Ahrens, B.:
Rainfall downscaling in an alpine watershed applying a multiresolution approach,
J. Geophys. Res.-Atmos.,
108, 1–12, https://doi.org/10.1029/2001JD001485, 2003. a

Bechler, A., Vrac, M., and Bel, L.:
A spatial hybrid approach for downscaling of extreme precipitation fields,
J. Geophys. Res.-Atmos.,
120, 4534–4550, https://doi.org/10.1002/2014JD022558, 2015. a

Cârsteanu, A. and Foufoula-Georgiou, E.:
Assessing dependence among weights in a multiplicative cascade model of temporal rainfall,
J. Geophys. Res.-Atmos.,
101, 26363–26370, https://doi.org/10.1029/96JD01657, 2016. a

De Luca, D. L.:
Analysis and modelling of rainfall fields at different resolutions in southern Italy,
Hydrolog. Sci. J.,
59, 1536–1558, https://doi.org/10.1080/02626667.2014.926013, 2014. a

de Montera, L., Barthès, L., Mallet, C., and Golé:
The Effect of Rain–No Rain Intermittency on the Estimation of the Universal Multifractals Model Parameters,
J. Hydrometeorol.,
10, 493–506, https://doi.org/10.1175/2008JHM1040.1, 2009. a

Deidda, R.:
Rainfall downscaling in a space-time multifractal framework,
Water Resour. Res.,
36, 1779–1794, https://doi.org/10.1029/2000WR900038, 2000. a

Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.:
Influence of the zero-rainfall on the assessment of the multifractal parameters,
Adv. Water Resour.,
45, 12–25, https://doi.org/10.1016/j.advwatres.2012.03.026, 2012. a

Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework, Nonlin. Processes Geophys., 20, 343–356, https://doi.org/10.5194/npg-20-343-2013, 2013. a

Güntner, A., Olsson, J., Calver, A., and Gannon, B.: Cascade-based disaggregation of continuous rainfall time series: the influence of climate, Hydrol. Earth Syst. Sci., 5, 145–164, https://doi.org/10.5194/hess-5-145-2001, 2001. a

Gupta, V. K. and Waymire, E. C.:
Multiscaling properties of spatial rainfall and river flow distributions,
J. Geophys. Res.,
95, 1999–2009, https://doi.org/10.1029/JD095iD03p01999, 1990. a

Gupta, V. K. and Waymire, E. C.:
A statistical analysis of mesoscale rainfall as a random cascade,
J. Appl. Meteorol.,
32, 251–267, https://doi.org/10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2, 1993. a, b

He, X., Chaney, N. W., Schleiss, M., and Sheffield, J.:
Spatial downscaling of precipitation using adaptable random forests,
Water Resour. Res.,
52, 8217–8237, https://doi.org/10.1002/2016WR019034, 2016. a

Hingray, B. and Ben Haha, M.:
Statistical performances of various deterministic and stochastic models for rainfall series disaggregation,
Atmos. Res.,
77, 152–175, https://doi.org/10.1016/j.atmosres.2004.10.023, 2005. a

Jha, S. K., Mariethoz, G., Evans, J., McCabe, M. F., and Sharma, A.:
A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature,
Water Resour. Res.,
51, 6244–6261, https://doi.org/10.1002/2014WR016729, 2015. a

Kang, B. and Ramirez, J.:
A coupled stochastic space-time intermittent random cascade model for rainfall downscaling,
Water Resour. Res.,
46, W10534, https://doi.org/10.1029/2008WR007692, 2010. a

Kedem, B. and Chiu, L. S.:
Are rain rate processes self-similar?,
Water Resour. Res.,
23, 1816–1818, 1987. a

KNMI: Precipitation – 5-min precipitation accumulations from climatological gauge-adjusted radar dataset for The Netherlands (1 km), available at: https://data.knmi.nl/datasets (last access: 20 July 2020), 2017. a

Langousis, A., Mamalakis, A., Deidda, R., and Marrocu, M.:
Assessing the relative effectiveness of statistical downscaling and distribution mapping in reproducing rainfall statistics based on climate model results,
Water Resour. Res.,
52, 471–494, https://doi.org/10.1002/2015WR017556, 2016. a

Li, H., Sheffield, J., and Wood, E. F.:
Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching,
J. Geophys. Res.-Atmos.,
115, 1–20, https://doi.org/10.1029/2009JD012882, 2010. a

Licznar, P., Lomotowski, J., and Rupp, D. E.:
Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator,
Atmos. Res.,
99, 563–578, https://doi.org/10.1016/j.atmosres.2010.12.014, 2011. a

Licznar, P., De Michele, C., and Adamowski, W.: Precipitation variability within an urban monitoring network via microcanonical cascade generators, Hydrol. Earth Syst. Sci., 19, 485–506, https://doi.org/10.5194/hess-19-485-2015, 2015. a

Lisniak, D., Franke, J., and Bernhofer, C.: Circulation pattern based parameterization of a multiplicative random cascade for disaggregation of observed and projected daily rainfall time series, Hydrol. Earth Syst. Sci., 17, 2487–2500, https://doi.org/10.5194/hess-17-2487-2013, 2013. a

Lombardo, F., Volpi, E., and Koutsoyiannis, D.:
Rainfall downscaling in time: theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades,
Hydrolog. Sci. J.,
57, 1052–1066, https://doi.org/10.1080/02626667.2012.695872, 2012. a

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Serinaldi, F.: A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall,
Water Resour. Res.,
53, 4586–4605, https://doi.org/10.1002/2017WR020529, 2017. a

Lovejoy, S. and Mandelbrot, B. B.:
Fractal properties of rain, and a fractal model,
Tellus A,
37A, 209–232, 1985. a

Lovejoy, S. and Schertzer, D.:
On the simulation of continuous in scale universal multifractals, part I: Spatially continuous processes,
Comput. Geosci.,
36, 1393–1403, https://doi.org/10.1016/j.cageo.2010.04.010, 2010a. a

Lovejoy, S. and Schertzer, D.:
On the simulation of continuous in scale universal multifractals, part II: Space–time processes and finite size corrections,
Comput. Geosci.,
36, 1404–1413, https://doi.org/10.1016/j.cageo.2010.07.001, 2010b. a

Marani, M.:
Non-power-law-scale properties of rainfall in space and time,
Water Resour. Res.,
41, https://doi.org/10.1029/2004WR003822, 2005. a

Mascaro, G., Deidda, R., and Hellies, M.: On the nature of rainfall intermittency as revealed by different metrics and sampling approaches, Hydrol. Earth Syst. Sci., 17, 355–369, https://doi.org/10.5194/hess-17-355-2013, 2013. a

McIntyre, N., Shi, M., and Onof, C.:
Incorporating parameter dependencies into temporal downscaling of extreme rainfall using a random cascade approach,
J. Hydrol.,
542, 896–912, https://doi.org/10.1016/j.jhydrol.2016.09.057, 2016. a

Menabde, M. and Sivapalan, M.:
Modeling of rainfall time series and extremes using bounded random cascades and levy-stable distributions,
Water Resour. Res.,
36, 3293–3300, https://doi.org/10.1029/2000WR900197, 2000. a, b

Menabde, M., Seed, A., Harris, D., and Austin, G.:
Self-similar random fields and rainfall simulation,
J. Geophys. Res.,
102, 13509–13515, 1997. a

Molnar, P. and Burlando, P.:
Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model,
Atmos. Res.,
77, 137–151, https://doi.org/10.1016/j.atmosres.2004.10.024, 2005. a, b

Nychka, D., Furrer, R., Paige, J., and Sain, S.:
fields: Tools for spatial data,
https://doi.org/10.5065/D6W957CT, available at: https://www.image.ucar.edu/~nychka/Fields (last access: 15 July 2020), r package version 9.6, 2017. a

Olsson, J.: Evaluation of a scaling cascade model for temporal rain- fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30, https://doi.org/10.5194/hess-2-19-1998, 1998. a, b, c, d

Ossiander, M. and Waymire, E. C.:
Statistical Estimation for Multiplicative Cascades,
Ann. Stat.,
28, 1533–1560, 2000. a

Over, T. M. and Gupta, V. K.:
Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing,
J. Appl. Meteorol.,
33, 1526–1542, https://doi.org/10.1175/1520-0450(1994)033<1526:SAOMRD>2.0.CO;2, 1994. a, b

Over, T. M. and Gupta, V. K.:
A space-time theory of mesoscale rainfall using random cascades,
J. Geophys. Res.-Atmos.,
101, 2156–2202, https://doi.org/10.1029/96JD02033, 1996. a, b

Pathirana, A., Herath, S., and Yamada, T.: Estimating rainfall distributions at high temporal resolutions using a multifractal model, Hydrol. Earth Syst. Sci., 7, 668–679, https://doi.org/10.5194/hess-7-668-2003, 2003. a, b

Paulson, K. S. and Baxter, P. D.:
Downscaling of rain gauge time series by multiplicative beta cascade,
J. Geophys. Res.-Atmos.,
112, https://doi.org/10.1029/2006JD007333, 2007. a, b

Raut, B. A., Seed, A. W., Reeder, M. J., and Jakob, C.:
A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall,
J. Geophys. Res.-Atmos.,
123, 2050–2067, https://doi.org/10.1002/2017JD027148, 2018. a

Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., and Selker, J. S.:
Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation,
Water Resour. Res.,
45, https://doi.org/10.1029/2008WR007321, 2009. a, b, c

Schertzer, D. and Lovejoy, S.:
Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes,
J. Geophys. Res.-Atmos.,
92, 9693–9714, https://doi.org/10.1029/JD092iD08p09693, 1987. a

Schertzer, D. and Lovejoy, S.:
Multifractals, Generalized Scale Invariance and Complexity in Geophysics,
Int. J. Bifurcat. Chaos,
21, 3417–3456, https://doi.org/10.1142/S0218127411030647, 2011. a, b

Schleiss, M.:
Scaling and Distributional Properties of Precipitation Interamount Times,
J. Hydrometeorol.,
18, 1167–1184, https://doi.org/10.1175/JHM-D-16-0221.1, 2017. a, b, c

Schleiss, M. and Smith, J. A.:
Two simple metrics for quantifying rainfall intermittency: the burstiness and memory of inter-amount times,
J. Hydrometeorol.,
17, 421–436, https://doi.org/10.1175/JHM-D-15-0078.1, 2016. a, b

Schmitt, F., Vannitsem, S., and Barbosa, A.:
Modeling of rainfall time series using two-state renewal processes and multifractals,
J. Geophys. Res.,
103, 2156–2202, https://doi.org/10.1029/98JD02071, 1998. a

Schmitt, F. G.:
Continuous multifractal models with zero values: a continuous beta-multifractal model,
J. Stat. Mech.-Theory E.,
2014, P02008, https://doi.org/10.1088/1742-5468/2014/02/P02008, 2014. a

Shankar, S. U. and Hutchinson, P. D.:
Quadtrees in Hydrological Research,
New Zeal. Geogr.,
46, 29–32, https://doi.org/10.1111/j.1745-7939.1990.tb01944.x, 1990.
a

ten Veldhuis, M.-C. and Schleiss, M.: Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times, Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017, 2017. a

Teutschbein, C. and Seibert, J.:
Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,
J. Hydrol.,
456-457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012. a

Veneziano, D. and Lepore, C.:
The scaling of temporal rainfall,
Water Resour. Res.,
48, https://doi.org/10.1029/2012WR012105, 2012. a

Veneziano, D., Furcolo, P., and Iacobellis, V.:
Imperfect scaling of time and space-time rainfall,
J. Hydrol.,
322, 105–119, https://doi.org/10.1016/j.jhydrol.2005.02.044, 2006. a

Xu, G., Xu, X., Liu, M., Sun, Y. A., and Wang, K.:
Spatial Downscaling of TRMM Precipitation Product Using a Combined Multifractal and Regression Approach: Demonstration for South China,
Water,
7, 3083–3102, https://doi.org/10.3390/w7063083, 2015. a, b