Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3099-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3099-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global-scale evaluation of precipitation datasets for hydrological modelling
Solomon H. Gebrechorkos
CORRESPONDING AUTHOR
School of Geography and the Environment, University of Oxford, Oxford, UK
School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
Julian Leyland
School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
Simon J. Dadson
School of Geography and the Environment, University of Oxford, Oxford, UK
Sagy Cohen
Department of Geography and the Environment, University of Alabama, Tuscaloosa, AL, USA
Louise Slater
School of Geography and the Environment, University of Oxford, Oxford, UK
Michel Wortmann
School of Geography and the Environment, University of Oxford, Oxford, UK
Philip J. Ashworth
School of Applied Sciences, University of Brighton, Brighton, Sussex, BN2 4AT, UK
Georgina L. Bennett
Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
Richard Boothroyd
School of Geographical & Earth Sciences, University of Glasgow, Glasgow, UK
Hannah Cloke
Department of Geography and Environmental Science, University of Reading, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Pauline Delorme
Energy and Environment Institute, University of Hull, Hull, UK
Helen Griffith
Department of Geography and Environmental Science, University of Reading, Reading, UK
Richard Hardy
Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
Laurence Hawker
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Stuart McLelland
Energy and Environment Institute, University of Hull, Hull, UK
Jeffrey Neal
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Andrew Nicholas
Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
Andrew J. Tatem
School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
Ellie Vahidi
Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
Yinxue Liu
School of Geography and the Environment, University of Oxford, Oxford, UK
Justin Sheffield
School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
Daniel R. Parsons
Energy and Environment Institute, University of Hull, Hull, UK
Geography and Environment, Loughborough University, Loughborough, UK
Stephen E. Darby
School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
Related authors
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-3001, https://doi.org/10.5194/egusphere-2024-3001, 2024
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Liqing Peng, Justin Sheffield, Zhongwang Wei, Michael Ek, and Eric F. Wood
Earth Syst. Dynam., 15, 1277–1300, https://doi.org/10.5194/esd-15-1277-2024, https://doi.org/10.5194/esd-15-1277-2024, 2024
Short summary
Short summary
Integrating evaporative demand into drought indicators is effective, but the choice of method and the effectiveness of surface features remain undocumented. We evaluate various methods and surface features for predicting soil moisture dynamics. Using minimal ancillary information alongside meteorological and vegetation data, we develop a simple land-cover-based method that improves soil moisture drought predictions, especially in forests, showing promise for better real-time drought forecasting.
Simon Moulds, Louise Slater, Louise Arnal, and Andrew Wood
EGUsphere, https://doi.org/10.31223/X5X405, https://doi.org/10.31223/X5X405, 2024
Short summary
Short summary
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to four months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to four months ahead in many locations, although in general the skill declines with increasing lead time.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2132, https://doi.org/10.5194/egusphere-2024-2132, 2024
Short summary
Short summary
Leaky wooden dams are a type of natural flood management intervention that aim to reduce flood risk downstream by temporarily holding back water during a storm event and releasing it afterwards. These structures alter the river hydrology, and therefore the geomorphology, yet often this is excluded from numerical models. Here we show that by not simulating geomorphology we are currently underestimating the efficacy of these structures to reduce the flood peak and store water.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Trevor B. Hoey, Pamela Louise M. Tolentino, Esmael L. Guardian, John Edward G. Perez, Richard D. Williams, Richard J. Boothroyd, Carlos Primo C. David, and Enrico C. Paringit
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-188, https://doi.org/10.5194/hess-2024-188, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Estimating the sizes of flood events is critical for flood-risk management and other activities. We used data from several sources in a statistical analysis of flood size for rivers in the Philippines. Flood size is mainly controlled by the size of the river catchment, along with the volume of rainfall. Other factors, such as land-use, appear to play only minor roles in flood size. The results can be used to estimate flood size for any river in the country alongside other local information.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Joy Ommer, Milan Kalas, Jessica Neumann, Sophie Blackburn, and Hannah L. Cloke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1186, https://doi.org/10.5194/egusphere-2024-1186, 2024
Short summary
Short summary
What do we regret about our disaster preparedness? This study showed that we regret most not having taken any actions! Also, we only regret actions which end up threatening our life! What we don't regret is helping others! The findings of this study suggest that the no-regrets approach could be a suitable framework for moving towards longer term disaster preparedness.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-40, https://doi.org/10.5194/nhess-2024-40, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides- such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management on landslide risk.
Laurence Hawker, Jeffrey Neal, James Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, and Pham Khanh Nam
Nat. Hazards Earth Syst. Sci., 24, 539–566, https://doi.org/10.5194/nhess-24-539-2024, https://doi.org/10.5194/nhess-24-539-2024, 2024
Short summary
Short summary
We present a global flood model built using a new terrain data set and evaluated in the Central Highlands of Vietnam.
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
Nat. Hazards Earth Syst. Sci., 24, 375–396, https://doi.org/10.5194/nhess-24-375-2024, https://doi.org/10.5194/nhess-24-375-2024, 2024
Short summary
Short summary
We model hurricane-rainfall-driven flooding to assess how the number of people exposed to flooding changes in Puerto Rico under the 1.5 and 2 °C Paris Agreement goals. Our analysis suggests 8 %–10 % of the population is currently exposed to flooding on average every 5 years, increasing by 2 %–15 % and 1 %–20 % at 1.5 and 2 °C. This has implications for adaptation to more extreme flooding in Puerto Rico and demonstrates that 1.5 °C climate change carries a significant increase in risk.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Christopher Tomsett and Julian Leyland
Earth Surf. Dynam., 11, 1223–1249, https://doi.org/10.5194/esurf-11-1223-2023, https://doi.org/10.5194/esurf-11-1223-2023, 2023
Short summary
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Alessandro Sgarabotto, Irene Manzella, Kyle Roskilly, Miles J. Clark, Georgie L. Bennett, Chunbo Luo, and Aldina M. A. Franco
EGUsphere, https://doi.org/10.5194/egusphere-2023-2596, https://doi.org/10.5194/egusphere-2023-2596, 2023
Preprint archived
Short summary
Short summary
Smart sensors have been installed in boulders embedded in landslides to monitor the movements and characterise their hazards. Here, we present laboratory experiments to investigate how to use smart sensors to describe the movements of a cobble down an inclined plane and transmit the recorded motion data via a wireless network. This study contributes to understanding how to make the best use of smart sensors to describe boulder motion and assess the practicalities of their use in field settings.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev., 16, 3291–3311, https://doi.org/10.5194/gmd-16-3291-2023, https://doi.org/10.5194/gmd-16-3291-2023, 2023
Short summary
Short summary
A novel subgrid channel (SGC) model is developed for river–floodplain modelling, allowing utilization of subgrid-scale bathymetric information while performing computations on relatively coarse grids. By including adaptive artificial diffusion, potential numerical instability, which the original SGC solver had, in low-friction regions such as urban areas is addressed. Evaluation of the new SGC model through structured tests confirmed that the accuracy and stability have improved.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev., 16, 2391–2413, https://doi.org/10.5194/gmd-16-2391-2023, https://doi.org/10.5194/gmd-16-2391-2023, 2023
Short summary
Short summary
This paper describes a new release of the LISFLOOD-FP model for fast and efficient flood simulations. It features a new non-uniform grid generator that uses multiwavelet analyses to sensibly coarsens the resolutions where the local topographic variations are smooth. Moreover, the model is parallelised on the graphical processing units (GPUs) to further boost computational efficiency. The performance of the model is assessed for five real-world case studies, noting its potential applications.
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023, https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary
Short summary
In this study the processes leading to bank failures in the hypertidal Severn Estuary are studied employing numerical models and field observations. Results highlight that the periodic fluctuations in water levels drive an imbalance in the resisting (hydrostatic pressure) versus driving (pore water pressure) forces causing a frequent oscillation of bank stability between stable (at high tide) and unstable states (at low tide) both on semidiurnal bases and in the spring–neap transition.
Joshua N. Jones, Georgina L. Bennett, Claudia Abancó, Mark A. M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023, https://doi.org/10.5194/nhess-23-1095-2023, 2023
Short summary
Short summary
We modelled where landslides occur in the Philippines using landslide data from three typhoon events in 2009, 2018, and 2019. These models show where landslides occurred within the landscape. By comparing the different models, we found that the 2019 landslides were occurring all across the landscape, whereas the 2009 and 2018 landslides were mostly occurring at specific slope angles and aspects. This shows that landslide susceptibility must be considered variable through space and time.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Short summary
We present and validate a model that simulates current and future flood risk for the UK at high resolution (~ 20–25 m). We show that UK flood losses were ~ 6 % greater in the climate of 2020 compared to recent historical values. The UK can keep any future increase to ~ 8 % if all countries implement their COP26 pledges and net-zero ambitions in full. However, if only the COP26 pledges are fulfilled, then UK flood losses increase by ~ 23 %; and potentially by ~ 37 % in a worst-case scenario.
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023, https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Elena Bastianon, Julie A. Hope, Robert M. Dorrell, and Daniel R. Parsons
Earth Surf. Dynam., 10, 1115–1140, https://doi.org/10.5194/esurf-10-1115-2022, https://doi.org/10.5194/esurf-10-1115-2022, 2022
Short summary
Short summary
Biological activity in shallow tidal environments significantly influence sediment dynamics and morphology. Here, a bio-morphodynamic model is developed that accounts for hydro-climate variations in biofilm development to estimate the effect of biostabilisation on the bed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm under a range of disturbance periodicities and intensities, shaping the channel equilibrium profile.
Louise J. Slater, Chris Huntingford, Richard F. Pywell, John W. Redhead, and Elizabeth J. Kendon
Earth Syst. Dynam., 13, 1377–1396, https://doi.org/10.5194/esd-13-1377-2022, https://doi.org/10.5194/esd-13-1377-2022, 2022
Short summary
Short summary
This work considers how wheat yields are affected by weather conditions during the three main wheat growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which farmers may struggle to adapt to and mitigate against.
Chengbin Zou, Paul Carling, Zetao Feng, Daniel Parsons, and Xuanmei Fan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-119, https://doi.org/10.5194/tc-2022-119, 2022
Manuscript not accepted for further review
Short summary
Short summary
Climate change is causing mountain lakes behind glacier barriers to drain through ice tunnels as catastrophe floods, threatening people and infrastructure downstream. Understanding of how process works can mitigate the impacts by providing advanced warnings. A laboratory study of ice tunnel development improved understanding of how floods evolve. The principles of ice tunnel development were defined numerically and can be used to better model natural floods leading to improved prediction.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Hong-Yi Li, Zeli Tan, Hongbo Ma, Zhenduo Zhu, Guta Wakbulcho Abeshu, Senlin Zhu, Sagy Cohen, Tian Zhou, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, https://doi.org/10.5194/hess-26-665-2022, 2022
Short summary
Short summary
We introduce a new multi-process river sediment module for Earth system models. Application and validation over the contiguous US indicate a satisfactory model performance over large river systems, including those heavily regulated by reservoirs. This new sediment module enables future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river–ocean continuum to close the global carbon and nutrient cycles.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021, https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Short summary
Design flood estimation is a fundamental task in hydrology. We propose a machine- learning-based approach to estimate design floods anywhere on the global river network. This approach shows considerable improvement over the index-flood-based method, and the average bias in estimation is less than 18 % for 10-, 20-, 50- and 100-year design floods. This approach is a valid method to estimate design floods globally, improving our prediction of flood hazard, especially in ungauged areas.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021, https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Short summary
Unsustainable sand mining poses a threat to the stability of river channels. We use satellite imagery to estimate volumes of material removed from the Mekong River, Cambodia, over the period 2016–2020. We demonstrate that current rates of extraction now exceed previous estimates for the entire Mekong Basin and significantly exceed the volume of sand naturally transported by the river. Our work highlights the importance of satellite imagery in monitoring sand mining activity over large areas.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242, https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
Short summary
Heatwaves are an increasing risk to African communities. This hazard can have a negative impact on peoples lives and in some cases results in their death. This study shows new information about heatwave characteristics through a list of heatwave events that have been reported for the African continent from 1980 until 2020. Case studies are useful helps to inform the development of early warning systems and forecasting, which is an urgent priority and needs significant improvement.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Jamie Towner, Andrea Ficchí, Hannah L. Cloke, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-2021, https://doi.org/10.5194/hess-25-3875-2021, 2021
Short summary
Short summary
We examine whether several climate indices alter the magnitude, timing and duration of floods in the Amazon. We find significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative SST years in the central Pacific Ocean. This response is not repeated when the negative anomaly is positioned further east. These results have important implications for both social and physical sectors working towards the improvement of flood early warning systems.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
James Shaw, Georges Kesserwani, Jeffrey Neal, Paul Bates, and Mohammad Kazem Sharifian
Geosci. Model Dev., 14, 3577–3602, https://doi.org/10.5194/gmd-14-3577-2021, https://doi.org/10.5194/gmd-14-3577-2021, 2021
Short summary
Short summary
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all types of slow- or fast-moving waves over any smooth or rough surface. Using GPU parallelisation, FV1 is faster than the simpler ACC solver on grids with millions of elements. The DG2 solver is notably effective on coarse grids where river channels are hard to capture, improving predicted river levels and flood water depths. This marks a new step towards real-world DG2 flood inundation modelling.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Benedetta Dini, Georgina L. Bennett, Aldina M. A. Franco, Michael R. Z. Whitworth, Kristen L. Cook, Andreas Senn, and John M. Reynolds
Earth Surf. Dynam., 9, 295–315, https://doi.org/10.5194/esurf-9-295-2021, https://doi.org/10.5194/esurf-9-295-2021, 2021
Short summary
Short summary
We use long-range smart sensors connected to a network based on the Internet of Things to explore the possibility of detecting hazardous boulder movements in real time. Prior to the 2019 monsoon season we inserted the devices in 23 boulders spread over debris flow channels and a landslide in northeastern Nepal. The data obtained in this pilot study show the potential of this technology to be used in remote hazard-prone areas in future early warning systems.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Sazzad Hossain, Hannah L. Cloke, Andrea Ficchì, Andrew G. Turner, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-97, https://doi.org/10.5194/hess-2021-97, 2021
Manuscript not accepted for further review
Short summary
Short summary
Hydrometeorological drivers are investigated to study three different flood types: long duration, rapid rise and high water level of the Brahmaputra river basin in Bangladesh. Our results reveal that long duration floods have been driven by basin-wide rainfall whereas rapid rate of rise due to more localized rainfall. We find that recent record high water levels are not coincident with extreme river flows. Understanding these drivers is key for flood forecasting and early warning.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Thomas O'Shea, Paul Bates, and Jeffrey Neal
Nat. Hazards Earth Syst. Sci., 20, 2281–2305, https://doi.org/10.5194/nhess-20-2281-2020, https://doi.org/10.5194/nhess-20-2281-2020, 2020
Short summary
Short summary
Outlined here is a multi-disciplinary framework for analysing and evaluating the nature of vulnerability to, and capacity for, flood hazard within a complex urban society. It provides scope beyond the current, reified, descriptors of
flood riskand models the role of affected individuals within flooded areas. Using agent-based modelling coupled with the LISFLOOD-FP hydrodynamic model, potentially influential behaviours that give rise to the flood hazard system are identified and discussed.
Louise Arnal, Liz Anspoks, Susan Manson, Jessica Neumann, Tim Norton, Elisabeth Stephens, Louise Wolfenden, and Hannah Louise Cloke
Geosci. Commun., 3, 203–232, https://doi.org/10.5194/gc-3-203-2020, https://doi.org/10.5194/gc-3-203-2020, 2020
Short summary
Short summary
The Environment Agency (EA), responsible for flood risk management in England, is moving towards the use of probabilistic river flood forecasts. By showing the likelihood of future floods, they can allow earlier anticipation. But making decisions on probabilistic information is complex and interviews with EA decision-makers highlight the practical challenges and opportunities of this transition. We make recommendations to support a successful transition for flood early warning in England.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Jian Peng, Simon Dadson, Feyera Hirpa, Ellen Dyer, Thomas Lees, Diego G. Miralles, Sergio M. Vicente-Serrano, and Chris Funk
Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, https://doi.org/10.5194/essd-12-753-2020, 2020
Short summary
Short summary
Africa has been severely influenced by intense drought events, which has led to crop failure, food shortages, famine, epidemics and even mass migration. The current study developed a high spatial resolution drought dataset entirely from satellite-based products. The dataset has been comprehensively inter-compared with other drought indicators and may contribute to an improved characterization of drought risk and vulnerability and minimize drought's impact on water and food security in Africa.
J. Michael Johnson, Dinuke Munasinghe, Damilola Eyelade, and Sagy Cohen
Nat. Hazards Earth Syst. Sci., 19, 2405–2420, https://doi.org/10.5194/nhess-19-2405-2019, https://doi.org/10.5194/nhess-19-2405-2019, 2019
Short summary
Short summary
The coupled National Water Model (NWM)–Height Above Nearest Drainage flood mapping methodology provides the basis for operational flood forecasting across the continental United States. This paper evaluates how the method performs for 28 case studies using a historic archive of flood extents and a retrospective run of the NWM. We provide a summary of the results and discuss where the method is performing reliably, the general reasons for poor forecasts, and how the method might be improved.
Sagy Cohen, Austin Raney, Dinuke Munasinghe, J. Derek Loftis, Andrew Molthan, Jordan Bell, Laura Rogers, John Galantowicz, G. Robert Brakenridge, Albert J. Kettner, Yu-Fen Huang, and Yin-Phan Tsang
Nat. Hazards Earth Syst. Sci., 19, 2053–2065, https://doi.org/10.5194/nhess-19-2053-2019, https://doi.org/10.5194/nhess-19-2053-2019, 2019
Short summary
Short summary
Flooding is the most destructive natural disaster on Earth. Satellite and airborne imagery are commonly used for flood monitoring and response. While these remote sensing techniques are effective at providing the extent of flooding, they cannot be used to infer the depth of floodwater. This paper describes and analyzes version 2.0 of the Floodwater Depth Estimation Tool (FwDET). FwDET 2.0 offers an enhanced calculation algorithm for coastal regions and much-improved runtime.
Noah J. Finnegan, Kiara N. Broudy, Alexander L. Nereson, Joshua J. Roering, Alexander L. Handwerger, and Georgina Bennett
Earth Surf. Dynam., 7, 879–894, https://doi.org/10.5194/esurf-7-879-2019, https://doi.org/10.5194/esurf-7-879-2019, 2019
Short summary
Short summary
In some settings, landslides trigger valley blockages that impound huge volumes of sediment, often drastically changing river habitat and habitability. In other settings, landslides appear to have little effect on rivers. In this study, we explore what governs the different sensitivity of rivers to blocking from landslide debris. We accomplish this by comparing two sites in California with dramatic differences in blocking from otherwise similar slow-moving landslides.
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
Short summary
Flooding can arise from multiple sources, including waves, extreme sea levels, rivers, and severe rainfall. When two or more sources combine, the consequences can be greatly multiplied. We find the potential for the joint occurrence of extreme sea levels and river discharge to be greater on the western coast of the UK compared to the eastern coast. This is due to the weather conditions generating each flood source around the UK. These results will help increase our flood forecasting ability.
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
Short summary
This study presents an intercomparison analysis of eight global hydrological models (GHMs), assessing their ability to simulate peak river flows in the Amazon basin. Results indicate that the meteorological input is the most influential component of the hydrological modelling chain, with the recent ERA-5 reanalysis dataset significantly improving the ability to simulate flood peaks in the Peruvian Amazon. In contrast, calibration of the Lisflood routing model was found to have no impact.
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Short summary
This paper explores the benefits and advantages of R's usage in hydrology. We provide an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology as well as a roadmap for R’s future within the discipline.
Sazzad Hossain, Hannah L. Cloke, Andrea Ficchì, Andrew G. Turner, and Elisabeth Stephens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-286, https://doi.org/10.5194/hess-2019-286, 2019
Manuscript not accepted for further review
John K. Hillier, Geoffrey R. Saville, Mike J. Smith, Alister J. Scott, Emma K. Raven, Jonathon Gascoigne, Louise J. Slater, Nevil Quinn, Andreas Tsanakas, Claire Souch, Gregor C. Leckebusch, Neil Macdonald, Alice M. Milner, Jennifer Loxton, Rebecca Wilebore, Alexandra Collins, Colin MacKechnie, Jaqui Tweddle, Sarah Moller, MacKenzie Dove, Harry Langford, and Jim Craig
Geosci. Commun., 2, 1–23, https://doi.org/10.5194/gc-2-1-2019, https://doi.org/10.5194/gc-2-1-2019, 2019
Short summary
Short summary
Worldwide there is intense interest in converting research excellence in universities into commercial success, but there has been scant attention devoted to exactly how individual scientists' workload and incentive structures may be a key barrier to this. Our work reveals the real challenge posed by a time-constrained university culture, better describes how work with business might fit into an academic job, and gives tips on working together in an
user guidefor scientists and (re)insurers.
Jessica L. Neumann, Louise Arnal, Rebecca E. Emerton, Helen Griffith, Stuart Hyslop, Sofia Theofanidi, and Hannah L. Cloke
Geosci. Commun., 1, 35–57, https://doi.org/10.5194/gc-1-35-2018, https://doi.org/10.5194/gc-1-35-2018, 2018
Short summary
Short summary
Seasonal hydrological forecasts (SHF) can predict floods, droughts, and water use in the coming months, but little is known about how SHF are used for decision-making. We asked 11 water sector participants what decisions they would make when faced with a possible flood event in 6 weeks' time. Flood forecasters and groundwater hydrologists responded to the flood risk more than water supply managers. SHF need to be tailored for use and communicated more clearly if they are to aid decision-making.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-2018, https://doi.org/10.5194/gmd-11-3327-2018, 2018
Short summary
Short summary
Global overviews of upcoming flood and drought events are key for many applications from agriculture to disaster risk reduction. Seasonal forecasts are designed to provide early indications of such events weeks or even months in advance. This paper introduces GloFAS-Seasonal, the first operational global-scale seasonal hydro-meteorological forecasting system producing openly available forecasts of high and low river flow out to 4 months ahead.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, https://doi.org/10.5194/hess-22-2057-2018, 2018
Short summary
Short summary
This paper presents a new operational forecasting system (driven by atmospheric forecasts), predicting river flow in European rivers for the next 7 months. For the first month only, these river flow forecasts are, on average, better than predictions that do not make use of atmospheric forecasts. Overall, this forecasting system can predict whether abnormally high or low river flows will occur in the next 7 months in many parts of Europe, and could be valuable for various applications.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
Jack G. Williams, Nick J. Rosser, Richard J. Hardy, Matthew J. Brain, and Ashraf A. Afana
Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, https://doi.org/10.5194/esurf-6-101-2018, 2018
Short summary
Short summary
We present a method to analyse surface change using 3-D data collected at hourly intervals. This is applied to 9000 surveys of a failing rock slope, acquired over 10 months. A higher proportion and frequency of small rockfall is observed than in less-frequent (e.g. monthly) monitoring. However, quantifying longer-term erosion rates may be more suited to less-frequent data collection, which contains lower accumulative errors due to the number of surveys and the lower proportion of small events.
Andreas Marx, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Niko Wanders, Matthias Zink, Eric F. Wood, Ming Pan, Justin Sheffield, and Luis Samaniego
Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, https://doi.org/10.5194/hess-22-1017-2018, 2018
Short summary
Short summary
Hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K). The multi-model ensemble results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Adaptation should make use of change and uncertainty information.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
John Musau, Sopan Patil, Justin Sheffield, and Michael Marshall
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-123, https://doi.org/10.5194/esd-2017-123, 2018
Manuscript not accepted for further review
Short summary
Short summary
Three decades LAI data indicates diverse and often non-stationary vegetation changes in East Africa. Significant increase in vegetation variance is indicated in most of the region which is positively correlated to the variance of climate anomalies. The vegetation resistance to short-term drought and its memory effect are mainly positive and significant with noteworthy variations across landcover types. Further analysis is required to separated human-induced and climate-caused vegetation changes.
Yu Zhang, Ming Pan, Justin Sheffield, Amanda L. Siemann, Colby K. Fisher, Miaoling Liang, Hylke E. Beck, Niko Wanders, Rosalyn F. MacCracken, Paul R. Houser, Tian Zhou, Dennis P. Lettenmaier, Rachel T. Pinker, Janice Bytheway, Christian D. Kummerow, and Eric F. Wood
Hydrol. Earth Syst. Sci., 22, 241–263, https://doi.org/10.5194/hess-22-241-2018, https://doi.org/10.5194/hess-22-241-2018, 2018
Short summary
Short summary
A global data record for all four terrestrial water budget variables (precipitation, evapotranspiration, runoff, and total water storage change) at 0.5° resolution and monthly scale for the period of 1984–2010 is developed by optimally merging a series of remote sensing products, in situ measurements, land surface model outputs, and atmospheric reanalysis estimates and enforcing the mass balance of water. Initial validations show the data record is reliable for climate related analysis.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Fiona J. Clubb, Simon M. Mudd, David T. Milodowski, Declan A. Valters, Louise J. Slater, Martin D. Hurst, and Ajay B. Limaye
Earth Surf. Dynam., 5, 369–385, https://doi.org/10.5194/esurf-5-369-2017, https://doi.org/10.5194/esurf-5-369-2017, 2017
Short summary
Short summary
Floodplains and fluvial terraces can provide information about current and past river systems, helping to reveal how channels respond to changes in both climate and tectonics. We present a new method of identifying these features objectively from digital elevation models by analysing their slope and elevation compared to the modern river. We test our method in eight field sites, and find that it provides rapid and reliable extraction of floodplains and terraces across a range of landscapes.
Monica H. Stone and Sagy Cohen
Nat. Hazards Earth Syst. Sci., 17, 439–447, https://doi.org/10.5194/nhess-17-439-2017, https://doi.org/10.5194/nhess-17-439-2017, 2017
Short summary
Short summary
This research was conducted in order to determine what effect a longer hurricane season is likely to have on flooding risk in the southeastern United States. We found that an extension of the hurricane season to May–December (just 2 months longer) increased the number of days that would be at risk to flooding were the average tropical cyclone to occur by 28–180 %. This is signifiant, as global climate change is likely to increase sea surface temperatures and extend the hurricane season.
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
Sagy Cohen, Tal Svoray, Shai Sela, Greg Hancock, and Garry Willgoose
Earth Surf. Dynam., 5, 101–112, https://doi.org/10.5194/esurf-5-101-2017, https://doi.org/10.5194/esurf-5-101-2017, 2017
Short summary
Short summary
Soil-depleted hillslopes across the Mediterranean and Europe are thought to be the result of human activity in the last 2–5 millennia. We study a site on the margin between Mediterranean and desert climates which was subject to intense wind-borne soil accumulation for tens of thousands of years but is now mostly bare. Using a numerical simulator we investigated the processes that may have led to this landscape and identified the specific signatures of different processes and drivers.
Melissa Wood, Renaud Hostache, Jeffrey Neal, Thorsten Wagener, Laura Giustarini, Marco Chini, Giovani Corato, Patrick Matgen, and Paul Bates
Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016, https://doi.org/10.5194/hess-20-4983-2016, 2016
Short summary
Short summary
We propose a methodology to calibrate the bankfull channel depth and roughness parameters in a 2-D hydraulic model using an archive of medium-resolution SAR satellite-derived flood extent maps. We used an identifiability methodology to locate the parameters and suggest the SAR images which could be optimally used for model calibration. We found that SAR images acquired around the flood peak provide best calibration potential for the depth parameter, improving when SAR images are combined.
John Musau, Sopan Patil, Justin Sheffield, and Michael Marshall
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-502, https://doi.org/10.5194/hess-2016-502, 2016
Manuscript not accepted for further review
Short summary
Short summary
An assessment of vegetation-climate relations over East Africa is presented. LAI trends in Southern Ethiopia through Central Kenya into Central Tanzania show persistent decrease. Precipitation exerts widespread positive forcing on vegetation. North Uganda shows high LAI increase. Positive vegetation feedback on precipitation is dominant while a stronger negative forcing on Tmin is shown. Vegetation-climate interactions show strong spatial dependence. Land cover types influence the interractions.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
W. D. Dimuth P. Welivitiya, Garry R. Willgoose, Greg R. Hancock, and Sagy Cohen
Earth Surf. Dynam., 4, 607–625, https://doi.org/10.5194/esurf-4-607-2016, https://doi.org/10.5194/esurf-4-607-2016, 2016
Short summary
Short summary
This paper generalises the physical dependence of the relationship between contributing area, local slope, and the surface soil grading first described by Cohen et al. (2009, 2010) using a soil evolution model called SSSPAM. We show the influence of weathering on the equilibrium soil profile and its spatial distribution. We conclude that the soil grading relationship is robust and will occur for most equilibrium soils. This spatial organisation is also true below the surface.
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
Wolfgang Buermann, Claudie Beaulieu, Bikash Parida, David Medvigy, George J. Collatz, Justin Sheffield, and Jorge L. Sarmiento
Biogeosciences, 13, 1597–1607, https://doi.org/10.5194/bg-13-1597-2016, https://doi.org/10.5194/bg-13-1597-2016, 2016
Short summary
Short summary
Recent analyses of the global carbon budget found a substantial increase in the land sink in the late 1980s whose origin remains unknown. Consistent with this shift, we find that plant growth increased in the late 1980s especially in Eurasia and northern Africa. There, climatic constraints on plant growth have eased possibly due to linked climate modes in the North Atlantic. Better understanding of North Atlantic climate may be essential for more credible projections of the land carbon sink.
S. Sadri, J. Kam, and J. Sheffield
Hydrol. Earth Syst. Sci., 20, 633–649, https://doi.org/10.5194/hess-20-633-2016, https://doi.org/10.5194/hess-20-633-2016, 2016
Short summary
Short summary
Low flows are a critical part of the river flow regime but little is known about how they are changing in response to human influences and climate. We analyzed low flow records across the eastern US and identified sites that were minimally influenced by human activities. We found a general increasing trend in low flows across the northeast and decreasing trend across the southeast that are likely driven by changes in climate. The results have implications for how we manage our water resources.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
J. Elliott, C. Müller, D. Deryng, J. Chryssanthacopoulos, K. J. Boote, M. Büchner, I. Foster, M. Glotter, J. Heinke, T. Iizumi, R. C. Izaurralde, N. D. Mueller, D. K. Ray, C. Rosenzweig, A. C. Ruane, and J. Sheffield
Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, https://doi.org/10.5194/gmd-8-261-2015, 2015
Short summary
Short summary
We present and describe the Global Gridded Crop Model Intercomparison (GGCMI) project, an ongoing international effort to 1) validate global models of crop productivity, 2) improve models through detailed analysis of processes, and 3) assess the impacts of climate change on agriculture and food security. We present analysis of data inputs for the project, detailed protocols for conducting and evaluating simulation outputs, and example results.
G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, E. Brun, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, and F. Vitart
Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, https://doi.org/10.5194/hess-19-389-2015, 2015
Short summary
Short summary
ERA-Interim/Land is a global land surface reanalysis covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim and a precipitation bias correction based on GPCP. A selection of verification results show the added value in representing the terrestrial water cycle and its main land surface storages and fluxes.
T. R. Marthews, S. J. Dadson, B. Lehner, S. Abele, and N. Gedney
Hydrol. Earth Syst. Sci., 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, https://doi.org/10.5194/hess-19-91-2015, 2015
Short summary
Short summary
Modelling land surface water flow is of critical importance in the context of climate change predictions. Many approaches are based on the popular hydrology model TOPMODEL, and the most important parameter of this model is the well-known topographic index. Here we present new, higher-resolution parameter maps of the topographic index, which are ideal for land surface modelling applications and show important improvements on the previous standard maps from HYDRO1k.
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, https://doi.org/10.5194/hess-18-2305-2014, 2014
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
F. Wetterhall, F. Pappenberger, L. Alfieri, H. L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Daňhelka, A. Vogelbacher, P. Salamon, I. Carrasco, A. J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R. J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stankūnavičius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nyström, M. Sušnik, M. Hazlinger, and M. Holubecka
Hydrol. Earth Syst. Sci., 17, 4389–4399, https://doi.org/10.5194/hess-17-4389-2013, https://doi.org/10.5194/hess-17-4389-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
N. C. MacKellar, S. J. Dadson, M. New, and P. Wolski
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11093-2013, https://doi.org/10.5194/hessd-10-11093-2013, 2013
Revised manuscript not accepted
S. Shukla, J. Sheffield, E. F. Wood, and D. P. Lettenmaier
Hydrol. Earth Syst. Sci., 17, 2781–2796, https://doi.org/10.5194/hess-17-2781-2013, https://doi.org/10.5194/hess-17-2781-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Drivers of global irrigation expansion: the role of discrete global grid choice
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Influence of irrigation on root zone storage capacity estimation
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Combined impacts of climate and land-use change on future water resources in Africa
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
The benefits and trade-offs of multi-variable calibration of WGHM in the Ganges and Brahmaputra basins
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024, https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Short summary
Future climate projections suggest that climate change will impact groundwater recharge, with its exact effects being uncertain due to incomplete understanding of rainfall, evapotranspiration, and recharge relations. We studied the effects of changes in the average, spread, and frequency of extreme events of rainfall and evapotranspiration on groundwater recharge. We found that increasing or decreasing the potential evaporation has the most dominant effect on groundwater recharge.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024, https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
Short summary
We utilize the high-resolution CMIP6 for extreme rainfall and streamflow projection over Southeast Asia. This region will experience an increase in both dry and wet extremes in the near future. We found a more extreme low flow and high flow, along with an increasing probability of low-flow and high-flow events. We reveal that the changes in low-flow events and their probabilities are not only influenced by extremely dry climates but also by the catchment characteristics.
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024, https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Short summary
The study presents a pioneering comprehensive integrated approach to unravel hydrological complexities in data-scarce regions. By integrating diverse data sources and advanced analytics, we offer a holistic understanding of water systems, unveiling hidden patterns and driving factors. This innovative method holds immense promise for informed decision-making and sustainable water resource management, addressing a critical need in hydrological science.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
EGUsphere, https://doi.org/10.5194/egusphere-2024-182, https://doi.org/10.5194/egusphere-2024-182, 2024
Short summary
Short summary
This study is likely the first Canada-wide assessment of climate change impact on the hydro-climatology of its major river basins. It finds that the precipitation, runoff, and temperature are all expected to increase over Canada in the future. The northerly Mackenzie and Yukon Rivers are relatively less affected by climate change compared to the southerly Fraser and Columbia Rivers which are located in the milder Pacific north-western region.
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024, https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Short summary
Africa's water resources are being negatively impacted by climate change and land-use change. The SWAT+ hydrological model was used to simulate the hydrological cycle in Africa, and results show likely decreases in river flows in the Zambezi and Congo rivers and highest flows in the Niger River basins due to climate change. Land cover change had the biggest impact in the Congo River basin, emphasizing the importance of including land-use change in studies.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324, https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular streamflow. We also showed uncertainties in the calibration results, which is often useful for making informed decisions. We emphasis to consider observation uncertainty in model calibration.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191, 2018.
Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia, Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, 2019.
Ahmed, K., Shahid, S., Wang, X., Nawaz, N., and Khan, N.: Evaluation of Gridded Precipitation Datasets over Arid Regions of Pakistan, Water, 11, 210, https://doi.org/10.3390/w11020210, 2019.
Alazzy, A. A., Lü, H., Chen, R., Ali, A. B., Zhu, Y., and Su, J.: Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau, Adv. Meteorol., 2017, e3695285, https://doi.org/10.1155/2017/3695285, 2017.
AL-Falahi, A. H., Saddique, N., Spank, U., Gebrechorkos, S. H., and Bernhofer, C.: Evaluation the Performance of Several Gridded Precipitation Products over the Highland Region of Yemen for Water Resources Management, Remote Sens., 12, 2984, https://doi.org/10.3390/rs12182984, 2020.
Araujo Palharini, R. S., Vila, D. A., Rodrigues, D. T., Palharini, R. C., Mattos, E. V., and Pedra, G. U.: Assessment of extreme rainfall estimates from satellite-based: Regional analysis, Remote Sensing Applications: Society and Environment, 23, 100603, https://doi.org/10.1016/j.rsase.2021.100603, 2021.
Bárdossy, A., Kilsby, C., Birkinshaw, S., Wang, N., and Anwar, F.: Is Precipitation Responsible for the Most Hydrological Model Uncertainty?, Front. Water, 4, https://doi.org/10.3389/frwa.2022.836554, 2022.
Bechtold, P., Forbes, R., Sandu, I., Lang, S., and Ahlgrimm, M.: A major moist physics upgrade for the IFS, 24–32, https://www.ecmwf.int/en/newsletter/164/meteorology/major-moist-physics-upgrade-ifs (last access: 19 June 2023), 2020.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017a.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017b.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019a.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Dijk, A. I. J. M. van, McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019b.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520, https://doi.org/10.1002/wat2.1520, 2021.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Wayne Higgins, R., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009132, 2008.
Chen, Y., Hu, D., Duan, X., Zhang, Y., Liu, M., and Shasha, W.: Rainfall-runoff simulation and flood dynamic monitoring based on CHIRPS and MODIS-ET, Int. J. Remote Sens., 41, 4206–4225, https://doi.org/10.1080/01431161.2020.1714779, 2020.
Cohen, S., Kettner, A. J., Syvitski, J. P. M., and Fekete, B. M.: WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation, Comput. Geosci., 53, 80–93, https://doi.org/10.1016/j.cageo.2011.08.011, 2013.
Cohen, S., Kettner, A. J., and Syvitski, J. P. M.: Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity, Global Planet. Change, 115, 44–58, https://doi.org/10.1016/j.gloplacha.2014.01.011, 2014.
Cohen, S., Syvitski, J., Ashley, T., Lammers, R., Fekete, B., and Li, H.-Y.: Spatial Trends and Drivers of Bedload and Suspended Sediment Fluxes in Global Rivers, Water Resour. Res., 58, e2021WR031583, https://doi.org/10.1029/2021WR031583, 2022.
Day, C. A. and Howarth, D. A.: Modeling Climate Change Impacts on the Water Balance of a Medium-Scale Mixed-Forest Watershed, SE USA, Southeastern Geographer, 59, 110–129, 2019.
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020.
Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., and Fekete, B. M.: Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress, Environ. Res. Lett., 14, 084034, https://doi.org/10.1088/1748-9326/ab304e, 2019.
Eini, M. R., Rahmati, A., and Piniewski, M.: Hydrological application and accuracy evaluation of PERSIANN satellite-based precipitation estimates over a humid continental climate catchment, J. Hydrol., 41, 101109, https://doi.org/10.1016/j.ejrh.2022.101109, 2022.
El Kenawy, A. M., Lopez-Moreno, J. I., McCabe, M. F., and Vicente-Serrano, S. M.: Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia, Global Planet. Change, 133, 188–200, https://doi.org/10.1016/j.gloplacha.2015.08.013, 2015.
Fallah, A., Rakhshandehroo, G. R., Berg, P., O, S., and Orth, R.: Evaluation of precipitation datasets against local observations in southwestern Iran, Int. J. Climatol., 40, 4102–4116, https://doi.org/10.1002/joc.6445, 2020.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Gebrechorkos, S. H., Hülsmann, S., and Bernhofer, C.: Evaluation of multiple climate data sources for managing environmental resources in East Africa, Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, 2018.
Gebrechorkos, S. H., Bernhofer, C., and Hülsmann, S.: Impacts of projected change in climate on water balance in basins of East Africa, Sci. Total Environ., 682, 160–170, https://doi.org/10.1016/j.scitotenv.2019.05.053, 2019.
Gebrechorkos, S. H., Bernhofer, C., and Hülsmann, S.: Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach, Sci. Total Environ., 742, 140504, https://doi.org/10.1016/j.scitotenv.2020.140504, 2020.
Gebrechorkos, S. H., Leyland, J., Darby, S., and Parsons, D.: High-resolution daily global climate dataset of BCCAQ statistically downscaled CMIP6 models for the EVOFLOOD project, NERC EDS Centre for Environmental Data Analysis, https://catalogue.ceda.ac.uk/uuid/c107618f1db34801bb88a1e92 7b82317, 2022a.
Gebrechorkos, S. H., Pan, M., Beck, H. E., and Sheffield, J.: Performance of State-of-the-Art C3S European Seasonal Climate Forecast Models for Mean and Extreme Precipitation Over Africa, Water Resour. Res., 58, e2021WR031480, https://doi.org/10.1029/2021WR031480, 2022b.
Gebrechorkos, S. H., Pan, M., Lin, P., Anghileri, D., Forsythe, N., Pritchard, D. M. W., Fowler, H. J., Obuobie, E., Darko, D., and Sheffield, J.: Variability and changes in hydrological drought in the Volta Basin, West Africa, J. Hydrol., 42, 101143, https://doi.org/10.1016/j.ejrh.2022.101143, 2022c.
Gebrechorkos, S. H., Peng, J., Dyer, E., Miralles, D. G., Vicente-Serrano, S. M., Funk, C., Beck, H. E., Asfaw, D. T., Singer, M. B., and Dadson, S. J.: Global high-resolution drought indices for 1981–2022, Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, 2023.
Geleta, C. D. and Deressa, T. A.: Evaluation of Climate Hazards Group InfraRed Precipitation Station (CHIRPS) satellite-based rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia, Engineering Reports, 3, e12338, https://doi.org/10.1002/eng2.12338, 2021.
GRDC: The Global Runoff Data Centre, 56068 Koblenz, Germany, https://www.bafg.de/GRDC/ (last access: 26 February 2023), 2023.
Grogan, D. S., Zuidema, S., Prusevich, A., Wollheim, W. M., Glidden, S., and Lammers, R. B.: Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality, Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022, 2022.
Gu, L., Yin, J., Wang, S., Chen, J., Qin, H., Yan, X., He, S., and Zhao, T.: How well do the multi-satellite and atmospheric reanalysis products perform in hydrological modelling, J. Hydrol., 617, 128920, https://doi.org/10.1016/j.jhydrol.2022.128920, 2023.
Guo, B., Zhang, J., Xu, T., Croke, B., Jakeman, A., Song, Y., Yang, Q., Lei, X., and Liao, W.: Applicability Assessment and Uncertainty Analysis of Multi-Precipitation Datasets for the Simulation of Hydrologic Models, Water, 10, 1611, https://doi.org/10.3390/w10111611, 2018.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hafizi, H. and Sorman, A. A.: Assessment of 13 Gridded Precipitation Datasets for Hydrological Modeling in a Mountainous Basin, Atmosphere, 13, 143, https://doi.org/10.3390/atmos13010143, 2022.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
He, Q., Shen, Z., Wan, M., and Li, L.: Precipitable Water Vapor Converted from GNSS-ZTD and ERA5 Datasets for the Monitoring of Tropical Cyclones, IEEE Access, 8, 87275–87290, https://doi.org/10.1109/ACCESS.2020.2991094, 2020.
Her, Y., Yoo, S.-H., Cho, J., Hwang, S., Jeong, J., and Seong, C.: Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions, Sci. Rep., 9, 4974, https://doi.org/10.1038/s41598-019-41334-7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hong, Y., Xuan Do, H., Kessler, J., Fry, L., Read, L., Rafieei Nasab, A., Gronewold, A. D., Mason, L., and Anderson, E. J.: Evaluation of gridded precipitation datasets over international basins and large lakes, J. Hydrol., 607, 127507, https://doi.org/10.1016/j.jhydrol.2022.127507, 2022.
Hou, D., Charles, M., Luo, Y., Toth, Z., Zhu, Y., Krzysztofowicz, R., Lin, Y., Xie, P., Seo, D.-J., Pena, M., and Cui, B.: Climatology-Calibrated Precipitation Analysis at Fine Scales: Statistical Adjustment of Stage IV toward CPC Gauge-Based Analysis, J. Hydrometeorol., 15, 2542–2557, https://doi.org/10.1175/JHM-D-11-0140.1, 2014.
Huang, Z., Zhang, Y., Xu, J., Fang, X., and Ma, Z.: Can satellite precipitation estimates capture the magnitude of extreme rainfall Events?, Remote Sens. Lett., 13, 1048–1057, https://doi.org/10.1080/2150704X.2022.2123258, 2022.
Ibrahim, A. H., Molla, D. D., and Lohani, T. K.: Performance evaluation of satellite-based rainfall estimates for hydrological modeling over Bilate river basin, Ethiopia, World Journal of Engineering, ahead-of-print, 21, 1–15, https://doi.org/10.1108/WJE-03-2022-0106, 2022.
Jiang, Q., Li, W., Wen, J., Fan, Z., Chen, Y., Scaioni, M., and Wang, J.: Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China, J. Integr. Environ. Sci., 16, 191–207, https://doi.org/10.1080/1943815X.2019.1707233, 2019.
Jiang, S., Wei, L., Ren, L., Zhang, L., Wang, M., and Cui, H.: Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over mainland China: Spatiotemporal patterns and extremes, Water Science and Engineering, 16, 45–56, https://doi.org/10.1016/j.wse.2022.05.001, 2023.
Jiao, D., Xu, N., Yang, F., and Xu, K.: Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China, Sci. Rep., 11, 17956, https://doi.org/10.1038/s41598-021-97432-y, 2021.
Kidd, C. and Levizzani, V.: Status of satellite precipitation retrievals, Hydrol. Earth Syst. Sci., 15, 1109–1116, https://doi.org/10.5194/hess-15-1109-2011, 2011.
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., and Kirschbaum, D. B.: So, How Much of the Earth's Surface Is Covered by Rain Gauges?, B. Am. Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Laiti, L., Mallucci, S., Piccolroaz, S., Bellin, A., Zardi, D., Fiori, A., Nikulin, G., and Majone, B.: Testing the Hydrological Coherence of High-Resolution Gridded Precipitation and Temperature Data Sets, Water Resour. Res., 54, 1999–2016, https://doi.org/10.1002/2017WR021633, 2018.
Lakew, H. B.: Investigating the effectiveness of bias correction and merging MSWEP with gauged rainfall for the hydrological simulation of the upper Blue Nile basin, J. Hydrol., 32, 100741, https://doi.org/10.1016/j.ejrh.2020.100741, 2020.
Lavers, D. A., Harrigan, S., and Prudhomme, C.: Precipitation Biases in the ECMWF Integrated Forecasting System, J. Hydrometeorol., 22, 1187–1198, https://doi.org/10.1175/JHM-D-20-0308.1, 2021.
Lavers, D. A., Simmons, A., Vamborg, F., and Rodwell, M. J.: An evaluation of ERA5 precipitation for climate monitoring, Q. J. Roy. Meteor. Soc., 148, 3152–3165, https://doi.org/10.1002/qj.4351, 2022.
Lehner, B., Verdin, K. L., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, Eos, Transactions, American Geophysical Union, 89, 2, https://doi.org/10.1029/2008EO100001, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood, E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches, Water Resour. Res., 55, 6499–6516, https://doi.org/10.1029/2019WR025287, 2019.
Li, L., Wang, Y., Wang, L., Hu, Q., Zhu, Z., Li, L., and Li, C.: Spatio-temporal accuracy evaluation of MSWEP daily precipitation over the Huaihe River Basin, China: A comparison study with representative satellite- and reanalysis-based products, J. Geogr. Sci., 32, 2271–2290, https://doi.org/10.1007/s11442-022-2047-9, 2022a.
Li, M., Lv, X., Zhu, L., Uchenna Ochege, F., and Guo, H.: Evaluation and Application of MSWEP in Drought Monitoring in Central Asia, Atmosphere, 13, 1053, https://doi.org/10.3390/atmos13071053, 2022b.
López López, P., Sutanudjaja, E. H., Schellekens, J., Sterk, G., and Bierkens, M. F. P.: Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products, Hydrol. Earth Syst. Sci., 21, 3125–3144, https://doi.org/10.5194/hess-21-3125-2017, 2017.
Luo, X., Wu, W., He, D., Li, Y., and Ji, X.: Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin, Chin. Geogr. Sci., 29, 13–25, https://doi.org/10.1007/s11769-019-1014-6, 2019.
Maggioni, V. and Massari, C.: On the performance of satellite precipitation products in riverine flood modeling: A review, J. Hydrol., 558, 214–224, https://doi.org/10.1016/j.jhydrol.2018.01.039, 2018.
Mazzoleni, M., Brandimarte, L., and Amaranto, A.: Evaluating precipitation datasets for large-scale distributed hydrological modelling, J. Hydrol., 578, 124076, https://doi.org/10.1016/j.jhydrol.2019.124076, 2019.
Mehran, A. and AghaKouchak, A.: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations, Hydrol. Process., 28, 2262–2270, https://doi.org/10.1002/hyp.9779, 2014.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Mianabadi, A., Salari, K., and Pourmohamad, Y.: Drought monitoring using the long-term CHIRPS precipitation over Southeastern Iran, Appl. Water Sci., 12, 183, https://doi.org/10.1007/s13201-022-01705-4, 2022.
Miao, C., Ashouri, H., Hsu, K.-L., Sorooshian, S., and Duan, Q.: Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China, J. Hydrometeorol., 16, 1387–1396, https://doi.org/10.1175/JHM-D-14-0174.1, 2015.
Miao, Q., Pan, B., Wang, H., Hsu, K., and Sorooshian, S.: Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network, Water, 11, 977, https://doi.org/10.3390/w11050977, 2019.
Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., and Lane, J. E.: Precipitation: Measurement, remote sensing, climatology and modeling, Atmos. Res., 94, 512–533, https://doi.org/10.1016/j.atmosres.2009.08.017, 2009.
Moazami, S., Golian, S., Kavianpour, M. R., and Hong, Y.: Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran, Int. J. Remote Sens., 34, 8156–8171, https://doi.org/10.1080/01431161.2013.833360, 2013.
Moragoda, N. and Cohen, S.: Climate-induced trends in global riverine water discharge and suspended sediment dynamics in the 21st century, Global Planet. Change, 191, 103199, https://doi.org/10.1016/j.gloplacha.2020.103199, 2020.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., Aghakouchak, A., Ashouri, H., Tran, H., and Braithwaite, D.: Global Precipitation Trends across Spatial Scales Using Satellite Observations, B. Am. Meteorol. Soc., 99, 689–697, https://doi.org/10.1175/BAMS-D-17-0065.1, 2018.
Opere, A. O., Waswa, R., and Mutua, F. M.: Assessing the Impacts of Climate Change on Surface Water Resources Using WEAP Model in Narok County, Kenya, Frontiers in Water, 3, https://doi.org/10.3389/frwa.2021.789340, 2022.
Palharini, R. S. A., Vila, D. A., Rodrigues, D. T., Quispe, D. P., Palharini, R. C., de Siqueira, R. A., and de Sousa Afonso, J. M.: Assessment of the Extreme Precipitation by Satellite Estimates over South America, Remote Sens., 12, 2085, https://doi.org/10.3390/rs12132085, 2020.
Parker, W. S.: Reanalyses and Observations: What's the Difference?, B. Am. Meteorol. Soc., 97, 1565–1572, https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.
Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., and Funk, C.: A pan-African high-resolution drought index dataset, Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, 2020.
Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., and Moigne, P. L.: Evaluation of Gridded Meteorological Datasets for Hydrological Modeling, J. Hydrometeorol., 18, 3027–3041, https://doi.org/10.1175/JHM-D-17-0018.1, 2017.
Reichle, R. H., Koster, R. D., Lannoy, G. J. M. D., Forman, B. A., Liu, Q., Mahanama, S. P. P., and Touré, A.: Assessment and Enhancement of MERRA Land Surface Hydrology Estimates, J. Climate, 24, 6322–6338, https://doi.org/10.1175/JCLI-D-10-05033.1, 2011.
Reis, A. A. dos, Weerts, A., Ramos, M.-H., Wetterhall, F., and Fernandes, W. dos S.: Hydrological data and modeling to combine and validate precipitation datasets relevant to hydrological applications, J. Hydrol., 44, 101200, https://doi.org/10.1016/j.ejrh.2022.101200, 2022.
Sadeghi, M., Nguyen, P., Naeini, M. R., Hsu, K., Braithwaite, D., and Sorooshian, S.: PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies, Sci. Data, 8, 157, https://doi.org/10.1038/s41597-021-00940-9, 2021.
Salehi, H., Sadeghi, M., Golian, S., Nguyen, P., Murphy, C., and Sorooshian, S.: The Application of PERSIANN Family Datasets for Hydrological Modeling, Remote Sens., 14, 3675, https://doi.org/10.3390/rs14153675, 2022.
Satgé, F., Ruelland, D., Bonnet, M.-P., Molina, J., and Pillco, R.: Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region, Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, 2019.
Seyyedi, H., Anagnostou, E. N., Beighley, E., and McCollum, J.: Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin, Atmos. Res., 164–165, 37–48, https://doi.org/10.1016/j.atmosres.2015.03.019, 2015.
Shaowei, N., Jie, W., Juliang, J., Xiaoyan, X., Yuliang, Z., Fan, S., and Linlin, Z.: Comprehensive evaluation of satellite-derived precipitation products considering spatial distribution difference of daily precipitation over eastern China, J. Hydrol., 44, 101242, https://doi.org/10.1016/j.ejrh.2022.101242, 2022.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., and Verbist, K.: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions, Water Resour. Res., 54, 9724–9758, https://doi.org/10.1029/2017WR022437, 2018.
Shen, Y., Xiong, A., Wang, Y., and Xie, P.: Performance of high-resolution satellite precipitation products over China, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD012097, 2010.
Solakian, J., Maggioni, V., and Godrej, A. N.: On the Performance of Satellite-Based Precipitation Products in Simulating Streamflow and Water Quality During Hydrometeorological Extremes, Frontiers in Environmental Science, 8, https://doi.org/10.3389/fenvs.2020.585451, 2020.
Sun, G., Wei, Y., Wang, G., Shi, R., Chen, H., and Mo, C.: Downscaling Correction and Hydrological Applicability of the Three Latest High-Resolution Satellite Precipitation Products (GPM, GSMAP, and MSWEP) in the Pingtang Catchment, China, Adv. Meteorol., 2022, e6507109, https://doi.org/10.1155/2022/6507109, 2022.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Tang, X., Zhang, J., Gao, C., Ruben, G. B., and Wang, G.: Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin, Remote Sens., 11, 304, https://doi.org/10.3390/rs11030304, 2019.
Ursulak, J. and Coulibaly, P.: Integration of hydrological models with entropy and multi-objective optimization based methods for designing specific needs streamflow monitoring networks, J. Hydrol., 593, 125876, https://doi.org/10.1016/j.jhydrol.2020.125876, 2021.
van Huijgevoort, M. H. J., Hazenberg, P., van Lanen, H. A. J., Teuling, A. J., Clark, D. B., Folwell, S., Gosling, S. N., Hanasaki, N., Heinke, J., Koirala, S., Stacke, T., Voss, F., Sheffield, J., and Uijlenhoet, R.: Global Multimodel Analysis of Drought in Runoff for the Second Half of the Twentieth Century, J. Hydrometeorol., 14, 1535–1552, https://doi.org/10.1175/JHM-D-12-0186.1, 2013.
Voisin, N., Wood, A. W., and Lettenmaier, D. P.: Evaluation of Precipitation Products for Global Hydrological Prediction, J. Hydrometeorol., 9, 388–407, https://doi.org/10.1175/2007JHM938.1, 2008.
Wang, M., Rezaie-Balf, M., Naganna, S. R., and Yaseen, Z. M.: Sourcing CHIRPS precipitation data for streamflow forecasting using intrinsic time-scale decomposition based machine learning models, Hydrolog. Sci. J., 66, 1437–1456, https://doi.org/10.1080/02626667.2021.1928138, 2021.
Wang, N., Liu, W., Sun, F., Yao, Z., Wang, H., and Liu, W.: Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China, Atmos. Res., 234, 104746, https://doi.org/10.1016/j.atmosres.2019.104746, 2020.
Wati, T., Hadi, T. W., Sopaheluwakan, A., and Hutasoit, L. M.: Statistics of the Performance of Gridded Precipitation Datasets in Indonesia, Adv. Meteorol., 2022, e7995761, https://doi.org/10.1155/2022/7995761, 2022.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Wollheim, W. M., Vörösmarty, C. J., Bouwman, A. F., Green, P., Harrison, J., Linder, E., Peterson, B. J., Seitzinger, S. P., and Syvitski, J. P. M.: Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach, Global Biogeochem. Cy., 22, https://doi.org/10.1029/2007GB002963, 2008.
Wu, Z., Xu, Z., Wang, F., He, H., Zhou, J., Wu, X., and Liu, Z.: Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China, Remote Sens., 10, 840, https://doi.org/10.3390/rs10060840, 2018.
Xiang, Y., Chen, J., Li, L., Peng, T., and Yin, Z.: Evaluation of Eight Global Precipitation Datasets in Hydrological Modeling, Remote Sens., 13, 2831, https://doi.org/10.3390/rs13142831, 2021.
Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., and Ribbe, L.: Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile, Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, 2017.
Zhu, D., Ilyas, A. M., Wang, G., and Zeng, B.: Long-term hydrological assessment of remote sensing precipitation from multiple sources over the lower Yangtze River basin, China, Meteorol. Appl., 28, e1991, https://doi.org/10.1002/met.1991, 2021.
Zhu, H., Li, Y., Huang, Y., Li, Y., Hou, C., and Shi, X.: Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China, Atmos. Res., 207, 28–41, https://doi.org/10.1016/j.atmosres.2018.02.022, 2018.
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
This study evaluated six high-resolution global precipitation datasets for hydrological...