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Abstract. Precipitation is the most important driver of
the hydrological cycle, but it is challenging to estimate
it over large scales from satellites and models. Here, we
assessed the performance of six global and quasi-global
high-resolution precipitation datasets (European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis
version 5 (ERA5), Climate Hazards group Infrared Precip-
itation with Stations version 2.0 (CHIRPS), Multi-Source
Weighted-Ensemble Precipitation version 2.80 (MSWEP),
TerraClimate (TERRA), Climate Prediction Centre Uni-
fied version 1.0 (CPCU), and Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks-Cloud Classification System-Climate Data Record
(PERSIANN-CCS-CDR, hereafter PERCCDR) for hydro-
logical modelling globally and quasi-globally. We forced the
WBMsed global hydrological model with the precipitation
datasets to simulate river discharge from 1983 to 2019 and
evaluated the predicted discharge against 1825 hydrological

stations worldwide, using a range of statistical methods. The
results show large differences in the accuracy of discharge
predictions when using different precipitation input datasets.
Based on evaluation at annual, monthly, and daily timescales,
MSWEP followed by ERA5 demonstrated a higher corre-
lation (CC) and Kling–Gupta efficiency (KGE) than other
datasets for more than 50 % of the stations, whilst ERA5
was the second-highest-performing dataset, and it showed
the highest error and bias for about 20 % of the stations. PER-
CCDR is the least-well-performing dataset, with a bias of up
to 99 % and a normalised root mean square error of up to
247 %. PERCCDR only show a higher KGE and CC than
the other products for less than 10 % of the stations. Even
though MSWEP provided the highest performance overall,
our analysis reveals high spatial variability, meaning that it is
important to consider other datasets in areas where MSWEP
showed a lower performance. The results of this study pro-
vide guidance on the selection of precipitation datasets for
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modelling river discharge for a basin, region, or climatic zone
as there is no single best precipitation dataset globally. Fi-
nally, the large discrepancy in the performance of the datasets
in different parts of the world highlights the need to improve
global precipitation data products.

1 Introduction

Whilst precipitation is one of the most important compo-
nents of the global hydrological cycle and regulates the cli-
mate system (Miao et al., 2019; Sadeghi et al., 2021), it re-
mains one of the most challenging variables to estimate at
a global scale using satellite data and modelling approaches
(Michaelides et al., 2009; Kidd and Levizzani, 2011; Beck
et al., 2017a; Ursulak and Coulibaly, 2021). Reliable precip-
itation data with sufficient spatial and temporal coverage and
accurate representation of extreme events are crucial for vari-
ous applications. These include the development of water re-
source management and planning strategies, hydrological ap-
plications including forecasting hydrological extremes, and
climate change analysis (Mehran and AghaKouchak, 2014;
Nguyen et al., 2018; Sadeghi et al., 2021; Acharya et al.,
2019). Observed precipitation from meteorological stations
is typically used at local to river basin scale with gauge-based
gridded precipitation datasets, such as from the Global His-
torical Climatology Network (Menne et al., 2012), developed
to study climate and hydrology over larger scales. However,
precipitation from gauges and gauge-based gridded datasets
has several drawbacks such as limited spatial and temporal
coverage, prevalence of missing values, and limited accu-
racy in sparsely populated and remote areas (Kidd and Lev-
izzani, 2011; Reichle et al., 2011; Kidd et al., 2017; Sun
et al., 2018; Gebrechorkos et al., 2018; Hafizi and Sorman,
2022). In addition, data-sharing policies have caused signif-
icant challenges in obtaining data, particularly in develop-
ing countries (Gebrechorkos et al., 2018; Hafizi and Sorman,
2022).

Given the challenges in representing precipitation at global
scales, satellite, climate model, and reanalysis-based precip-
itation datasets can form the basis for monitoring and pre-
diction of water resources and hydrological extremes, par-
ticularly in data-scarce regions of the world (Sheffield et
al., 2018; Dembélé et al., 2020). Nevertheless, uncertain-
ties and errors in these datasets require careful analysis to
assess their suitability for a specific use. Error in satellite-
based precipitation estimates can be due to errors in the sen-
sor measurements, the frequency of sampling, the retrieval
algorithms, and the representation of cloud physics (Dembélé
et al., 2020; Laiti et al., 2018; Alazzy et al., 2017). Climate-
model-based datasets, including reanalyses, have large un-
certainty due to their coarse spatial resolution and ambigu-
ity associated with model parameters (Gebrechorkos et al.,
2018; AL-Falahi et al., 2020; Dembélé et al., 2020; Her et al.,

2019). Reanalysis datasets may correct for some of these er-
rors via the assimilation of observational data, but this comes
with its own uncertainties due to the error characteristics
of the assimilated observations and the assimilation scheme
(Sheffield et al., 2006; Parker, 2016). In hydrological mod-
elling, errors and biases in precipitation data result in poor
representation of the hydrological responses and affect appli-
cations (Maggioni and Massari, 2018; Zambrano-Bigiarini et
al., 2017). For example, according to Bárdossy et al. (2022),
uncertainty in precipitation can lead to hydrological model
errors of up to 50 %. Hence, it is important to assess the
quality and accuracy of the precipitation products before us-
ing them in global- or basin-scale hydrological models. In
data-limited regions, hydrological models driven by precip-
itation datasets developed from satellite sources, reanalysis,
or climate models are the only plausible way to represent the
terrestrial water cycle (van Huijgevoort et al., 2013).

Over the last few decades, several global and quasi-global
precipitation datasets have been developed that address some
of these challenges and can be used to drive hydrological
models at regional and global scales. These precipitation
datasets differ in terms of their spatial resolution, spatial cov-
erage (e.g. global or regional), data sources (e.g. gauge, satel-
lite, reanalysis and radar), temporal resolution (e.g. sub-daily
and daily), and length of record. It is therefore important to
evaluate the accuracy of the datasets before they are used
to drive global- or regional-scale hydrological models. Most
studies have evaluated precipitation datasets using observed
data from field-based meteorological stations at a range of
scales (e.g. Beck et al., 2017a; Gebrechorkos et al., 2018;
Xiang et al., 2021; Sun et al., 2018; Hong et al., 2022; Wati
et al., 2022; AL-Falahi et al., 2020; Ahmed et al., 2019; Fal-
lah et al., 2020). Hydrological models have also been used
to assess the quality of the precipitation dataset by compar-
ing simulated and observed discharge across different spatial
scales (e.g. Mazzoleni et al., 2019; Beck et al., 2017a; Zhu
et al., 2018; Raimonet et al., 2017; Guo et al., 2018; Wang et
al., 2020; Salehi et al., 2022; Zhu et al., 2018; Seyyedi et al.,
2015). In principle, this latter approach is able to identify the
precipitation datasets which best represent hydrological vari-
ability including extremes, even in catchments where there
have been multiple drivers of change.

There are a limited number of studies assessing multi-
ple precipitation datasets for global hydrological model ap-
plications (Voisin et al., 2008; Beck et al., 2017a; Maz-
zoleni et al., 2019). Voisin et al. (2008) conducted a global-
scale evaluation of two precipitation datasets for hydrolog-
ical modelling. Beck et al. (2017a) compared the perfor-
mance of 22 precipitation datasets for global hydrological
modelling. Mazzoleni et al. (2019) evaluated 18 different
precipitation datasets in eight river basins in different con-
tinents. Both Beck et al. (2017a) and Mazzoleni et al. (2019)
found that merged satellite–observation precipitation prod-
ucts showed the best performance compared to satellite-only
products. These studies exclusively concentrate on a daily
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timescale, evaluating performance solely through the Nash–
Sutcliffe efficiency (NSE). Neither study extends this assess-
ment to monthly and annual timescales, and notably, they do
not assess the hydrological extremes which are often con-
sidered important to capture. Here, we build upon the work
by Beck et al. (2017a) by adding recently developed high-
resolution precipitation datasets. These include the European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis version 5 (ERA5) (Hersbach et al., 2020), Terra-
Climate (Abatzoglou et al., 2018), Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks-Cloud Classification System-Climate Data Record
(PERSIANN-CCS-CDR, hereafter PERCCDR; Sadeghi et
al., 2021), and the latest Multi-Source Weighted-Ensemble
Precipitation version 2.80 (MSWEP). These additions sig-
nificantly broaden the scope of our study, offering a diverse
range of products with distinct methodologies. In addition,
we use multiple statistical metrics to evaluate the perfor-
mance of the precipitation products for hydrological mod-
elling at daily, monthly and annual timescales and for daily
extremes, which represents a current gap in the modelling
literature.

The aim of this study is to undertake a comprehensive
evaluation, spanning various temporal and spatial scales, to
examine how different input precipitation datasets impact
the predictions of a global hydrological model. We assess
six high-resolution precipitation datasets, each with records
spanning more than 30 years. A comprehensive and phys-
ically based gridded global hydrological model (WBMsed;
Cohen et al., 2013) is used to simulate river discharge glob-
ally. The model incorporates various datasets, including data
on reservoirs, dams, and crop water requirements, which sig-
nificantly influence streamflows. The objective is not to eval-
uate the absolute performance of the hydrological model,
which can be influenced by local factors; rather, our focus
is on comparing the relative performance of the six precipita-
tion datasets at individual locations. The modelled discharge,
derived from the six precipitation datasets, is assessed across
the various timescales by comparing it with observed dis-
charge data collected from 1825 river gauge stations world-
wide. Furthermore, we assess the performance of the precip-
itation products by examining their accuracy in representing
daily extreme precipitation events across various percentiles.
In summary, this research offers a thorough evaluation of this
set of diverse precipitation products, spanning daily extreme
events to annual timescales, providing an invaluable resource
for selecting appropriate basin-, regional-, and global-scale
inputs for hydrological modelling applications.

2 Data and methods

In the following sections, we outline the various input and
evaluation datasets which were used within the WBMsed hy-

drological modelling framework. The statistical evaluation
methods used to assess the results are also outlined.

2.1 Precipitation datasets

The precipitation datasets used herein are selected based on
their length of record (>30-year period), spatial coverage
(global and quasi-global), and recommendations from previ-
ous research (Beck et al., 2017a) (Table 1). Based on the find-
ings of Beck et al. (2017a), datasets with low performance
were excluded, while those demonstrating the highest perfor-
mance, such as MSWEP and Climate Hazards group Infrared
Precipitation with Stations version 2.0 (CHIRPS), were re-
tained, and new datasets were incorporated. The selected pre-
cipitation datasets are the ERA5, CHIRPS, MSWEP, Terra-
Climate (TERRA), Climate Prediction Centre Unified ver-
sion 1.0 (CPCU), and PERCCDR. Due to their spatial cov-
erage, CHIRPS and PERCCDR are only evaluated up to lat-
itudes of 50 and 60° N, respectively (Table 1). Each dataset
was subsequently used to force the WBMsed hydrological
model in order to generate streamflow estimates. The avail-
ability of these datasets with longer records enables the as-
sessment of long-term hydrological changes at global, re-
gional, and catchment scales.

ERA5 is the fifth-generation European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis
dataset available globally from 1940 to present (Hersbach et
al., 2020). ERA5 combines modelled data and observations
to create a complete and consistent global climate dataset
using advanced data assimilation methods. ERA5 provides
improved precipitation representation such as the inclusion
of tropical cyclones when compared to ERA-Interim (He
et al., 2020; Jiao et al., 2021). In addition, ERA5-Land, a
subset of ERA5 focusing on land areas, delivers more de-
tailed climate information at higher spatial resolution (0.1°)
from 1950 to the present compared to ERA5 (Hersbach
et al., 2020). Here, ERA5-Land (referred to as ERA5) is
used to evaluate its performance for global hydrological
modelling. The data are freely available from the Coper-
nicus Climate Data Store (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview, last
access: 28 April 2023).

CHIRPS is a high-resolution (0.05°) quasi-global rainfall
product primarily developed for monitoring droughts and
global environmental changes (Funk et al., 2015). CHIRPS
provides coupled gauge–satellite precipitation estimates with
a 0.05° spatial resolution and long-period records. The prod-
uct is developed by combining satellite-only Climate Haz-
ards group Infrared Precipitation (CHIRP), Climate Hazards
group Precipitation climatology (CHPclim), and data from
ground stations. CHIRP and CHPclim were developed based
on calibrated infrared cold cloud duration (CCD) precipita-
tion estimates and ground station data from the Global His-
torical Climate Network (GHCN). The product is available
from the Climate Hazards Group (https://www.chc.ucsb.edu/
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data/chirps/, last access: 20 March 2023) on daily, 10 d, and
monthly timescales from the 1981–near present. Due to its
availability at high spatial and temporal resolution, CHIRPS
is widely used in hydrological studies (Luo et al., 2019; Ge-
brechorkos et al., 2020; Geleta and Deressa, 2021; Wang et
al., 2021; Opere et al., 2022; Day and Howarth, 2019; Gebre-
chorkos et al., 2019) and modelling of hydrological extremes
such as droughts and floods (Chen et al., 2020; Mianabadi et
al., 2022; Peng et al., 2020).

MSWEP is a global high-resolution (0.1°) precipitation
product developed by merging multiple datasets such as
ground stations (∼ 77 000), satellite-based rainfall estimates,
and reanalysis data (Beck et al., 2019b). MSWEP was de-
veloped by merging station data satellite datasets and re-
analysis datasets (Beck et al., 2017b, 2019b). MSWEP has
been widely used in regional- and global-scale hydrologi-
cal studies such as for floods and droughts (Gu et al., 2023;
Gebrechorkos et al., 2022b; Reis et al., 2022; Wu et al.,
2018; Sun et al., 2022; Gebrechorkos et al., 2022c; Xiang
et al., 2021; López López et al., 2017) and for develop-
ing high-resolution global-scale hydrological extreme and
climate datasets and regional drought monitoring (Gebre-
chorkos et al., 2023, 2022a; Li et al., 2022b). MSWEP is
available from 1979 to present at multiple timescales (e.g. 3-
hourly) and can be accessed from the GloH2O website (https:
//www.gloh2o.org/mswep/, last access: 22 April 2023).

TerraClimate (TERRA) is a high-resolution (0.04°) ter-
restrial monthly climate (e.g. precipitation and temperature)
and climatic water-balance dataset available from 1958–2020
(Abatzoglou et al., 2018). TERRA was developed by com-
bining high- and coarse-spatial-resolution datasets such as
WorldClim climatological normals and Climatic Research
Unit gridded Time Series (CRU TS) and JRA-55, respec-
tively. The data were evaluated against ground observation
from the Historical Climate Network and exhibited better
performance than the CRU-TS (Abatzoglou et al., 2018). The
monthly climate and climatic water balance is available from
the Climatology Lab website (https://www.climatologylab.
org/, last access: 21 April 2023).

CPCU is a gauge-based analysis of daily precipitation
datasets available globally from 1979 to present at a spatial
resolution of 0.5° (Chen et al., 2008). CPCU is the prod-
uct of the CPC Unified Precipitation project at NOAA Cli-
mate Prediction Center. The product uses data from more
than 30 000 (1979–2005) and 17 000 (2006–present) stations.
The CPCU data are publicly available at the NOAA Physical
Sciences Laboratory (PSL; https://downloads.psl.noaa.gov/
Datasets/cpc_global_precip/, last access: 28 April 2023) and
have been used for hydrological and climate studies (Beck et
al., 2017a; Zhu et al., 2021; Hou et al., 2014).

PERCCDR is a quasi-global (latitude from 60° S to 60° N)
dataset developed at the University of California (Sadeghi
et al., 2021). PERCCDR provides precipitation estimates at
high spatial (0.04°) and temporal (3-hourly) resolutions from
1983 to present. The dataset is developed using the rain

rate output from the PERSIANN-CCS model, which uses
GridSat-B1 IR and NOAA Climate Prediction Center (CPC-
4km) IR data. Compared to other PERSIANN precipitation
datasets, PERCCDR provides a realistic representation of
precipitation extremes globally and shows better agreement
with CPCU precipitation (Sadeghi et al., 2021). PERCCDR
has been used in hydrological studies (Salehi et al., 2022;
Eini et al., 2022) and is freely available from the Center for
Hydrometeorology and Remote Sensing (CHRS) Data Portal
(https://chrsdata.eng.uci.edu/, last access: 22 April 2023).

2.2 WBMsed hydrological model

The WBMsed (Cohen et al., 2013, 2014) model is used to
assess the performance of the different precipitation datasets
for hydrological modelling globally. WBMsed is a global-
scale hydrogeomorphic model, an extension of the WBMplus
global hydrology model (Wisser et al., 2010), which is part of
the FrAMES biogeochemical modelling framework (Woll-
heim et al., 2008). The WBMplus model is one of the first
global hydrological models (GHMs) applied to a global do-
main (Cohen et al., 2013; Grogan et al., 2022). The WBMsed
model extends the WBMplus model by including sediment
flux modules (suspended, bedload and suspended bed mate-
rial; Cohen et al., 2022). While we are not analysing sedi-
ment flux in this paper, we opted to use the WBMsed model
for consistency with consequent analysis. The hydrological
prediction of WBMsed is equivalent to WBMplus.

The model represents the major hydrological cycle com-
ponents of the land surface and tracks the balances and fluxes
between the atmosphere, surface water storages, vegetation,
runoff, and groundwater (Grogan et al., 2022). The model
includes hydrological infrastructure (e.g. dams and reser-
voirs), agricultural water requirements, and domestic and in-
dustrial water uses. A gridded river network connects grid
cells, which allows for the routing of fluxes downstream (e.g.
streamflow). The model requires several climate datasets as
input in addition to precipitation, including temperature, hu-
midity, air pressure, and wind speed (Table S1). Additional
parameters such as field capacity, rooting depth, and riverbed
slope are used to drive the model.

We use an identical model setup to that used by Co-
hen et al. (2022) with all input datasets as detailed in Co-
hen et al. (2013). Updates include daily ERA5 air temper-
ature (Hersbach et al., 2020) re-gridded at 10 arcmin reso-
lution, reservoir capacity from the global reservoir and dam
database (GRanD v1.3; Lehner et al., 2011), and a 6 arcmin
HydroSTN30 network derived from HydroSHEDS (Lehner
et al., 2008). In addition, we used each of the six input precip-
itation datasets, ERA5, CHIRPS, MSWEP, TERRA, CPCU,
and PERCCDR in turn, keeping all other parameters and in-
puts the same. All the input precipitation datasets are bilin-
early interpolated to the same spatial resolution of 0.1°. Even
though WBMsed can disaggregate monthly time series into
daily time series, TERRA (only available at monthly res-
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Table 1. The six precipitation datasets used in this study and their spatial and temporal resolution, spatial coverage, and data sources.

Abbreviation Full name Spatial
resolution
and coverage

Temporal
resolution

Temporal
coverage

Data source Reference

ERA5 ECMWF (European Centre for
Medium-Range Weather Forecasts)
Reanalysis V5

0.1°, global Sub-daily 1979–present Gauge and
reanalysis

Hersbach et
al. (2020)

CHIRPS Climate Hazards group In-
frared Precipitation with Stations
(CHIRPS) version 2.0

0.05°, quasi-
global (50° S–
50° N)

Daily 1981–present Gauge,
satellite
and reanal-
ysis

Funk et al.
(2015)

MSWEP Multi-Source Weighted-Ensemble
Precipitation (MSWEP) version
2.80

0.1°, global Daily 1979–present Gauge,
satellite
and reanal-
ysis

Beck et al.
(2019b)

TERRA TerraClimate 0.042°, global Monthly 1958–present Gauge and
reanalysis

Abatzoglou
et al. (2018)

CPCU Climate Prediction Centre (CPC)
Unified V1.0

0.5°, global Daily 1979–present Gauge only Chen et al.
(2008)

PERCCDR Precipitation Estimation from Re-
motely Sensed Information using
Artificial Neural Networks-Cloud
Classification System-Climate Data
Record (PERSIANN-CCS-CDR)

0.04°, quasi-
global (60° S–
60° N)

Sub-daily 1983–present Gauge and
satellite

Sadeghi et
al. (2021)

olution; see Table 1) is evaluated on monthly and annual
timescales, whilst all other datasets are evaluated at daily,
monthly, and annual timescales. WBMsed simulations were
run at 0.1° (∼ 11 km at the Equator) spatial and daily and
monthly temporal resolutions. Several WBMsed streamflow
validation analyses have been reported previously (e.g. Co-
hen et al., 2022; Dunn et al., 2019; Cohen et al., 2014, 2013;
Moragoda and Cohen, 2020), which indicates that the model
represents the long-term average observed streamflow glob-
ally. It is important to note that this study assesses the precip-
itation datasets without calibration of the WBMsed model for
each precipitation dataset, which could theoretically improve
their performance in replicating observed river discharge.

2.3 Observed river discharge from ground stations

Observed daily and monthly river discharge used to eval-
uate the hydrological model was obtained from the Global
Runoff Data Centre (GRDC, 2023). The GRDC is an inter-
national data archive (https://www.bafg.de/GRDC/, last ac-
cess: 26 February 2023), which hosts data for over 10 000
hydrological stations. The number of stations with a length
of record greater than 10 years during the evaluation period
(1981–2019) is limited. Here, we consider stations with a
minimum record length of 10 years, allowing for missing
values within this period. Due to the spatial resolution of the
input datasets and the model simulations (∼ 11×11 km), we

only consider stations with a catchment area of greater than
100 km2. Overall, 1825 suitable stations were identified with
daily and monthly records, largely in North and South Amer-
ica, Europe, and Australia, with very few stations in Africa
and Asia (Fig. 1).

2.4 Evaluation metrics

Several methods are used to assess the modelled discharge
using the streamflow observations: the Pearson correlation
coefficient (CC; Eq. 1), Kling–Gupta efficiency (KGE; Eq. 2)
(Gupta et al., 2009), root mean square error (RMSE; Eq. 3),
and percentage of bias (Pbias; Eq. 4). CC measures the lin-
ear relationship between observed discharge and simulated
discharge, focusing primarily on the degree of association
between the two datasets. It is particularly useful for assess-
ing the strength and direction of this relationship, highlight-
ing how well the model captures the variability in discharge
(Moazami et al., 2013). KGE is a comprehensive metric that
evaluates the overall agreement between observed and simu-
lated streamflow, considering similarities in variability, am-
plitude, and timing. It provides an assessment of the model’s
ability to capture both the magnitude and temporal dynamics
of the observed discharge (Gupta et al., 2009). RMSE mea-
sures the average magnitude of the differences between ob-
served and simulated discharge, providing a measure of the
overall goodness of fit. Moreover, the percentage of bias is
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Figure 1. Correlation (CC) between annual observed and modelled streamflow data using (a) ERA5, (b) CHIRPS, (c) MSWEP, (d) TERRA,
(e) CPCU, and (f) PERCCDR precipitation datasets. The inset histograms show the frequency distribution (y axis) of the annual CC (x axis),
with the vertical red line indicating the median value.

used to quantify the systematic overestimation or underesti-
mation of discharge by the model compared to observations
(Moazami et al., 2013). A KGE value of 1.0 indicates a per-
fect match between the observed and simulated discharge,
whereas values lower than −0.41 show that the model is
worse than using the mean of the observed discharge as a
predictor (Knoben et al., 2019). For spatial comparison, the
RMSE is normalised by the standard deviation of the ob-
served data (NRMSE; Eq. 5).

CC=

∑N
i=1

(
Mi − M̄

)
·
(
Oi − Ō

)√∑N
i=1
(
Mi − M̄

)2
·

√∑N
i=1
(
Oi − Ō

)2 (1)

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2 (2)

RMSE=

√∑N
i=1(Oi −Mi)

2

N
(3)

Pbias=
∑N
i=1(Mi −Oi)∑N

i=1Oi
· 100 (4)

NRMSE=
RMSE

SD
· 100, (5)

where r is the linear correlation between observed (O) and
modelled (M) discharge, and α and β are the variability and
bias ratios, respectively. The NRMSE and SD are the nor-
malised RMSE and standard deviation, respectively. To as-
sess the performance of the precipitation datasets for repre-
senting daily hydrological extremes, the 90th and 10th per-
centiles are used, which indicate high and low flows, respec-
tively. To derive high- and low-flow thresholds from a daily
flow time series, the data are first arranged in ascending or-
der. The 90th percentile (Q10) is then determined as the flow
value above which 90 % of the daily flows lie, represent-
ing high-flow conditions. Similarly, the 10th percentile (Q90)
represents the flow value below which 90 % of the daily flows
occur, indicating low-flow conditions.
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Figure 2. KGE between observed and modelled annual streamflow based on (a) ERA5, (b) CHIRPS, (c) MSWEP, (d) TERRA, (e) CPCU,
and (f) PERCCDR precipitation datasets. KGE values below −0.41 indicate worse model performance than using observed discharge mean
as a predictor. The inset histograms show the frequency distribution (y axis) of the annual KGE (x axis). KGE values lower than −1 are
highlighted in orange. The vertical red line indicates the median value.

3 Results

3.1 Performance of the six precipitation datasets for
annual discharge prediction

The temporal correlation coefficient (CC) between the ob-
served and simulated annual discharge based on the six pre-
cipitation datasets is summarised in Fig. 1. Most of the
datasets, particularly ERA5, MSWEP, and CHIRPS, showed
a high CC in basins of Europe (e.g. Danube basin), South
America (e.g. Rio de la Plata–Parana), North America,
and Australia (e.g. Murray–Darling). MSWEP and ERA5
showed the highest CC for 34 % and 32 % of the stations,
respectively, followed by CPCU and CHIRPS. TERRA and
PERCCDR were the least-well-performing datasets, with a
lower CC overall and a higher CC than other datasets for
less than 9 % of stations. The median CC of MSWEP and
ERA5 is 0.82 and 0.8, respectively. MSWEP and TERRA

showed lower Pbias and NRMSE compared to the other
datasets (Figs. S1 and S2). ERA5 and PERCCDR showed a
high NRMSE (up to 247 %) and Pbias (up to 99 %) for more
than 46 % of stations. Similar to the CC, ERA5 and MSWEP
outperformed the other datasets for KGE, with higher values
for 32 % and 27 % of stations, respectively. The performance
of MSWEP and ERA5 is higher in basins of Europe, South
America, and Australia compared to Asia and Africa. The
median KGE values of ERA5 and MSWEP are 0.33 and 0.32,
respectively (Fig. 2). PERCCDR and CPU only demonstrate
high KGE for about 9 % of the stations, with median values
of 0.10 and 0.13, respectively. Based on the annual CC and
KGE, there is no single precipitation dataset that is best ev-
erywhere, and even the least-well-performing dataset overall
shows better performance in some stations (Fig. 3). Figure 3
summarises the spatial representation of precipitation dataset
performance, highlighting the individual datasets exhibiting
the highest CC and KGE values at each observation point.
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Figure 3. The best-performing precipitation dataset (ERA5, CHIRPS, MSWEP, TERRA, CPCU, and PERCCDR) at each of the observed
discharge stations based on annual CC (a) and KGE (b).

3.2 Performance of the six precipitation datasets for
monthly discharge predictions

The six precipitation datasets consistently demonstrate high
CC at a monthly scale in large parts of the world, except in
some rivers of Canada and Australia (Fig. 4). The monthly
CC, similar to the annual CC, shows a relatively better per-
formance of MSWEP with a median CC of 0.76. TERRA
is the second best, with a median CC of 0.69. MSWEP and
TERRA show a higher CC than other datasets for 35 % and
28 % of the stations, respectively. ERA5 and CHIRPS are
ranked as the third and fourth datasets, with a median CC of
0.71 and 0.75, respectively. CPCU and PERCCDR are the
least-well-performing datasets, which only show the highest
CC for less than 6 % of the stations, with a median CC of
0.67 and 0.56, respectively.

The monthly KGE also indicates the better performance
of ERA5 and MSWEP for 26 % and 24 % of stations, respec-
tively (Fig. 5). MSWEP showed a lower Pbias and NRMSE
than all datasets, except in 5 % of the stations (Figs. S3 and
S4). Compared to MSWEP, ERA5 showed a larger Pbias and
NRMSE in 15 % and 19 % of the stations. TERRA, the third-

best-performing dataset based on KGE (18 % of stations),
shows a lower monthly Pbias and RMSE in 85 % of the sta-
tions compared to CHIRPS, ERA5, and PERCCDR. Com-
pared to all datasets, PERCCDR showed a higher NRMSE
and Pbias in 55 % and 28 % of the stations, respectively.

The spatial representation of the six precipitation datasets
in the Amazon, Mississippi, Danube, and Orange River
basins is summarised in Fig. 6, highlighting the individual
datasets exhibiting the highest CC and KGE values at each
hydrological station. In the Amazon basin, ERA5 (31 %) and
CHIRPS (29 %) emerge as the top performers, while PER-
CCDR (8 %) and TERRA (5 %) rank lower among the pre-
cipitation datasets. In the Mississippi basin, MSWEP leads
with a higher CC for 37 % of stations, and ERA5 holds the
top products with higher KGE values for 31 % of the sta-
tions. Notably, PERCCDR displays higher KGE values than
MSWEP, TERRA, CHIRPS, and CPCU for 30 % of Mis-
sissippi stations. Across the Danube basin, MSWEP outper-
forms the other products, with a higher CC in 66 % of sta-
tions and KGE for 30 % of the stations, while TERRA and
CPCU are the least-well-performing products. Furthermore,
CHIRPS, for 52 % of stations based on CC and 37 % based
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Figure 4. Correlation (CC) between monthly observed and modelled streamflow data based on (a) ERA5, (b) CHIRPS, (c) MSWEP,
(d) TERRA, (e) CPCU, and (f) PERCCDR precipitation datasets. The inset histograms show the frequency distribution (y axis) of the
monthly CC (x axis), with the vertical red line indicating the median value.

on KGE, outperformed other datasets in the Orange River
basin. In Orange, MSWEP ranks second, with higher KGE
and CC for about 27 % of stations, while TERRA and PCC-
SCDR are the least-well-performing datasets.

Table 2 summarises the monthly KGE between observed
and modelled streamflow, based on the six precipitation
datasets, for selected locations in basins of Africa (Niger,
Lokoja), Asia (Mekong, Khong Chiam), South America
(Amazon, Missão-Içana), North America (Mississippi, Sa-
vannah), Australia (northeast coast, Mirani Weir), and Eu-
rope (Danube, Dunaalmás). The basins were chosen to rep-
resent a good range of climatic regions and drainage areas
where there was availability of a long time series of observed
data (Fig. S5). In Niger, the observed monthly flow and vari-
ability at Lokoja station are very well reproduced by CHIRPS
and TERRA, with a CC of 0.88 and 0.85, respectively
(Fig. S5a). Even though CPCU showed a lower CC (0.64)
at Lokoja, it showed a higher KGE (0.62) and lower Pbias
(0.4 %) compared to the other products. At Lokoja, PERC-

CDR is the least-well-performing dataset, with the highest
RMSE and Pbias and lowest KGE. The monthly variability
at the Khong Chiam station is reproduced by all the precipi-
tation products, with a CC of greater than 0.91, with MSWEP
and TERRA showing the lowest bias and RMSE. ERA5 and
CHIRPS performed well at Missão-Içana station in the Ama-
zon with a CC of 0.9 and RMSE of about 610 m3 s−1. For
stations Savannah, Mirani Weir, and Dunaalmás, MSWEP is
the best product, with higher CC (>0.72) and KGE (>0.62)
and lower Pbias and RMSE (Fig. S5d–f).

3.3 Performance of the precipitation datasets for daily
and daily extreme discharge predictions

Based on the daily evaluation, MSWEP followed by ERA5
showed a higher CC in more than 50 % of the stations, with
median values of 0.41 and 0.39, respectively (Fig. 7). ERA5
and MSWEP performed well in 31 % and 31 % of the sta-
tions with high KGE values (Fig. 8). Similar to the monthly
evaluation, PERCCDR shows poorer performance (lower CC
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Figure 5. Monthly KGE values between observed and modelled streamflow based on ERA5, (b) CHIRPS, (c) MSWEP, (d) TERRA,
(e) CPCU, and (f) PERCCDR precipitation datasets. KGE values below −0.41 indicate model performance that is worse than using the
observed discharge mean as a predictor. The inset histograms show the frequency distribution (y axis) of the monthly KGE (x axis). KGE
values lower than −1 are highlighted in orange, with the vertical red line indicating the median value.

Table 2. KGE of monthly predictions for selected stations in basins of Africa (Niger), Asia (Mekong), South America (Amazon), North
America (Mississippi), Australia (northeast coast), and Europe (Danube).

Basin Station names Longitude Latitude Catchment ERA5 CHIRPS MSWEP TERRA CPCU PCCSCDR
area (km2)

Niger Lokoja 6.8 7.8 1 670 000 0.21 −0.1 0.60 0.34 0.62 −0.99
Mekong Khong Chiam 105.5 15.3 419 000 0.13 0.56 0.70 0.91 0.70 −0.04
Amazon Missão-Içana −67.6 1.1 22 282 0.71 0.78 0.73 0.72 0.61 0.65
Mississippi Savannah −88.3 35.2 85 833 0.59 0.65 0.67 0.66 0.53 0.66
Northeast coast Mirani Weir 148.8 −21.2 1211 −0.1 0.38 0.62 0.44 0.46 −0.05
Danube Dunaalmás 18.3 47.7 171 720 0.34 0.73 0.78 0.52 0.71 −0.49
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Figure 6. Performance of precipitation datasets (ERA5, CHIRPS, MSWEP, TERRA, CPCU, and PERCCDR) at discharge stations in
(a) Amazon, (c) Mississippi, (e) Danube, and (g) Orange River basins based on their monthly CC. Performance of the datasets based on
KGE for the Amazon, Mississippi, Danube, and Orange River basins is illustrated in panels (b), (d), (f), and (h), respectively.

and KGE, higher biases and errors) in almost 95 % of the sta-
tions. Even though ERA5 showed a higher CC and KGE in
30 % of the stations, it shows a higher NRMSE (up to 250 %)
and Pbias (up to 100 %) in 20 % and 30 % of the stations
(Figs. S6 and S7). Overall, MSWEP and CHIRPS showed
lower NRMSE and Pbias compared to the other products.
The CC and KGE of all the products (except CHIRPS) are
lower in North America compared to stations in South Amer-

ica, Europe, and Australia. The spatial representation of pre-
cipitation dataset performance, highlighting the individual
datasets exhibiting the highest daily CC and KGE values at
each observation point, is provided in Fig. S9. Additionally,
Fig. S10 depicts the spatial representation of each precipita-
tion dataset for the Amazon, Mississippi, Danube, and Or-
ange River basins. In Mississippi, ERA5 exhibited the high-
est KGE and CC values, followed by MSWEP and CPCU
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Figure 7. Correlation (CC) between daily observed and modelled streamflow data using (a) ERA5, (b) CHIRPS, (c) MSWEP, (d) CPCU,
and (e) PERCCDR precipitation datasets. The inset histograms show the frequency distribution (y axis) of the daily CC (x axis), with the
vertical red line indicating the median value.

(Fig. S10). In the Amazon, ERA5 and CHIRPS displayed the
highest KGE and CC values compared to the other datasets.
For the Danube, CPCU followed by MSWEP emerged as the
best precipitation product relative to ERA5, PCCSCDR, and
CHIRPS. In the Orange River basin, MSWEP based on CC
and CHIRPS based on KGE were the top-performing prod-
ucts, while PCCSCDR performed the least well.

The performance of the daily precipitation products is also
assessed for daily extremes in terms of the Q10 and Q90
values. Based on the CC, MSWEP is the best-performing
dataset for Q10 (Fig. 9) and Q90 (Fig. S8). For Q10, MSWEP
and CPCU exhibited a higher CC than other datasets at 38 %
and 32 % of the stations, respectively. Similarly, for Q90,
MSWEP and ERA demonstrated a higher CC compared to
other datasets at 35 % and 30 % of the stations. The median
CC for Q10 (Q90) is 0.32 (0.41), 0.28 (0.36), 0.27 (0.35),
0.26 (0.38), and 0.16 (0.23) for MSWEP, CPCU, CHIRPS,
ERA5, CHIRPS, and PERCCDR, respectively. Similar to the
annual, monthly, and daily evaluations, PERCCDR showed

poor performance for the two extremes (Q90 and Q10). Over-
all, the performance of the datasets is lower for extremes
compared to the annual, monthly, and daily scales.

4 Discussion and conclusion

Based on the evaluation at annual, monthly, and daily
timescales and analysis of daily extremes, no single precip-
itation dataset consistently exhibits high accuracy across all
geographical regions, nor is one consistently better than the
other datasets. This finding is in line with previous studies
(Beck et al., 2017a; Dembélé et al., 2020). A similar pattern
of varied performance (e.g. lower in Africa and the central
United States and better in Europe) by different global hydro-
logical models and precipitation datasets has been presented
(Beck et al., 2017a; Lin et al., 2019; Harrigan et al., 2020).
In addition to the uncertainty in the precipitation datasets,
the poorer performance in some regions presented in this and
previous studies (Beck et al., 2017a; Lin et al., 2019; Harri-
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Figure 8. Daily KGE values between observed and modelled streamflow based on (a) ERA5, (b) CHIRPS, (c) MSWEP, (d) CPCU and
(e) PERCCDR precipitation datasets. KGE values below −0.41 indicate bad model performance than using observed discharge mean as a
predictor. The inset histograms show the frequency distribution (y axis) of the daily KGE (y axis). KGE values lower than−1 are highlighted
in orange, with the vertical red line indicating the median value.

gan et al., 2020) can be due to the lack of representation in the
hydrological models of anthropogenic influences, such as for
agriculture, irrigation, water supply, and energy production.

Comparably, MSWEP and ERA5 consistently exhibited
higher CC and KGE values at over 50 % of the stations
across annual, monthly, and daily timescales. According to
Gu et al. (2023), satellite- and reanalysis-based precipita-
tion datasets, such as MSWEP and ERA5, can provide sat-
isfactory performance for simulating discharge globally. The
higher performance of MSWEP indicates the advantage of
incorporating a large number of daily observations from
field-based meteorological stations, in addition to a large
set of satellite and reanalysis datasets (Beck et al., 2017a,
2019a). Other studies have also shown the good performance
of MSWEP for hydrological modelling in different parts of
the world (Beck et al., 2017a; Lakew, 2020; Li et al., 2022a;
Reis et al., 2022; Gu et al., 2023; López López et al., 2017;
Satgé et al., 2019; Ibrahim et al., 2022). For example, Satgé

et al. (2019) evaluated 12 satellite-based precipitation esti-
mates such as MSWEP, CHIRPS, and PERSIANN-CDR in
South America (Lake Titicaca region) and found MSWEP
was the best precipitation dataset for realistic simulation of
river discharge. MSWEP was also found to be the most reli-
able precipitation dataset compared to multiple datasets such
as CHIRPS and CMORPH for hydrological and climate stud-
ies in basins of eastern China (Shaowei et al., 2022; Wu et al.,
2018).

Even though ERA5 showed a higher KGE and CC than
MSWEP, CHIRPS, and TERRA for about 32 % of the sta-
tions, it showed a higher error and biases. Previous studies
have revealed bias and errors in ERA5 precipitation (Lavers
et al., 2021; Bechtold et al., 2020; AL-Falahi et al., 2020;
Jiang et al., 2023; Lavers et al., 2022), which leads to propa-
gated errors and bias in hydrological modelling outputs. Har-
rigan et al. (2020) also reported large biases in ERA5-driven
hydrological simulations in the central United States, South
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Figure 9. Correlation (CC) between observed and modelled daily extremes (Q10, high flow) of streamflow data modelled by (a) ERA5, (b)
CHIRPS, (c) MSWEP, (d) CPCU, and (e) PERCCDR precipitation datasets. The inset histograms show the frequency distribution (y axis)
of the daily Q10 CC (x axis), with the vertical red line indicating the median value.

America (e.g. Brazil), and Africa. According to Lavers et
al. (2022), ERA5 precipitation is more reliable in extratrop-
ical areas compared to tropical areas. Despite CPCU being
a gauge-based precipitation dataset, it did not show as good
a performance as MSWEP and ERA5 on annual, monthly,
and daily timescales. In addition to the lower KGE and CC,
CPCU showed higher bias and error, particularly on annual
and monthly timescales. The bias and errors in CPCU can
be due to the coarse resolution (0.5°) and the limited num-
ber of stations used to develop the datasets, particularly in
Africa and South America. According to Beck et al. (2017a),
CPCU can be used in large river basins with dense mete-
orological stations but can be disadvantageous in Africa and
South America. This highlights the need to expand and main-
tain the meteorological stations in these regions but also the
need to draw from satellite and model data sources. The
PERSIANN-CDR is the least-well-performing product with
lower KGE and higher errors and biases, which has been
highlighted elsewhere in terms of its inability to represent

precipitation extremes (Miao et al., 2015; Solakian et al.,
2020).

The precipitation datasets show limited skill overall in re-
producing daily extremes (high and low flows), relative to
the annual and monthly timescales. MSWEP and CPCU have
shown a high CC for about 38 % of the stations. This is con-
sistent with the findings of Tang et al. (2019) for the Mekong
River basin. CHIRPS and PERSIANN-CDR are the least
skilful in capturing extremes, with a very low CC and large
positive and negative biases (Araujo Palharini et al., 2021).
For instance, numerous precipitation products have been ob-
served to both underestimate and overestimate low and high
precipitation values in Brazil (Palharini et al., 2020), con-
sequently resulting in corresponding underestimations and
overestimations of low and high streamflows. In general, sev-
eral studies have concluded that precipitation datasets exhibit
a substantial disparity in daily extreme precipitation events
(e.g. Araujo Palharini et al., 2021; Jiang et al., 2019; Huang et
al., 2022), which can be attributed to factors such as inaccu-
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racies in satellite sensors, retrieval algorithms, temporal sam-
pling, and satellite–observation merging and bias correction
procedures used, particularly in gauge-limited regions (Miao
et al., 2015; El Kenawy et al., 2015; Shen et al., 2010; Jiang
et al., 2019). In addition to the uncertainty of the precipitation
datasets, the limited availability of hydrological observations
limits the ability to assess these datasets globally, especially
for extreme flood and drought events (Brunner et al., 2021).

While our study evaluates six global precipitation datasets
for hydrological modelling using WBMsed, which show an
R2 of 0.99 in 30-year average prediction against USGS
gauge data and global river datasets (Cohen et al., 2022), it
is important to acknowledge uncertainties and limitations in
both the precipitation data and model parameters. Uncertain-
ties in input data, such as those derived from satellite-based
precipitation datasets, including retrieval errors, can propa-
gate through the hydrological model, potentially affecting the
accuracy of simulated discharge. Additionally, globally cal-
ibrated model parameters may introduce further uncertainty,
particularly in regions with limited observational data cov-
erage. Due to the limited availability of observed discharge
in Africa and Asia, the evaluation predominantly focuses on
North and South America and Europe. Hence, further eval-
uation in Africa and Asia could be essential to enhance the
robustness of global hydrological models.

Overall, the evaluation presented in this paper under-
lines the importance of selecting high-quality precipitation
datasets to drive hydrological models. Since no single pre-
cipitation dataset was found to be adequately accurate ev-
erywhere, this study can help identify the best precipitation
products for any basin or region under consideration. Based
on our results, MSWEP is the best overall choice, but there
are regions where ERA5, CHIRPS, and CPCU were bet-
ter overall. All the precipitation datasets, particularly ERA5
and PERCCDR, require bias correction before being used
to drive hydrological models in regions like North Amer-
ica, Asia, Africa, and Australia. For data-scarce regions such
as Africa and Asia, it is difficult to recommend a precipita-
tion dataset due to the limited number of hydrological sta-
tions used in this study. Finally, improving the precipitation
datasets by adding more ground observations, for example,
and by better representing anthropogenic drivers in hydro-
logical models means considerably improving the potential
of global and regional hydrological predictions.

Data availability. The selected precipitation datasets used
in this study are openly accessible to the public. ERA5 is
freely available from the Copernicus Climate Data Store
(CDS; https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=overview, Muñoz Sabater, 2019).
CHIRPS can be obtained from the Climate Hazards Group
(CHG; https://www.chc.ucsb.edu/data/chirps/, Funk et al.,
2015). Access to the MSWEP precipitation dataset is provided
through the GloH2O website (https://www.gloh2o.org/mswep/,

Beck et al., 2017b). TERRA is accessible from the Cli-
matology Lab website (https://www.climatologylab.org/,
Abatzoglou et al., 2018). CPCU is publicly available
through the NOAA Physical Sciences Laboratory (PSL;
https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/,
Chen et al., 2008), and PERCCDR can be freely accessed through
the Center for Hydrometeorology and Remote Sensing (CHRS;
https://chrsdata.eng.uci.edu/, Sadeghi et al., 2021).
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