017-36, in review, 2017a.

Hrachowitz, M. and Clark, M. P.: HESS Opinions: The complementary merits of
competing modelling philosophies in hydrology, Hydrol. Earth Syst. Sci., 21,
3953–3973, https://doi.org/10.5194/hess-21-3953-2017, 2017b.

Huuskonen, A., Saltikoff, E., and Holleman, I.: The Operational Weather Radar
Network in Europe, B. Am. Meteorol. Soc., 95, 897–907, https://doi.org/10.1175/BAMS-D-12-00216.1, 2014.

Jackisch, C.: Linking structure and functioning of hydrological systems, PhD thesis,
Repository KITopen, 171, https://doi.org/10.5445/IR/1000051494, 2015.

Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke,
J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and
characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21,
3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.

Jaynes, E. T.: Information theory and statistical mechanics, Phys. Rev. Lett.,
106, 620–630, 1957.

Kawachi, T., Maruyama, T., and Singh, V. P.: Rainfall entropy for delineation
of water resources zones in Japan, J. Hydrol., 246, 36–44, https://doi.org/10.1016/S0022-1694(01)00355-9, 2001.

Kleidon, A.: A basic introduction to the thermodynamics of the Earth system far
from equilibrium and maximum entropy production, Philos. T. Roy. Soc. B, 365,
1303–1315, https://doi.org/10.1098/rstb.2009.0310, 2010.

Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power,
and the dynamics of preferential river flow structures at the continental scale,
Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, 2013.

Kondepudi, D. and Prigogine, I.: Modern Thermodynamics, John Wiley & Sons, Ltd,
Chichester, UK, https://doi.org/10.1002/9781118698723, 2014.

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.:
When does higher spatial resolution rainfall information improve streamflow
simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci.,
18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.

Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L.,
Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by
representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249,
https://doi.org/10.5194/hess-21-1225-2017, 2017.

Maurer, T.: Physikalisch begründete zeitkontinuierliche Modellierung des
Wassertransports in kleinen ländlichen Einzugsgebieten, Karlsruher Institut
für Technologie, Karlsruhe, 1997.

Michaels, G. S., Carr, D. B., Askenazi, M., Fuhrman, S., Wen, X., and Somogyi,
R.: Cluster analysis and data visualization of large-scale gene expression data,
Pac. Symp. Biocomput., 3, 42–53, 1998.

Murtagh, F. and Legendre, P.: Ward's Hierarchical Agglomerative Clustering Method:
Which Algorithms Implement Ward's Criterion?, J. Classif., 31, 274–295,
https://doi.org/10.1007/s00357-014-9161-z, 2014.

Musa, Z. N., Popescu, I., and Mynett, A.: A review of applications of satellite
SAR, optical, altimetry and DEM data for surface water modelling, mapping and
parameter estimation, Hydrol. Earth Syst. Sci., 19, 3755–3769, https://doi.org/10.5194/hess-19-3755-2015, 2015.

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and Weijs,
S. V.: A philosophical basis for hydrological uncertainty, Hydrolog. Sci. J.,
61, 1666–1678, https://doi.org/10.1080/02626667.2016.1183009, 2016.

Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose
open source GIS, Environ. Model. Softw., 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014, 2012.

Obled, C., Wendling, J., and Beven, K.: The sensitivity of hydrological models
to spatial rainfall patterns: an evaluation using observed data, J. Hydrol.,
159, 305–333, https://doi.org/10.1016/0022-1694(94)90263-1, 1994.

Oudin, L., Kay, A., Andréassian, V., and Perrin, C.: Are seemingly physically
similar catchments truly hydrologically similar?, Water Resour. Res., 46, 1–15,
https://doi.org/10.1029/2009WR008887, 2010.

Pechlivanidis, I. G., Jackson, B., Mcmillan, H., and Gupta, H. V.: Robust
informational entropy-based descriptors of flow in catchment hydrology, Hydrolog.
Sci. J., 61, 1–18, https://doi.org/10.1080/02626667.2014.983516, 2016.

Pokhrel, P. and Gupta, H. V.: On the use of spatial regularization strategies
to improve calibration of distributed watershed models, Water Resour. Res., 46,
1–17, https://doi.org/10.1029/2009WR008066, 2010.

Pokhrel, P., Yilmaz, K. K., and Gupta, H. V.: Multiple-criteria calibration of
a distributed watershed model using spatial regularization and response
signatures, J. Hydrol., 418–419, 49–60, https://doi.org/10.1016/j.jhydrol.2008.12.004, 2012.

Refsgaard, J. C.: Parameterisation, calibration and validation of distributed
hydrological models, J. Hydrol., 198, 69–97, https://doi.org/10.1016/S0022-1694(96)03329-X, 1997.

Robinson, J. S., Sivapalan, M., and Snell, J. D.: On the relative roles of
hillslope processes, channel routing, and network geomorphology in the hydrologic
response of natural catchments, Water Resour. Res., 31, 3089–3101, https://doi.org/10.1029/95WR01948, 1995.

Savenije, H. H. G. and Hrachowitz, M.: HESS Opinions “Catchments as
meta-organisms – a new blueprint for hydrological modelling”, Hydrol. Earth
Syst. Sci. 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, 2017.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.:
Catchment classification: empirical analysis of hydrologic similarity based on
catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911,
https://doi.org/10.5194/hess-15-2895-2011, 2011.

Schoorl, J. M., Sonneveld, M. P. W., and Veldkamp, A.: Three-dimensional
landscape process modelling: the effect of DEM resolution, Earth Surf. Proc.
Land., 25, 1025–1034, https://doi.org/10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z, 2000.

Schoups, G., van de Giesen, N. C., and Savenije, H. H. G.: Model complexity
control for hydrologic prediction, Water Resour. Res., 44, W00B03, https://doi.org/10.1029/2008WR006836, 2008.

Schweizer, D., Blum, P., and Butscher, C.: Uncertainty assessment in 3-D
geological models of increasing complexity, Solid Earth, 8, 515–530,
https://doi.org/10.5194/se-8-515-2017, 2017.

Scott, D. W.: On Optimal and Data-Based Histograms, Biometrika, 66, 605–610,
https://doi.org/10.2307/2335182, 1979.

Seibert, S. P., Jackisch, C., Ehret, U., Pfister, L., and Zehe, E.: Unravelling
abiotic and biotic controls on the seasonal water balance using data-driven
dimensionless diagnostics, Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, 2017.

Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27,
379–423, https://doi.org/10.1145/584091.584093, 1948.

Singh, V. P.: Entropy Theory and its Application in Environmental and Water
Engineering, in: Water Resources Research, John Wiley & Sons, Ltd, Chichester,
UK, https://doi.org/10.1002/9781118428306, 2013.

Sivapalan, M.: Pattern, Process and Function: Elements of a Unified Theory of
Hydrology at the Catchment Scale, in: Encyclopedia of Hydrological Sciences,
John Wiley & Sons, Ltd, Chichester, UK, 2005.

Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward approach
to hydrological prediction, Hydrol. Process., 17, 2101–2111, https://doi.org/10.1002/hyp.1425, 2003.

Smith, M. B., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda,
F., and Cong, S.: The distributed model intercomparison project (DMIP): Motivation
and experiment design, J. Hydrol., 298, 4–26, https://doi.org/10.1016/j.jhydrol.2004.03.040, 2004.

Sørensen, R. and Seibert, J.: Effects of DEM resolution on the calculation
of topographical indices: TWI and its components, J. Hydrol., 347, 79–89,
https://doi.org/10.1016/j.jhydrol.2007.09.001, 2007.

Tetzlaff, D., Uhlenbrook, S., and Molnar, P.: Significance of spatial variability
in precipitation for process-oriented modelling: results from two nested
catchments using radar and ground station data, Hydrol. Earth Syst. Sci., 9,
29–41, https://doi.org/10.5194/hess-9-29-2005, 2005.

Thompson, J. A., Bell, J. C., and Butler, C. A.: Digital elevation model
resolution: Effects on terrain attribute calculation and quantitative
soil-landscape modeling, Geoderma, 100, 67–89, https://doi.org/10.1016/S0016-7061(00)00081-1, 2001.

Wagener, T. and Gupta, H. V.: Model identification for hydrological forecasting
under uncertainty, Stoch. Environ. Res. Risk A., 19, 378–387, https://doi.org/10.1007/s00477-005-0006-5, 2005.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geogr. Compass, 1, 901–931, https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.

Weijs, S. V. and van de Giesen, N.: An information-theoretical perspective on
weighted ensemble forecasts, J. Hydrol., 498, 177–190, https://doi.org/10.1016/j.jhydrol.2013.06.033, 2013.

Weijs, S. V., Schoups, G., and Van De Giesen, N.: Why hydrological predictions
should be evaluated using information theory, Hydrol. Earth Syst. Sci., 14,
2545–2558, https://doi.org/10.5194/hess-14-2545-2010, 2010.

Weijs, S. V., van de Giesen, N., and Parlange, M.: HydroZIP: How Hydrological
Knowledge can Be Used to Improve Compression of Hydrological Data, Entropy, 15,
1289–1310, https://doi.org/10.3390/e15041289, 2013a.

Weijs, S. V., van de Giesen, N., and Parlange, M. B.: Data compression to
define information content of hydrological time series, Hydrol. Earth Syst.
Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, 2013b.

Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial
variability and scale with implications to hydrologic modeling, J. Hydrol.,
102, 29–47, https://doi.org/10.1016/0022-1694(88)90090-X, 1988.

Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler, C.,
Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski, D., and Pfister, L.:
Towards more systematic perceptual model development: a case study using
3 Luxembourgish catchments, Hydrol. Process., 29, 2731–2750, https://doi.org/10.1002/hyp.10393, 2015.

Yakirevich, A., Pachepsky, Y. A., Gish, T. J., Guber, A. K., Kuznetsov, M. Y.,
Cady, R. E., and Nicholson, T. J.: Augmentation of groundwater monitoring
networks using information theory and ensemble modeling with pedotransfer
functions, J. Hydrol., 501, 13–24, https://doi.org/10.1016/j.jhydrol.2013.07.032, 2013.

Zehe, E., Maurer, T., Ihringer, J., and Plate, E.: Modeling water flow and mass
transport in a loess catchment, Phys. Chem. Earth Pt. B, 26, 487–507,
https://doi.org/10.1016/S1464-1909(01)00041-7, 2001.

Zehe, E., Becker, R., Bárdossy, A., and Plate, E.: Uncertainty of simulated
catchment runoff response in the presence of threshold processes: Role of
initial soil moisture and precipitation, J. Hydrol., 315, 183–202,
https://doi.org/10.1016/j.jhydrol.2005.03.038, 2005.

Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M.: A
thermodynamic approach to link self-organization, preferential flow and
rainfall–runoff behaviour, Hydrol. Earth Syst. Sci., 17, 4297–4322,
https://doi.org/10.5194/hess-17-4297-2013, 2013.

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M.,
Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N.,
Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer,
V., and Kleidon, A.: HESS Opinions: From response units to functional units: a
thermodynamic reinterpretation of the HRU concept to link spatial organization
and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18,
4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014.

Zhang, W. and Montgomery, D. R.: Digital elevation model grid size, landscape
representation, and hydrologic simulations, Water Resour. Res., 30, 1019–1028,
https://doi.org/10.1029/93WR03553, 1994.