Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6073-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6073-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Murray Peel
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Margarita Saft
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Tim J. Peterson
Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
Andrew Western
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Lawrence Band
Department of Environmental Science, University of Virginia,
Charlottesville, Virginia, USA
Department of Engineering Systems and Environment, University of
Virginia, Charlottesville, Virginia, USA
Cuan Petheram
CSIRO Land and Water, Sandy Bay, Tasmania, Australia
Sandra Dharmadi
Department of Environment, Land, Water and Planning, Melbourne,
Victoria, Australia
Kim Seong Tan
Melbourne Water, Docklands, Victoria, Australia
Lu Zhang
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Patrick Lane
School of Ecosystem and Forest Sciences, University of Melbourne,
Parkville, Victoria, Australia
Anthony Kiem
Centre for Water, Climate and Land (CWCL), College of Engineering,
Science and Environment (CESE), University of Newcastle, Newcastle, New South Wales, Australia
Lucy Marshall
School of Civil and Environmental Engineering, University of New
South Wales, Kensington, New South Wales, Australia
ARC Training Centre Data Analytics for Resources and Environments,
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
Anne Griebel
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Belinda E. Medlyn
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Dongryeol Ryu
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Giancarlo Bonotto
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Conrad Wasko
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Anna Ukkola
Climate Change Research Centre, University of New South Wales,
Kensington, New South Wales, Australia
Clare Stephens
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Andrew Frost
Bureau of Meteorology, Sydney, New South Wales, Australia
Hansini Gardiya Weligamage
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Patricia Saco
Centre for Water Security and Environmental Sustainability and School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
Hongxing Zheng
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Francis Chiew
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Edoardo Daly
Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
Glen Walker
Grounded In Water, Adelaide, South Australia, Australia
R. Willem Vervoort
ARC Training Centre Data Analytics for Resources and Environments,
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
Justin Hughes
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Luca Trotter
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Brad Neal
Hydrology and Risk Consulting (HARC), Blackburn, Victoria, Australia
Ian Cartwright
School of Earth, Atmosphere and Environment, Monash University,
Clayton, Victoria, Australia
Rory Nathan
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Related authors
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-263, https://doi.org/10.5194/essd-2024-263, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper presents Version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS v2 comprises data for an increased number (561) of catchments, each with with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024, https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Short summary
Human-induced nitrogen (N) from fertilization and septic effluents is the primary N source in urban watersheds. We developed a model to understand how spatial and temporal patterns of these loads affect hydrologic and biogeochemical processes at the hillslope level. The comparable simulations to observations showed the ability of our model to enhance insights into current water quality conditions, identify high-N-retention locations, and plan future restorations to improve urban water quality.
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-263, https://doi.org/10.5194/essd-2024-263, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper presents Version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS v2 comprises data for an increased number (561) of catchments, each with with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
EGUsphere, https://doi.org/10.5194/egusphere-2024-2182, https://doi.org/10.5194/egusphere-2024-2182, 2024
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed on average 10.5 grams of CO2 from the atmosphere per m2 daily. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit smaller. Cool temperatures and high cloud cover inhibit carbon sequestration.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111, https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We present the results of the 2022 groundwater modeling challenge, where 15 teams applied data-driven models to simulate hydraulic heads. 3 groups of models were identified: lumped models, machine learning models, and deep learning models. For all wells, reasonable performance was obtained by at least 1 team from group. There was not 1 team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Rafael Navas, Pablo Gamazo, and R. Willem Vervoort
Proc. IAHS, 385, 399–406, https://doi.org/10.5194/piahs-385-399-2024, https://doi.org/10.5194/piahs-385-399-2024, 2024
Short summary
Short summary
It’s difficult to estimate the daily discharge of a river when only one instantaneous level record is available per day. This work proposes to estimate synthetic daily rating curves from nearby gauged locations using a rainfall-runoff model and bayesian inference. The results can help provide a more comprehensive understanding of the hydrological functioning of systems where only one instantaneous stage level per day is available.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022, https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary
Short summary
Lake surface water temperature (LSWT) is a critical physical property of the aquatic ecosystem and an indicator of climate change. By combining the strengths of satellites and models, we produced an integrated dataset on daily LSWT of 160 large lakes across the Tibetan Plateau (TP) for the period 1978–2017. LSWT increased significantly at a rate of 0.01–0.47° per 10 years. The dataset can contribute to research on water and heat balance changes and their ecological effects in the TP.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022, https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Short summary
Watershed models are used to simulate streamflow and water quality, and to inform siting and sizing decisions for runoff and nutrient control projects. Data are limited for many watershed processes that are represented in such models, which requires selecting the most important processes to be calibrated. We show that this selection should be based on decision-relevant metrics at the spatial scales of interest for the control projects. This should enable more robust project designs.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022, https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Short summary
Decomposing parameter and input errors in model calibration is a considerable challenge. This study transfers the direct estimation of an input error series to their rank estimation and develops a new algorithm, i.e., Bayesian error analysis with reordering (BEAR). In the context of a total suspended solids simulation, two synthetic studies and a real study demonstrate that the BEAR method is effective for improving the input error estimation and water quality model calibration.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Hang Chen, Zailin Huo, Lu Zhang, Jing Cui, Yingying Shen, and Zhenzhong Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-80, https://doi.org/10.5194/hess-2021-80, 2021
Manuscript not accepted for further review
Short summary
Short summary
With a parameter introduced, Fu's equation has been widely used to study the water allocation in natural catchments. For agricultural irrigation districts, the extra water sources including groundwater evaporation were considered as water availability to improve the applicability of Fu's equation in unsteady-state districts. Soil texture and vegetation cover have been considered to investigate the relationship between irrigation districts characteristics and Budyko parameter.
Angelo Breda, Patricia M. Saco, Steven G. Sandi, Neil Saintilan, Gerardo Riccardi, and José F. Rodríguez
Hydrol. Earth Syst. Sci., 25, 769–786, https://doi.org/10.5194/hess-25-769-2021, https://doi.org/10.5194/hess-25-769-2021, 2021
Short summary
Short summary
We study accretion, retreat and transgression of mangrove and saltmarsh wetlands affected by sea-level rise (SLR) using simulations on typical configurations with different levels of tidal obstruction. Interactions and feedbacks between flow, sediment deposition, vegetation migration and soil accretion result in wetlands not surviving the predicted high-emission scenario SLR, despite dramatic increases in sediment supply. Previous simplified models overpredict wetland resilience to SLR.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Anna L. Flack, Anthony S. Kiem, Tessa R. Vance, Carly R. Tozer, and Jason L. Roberts
Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, https://doi.org/10.5194/hess-24-5699-2020, 2020
Short summary
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020, https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Short summary
There is a growing need for information about possible changes to water resource availability in the future due to climate change. Large-scale outputs from global climate models need to be translated to finer-resolution spatial scales before hydrological modelling. Biases in this downscaled data often need to be corrected. We show that usual bias correction methods can retain residual biases in multi-day occurrences of rainfall, which can result in biases in modelled runoff.
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020, https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary
Short summary
This paper assesses the suitability of bias-corrected (BC) WRF daily rainfall across the state of Victoria, Australia, for input to hydrological models to determine plausible climate change impacts on runoff. It compares rainfall and runoff changes using BC WRF with those obtained from empirical scaling (ES) using raw WRF changes. It concludes that BC-derived changes are more plausible than ES-derived changes but that remaining biases in BC WRF daily data add uncertainty to runoff projections.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Mariano Moreno-de-las-Heras, Luis Merino-Martín, Patricia M. Saco, Tíscar Espigares, Francesc Gallart, and José M. Nicolau
Hydrol. Earth Syst. Sci., 24, 2855–2872, https://doi.org/10.5194/hess-24-2855-2020, https://doi.org/10.5194/hess-24-2855-2020, 2020
Short summary
Short summary
This study shifts from present discussions of the connectivity theory to the practical application of the connectivity concept for the analysis of runoff and sediment dynamics in Mediterranean dry slope systems. Overall, our results provide evidence for the feasibility of using the connectivity concept to understand how the spatial distribution of vegetation and micro-topography (including rills) interact with rainfall dynamics to generate spatially continuous runoff and sediment fluxes.
Harald Hofmann, Dean Newborn, Ian Cartwright, Dioni I. Cendón, and Matthias Raiber
Hydrol. Earth Syst. Sci., 24, 1293–1318, https://doi.org/10.5194/hess-24-1293-2020, https://doi.org/10.5194/hess-24-1293-2020, 2020
Short summary
Short summary
Fresh groundwater (GW) on barrier islands is affected by GW use and precipitation variability. Mean residence times (MRTs) of GW on a sand barrier island were determined. They ranged from 37 years to more than 150 years for tritium and had a much larger range (modern to 5000 years) for carbon-14. Perched aquifer systems in the unsaturated zone and peat formations around wetlands are the most likely cause of longer MRTs, as they have a significant impact on regional recharge and flow diversion.
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Jinyan Yang, Belinda E. Medlyn, Martin G. De Kauwe, Remko A. Duursma, Mingkai Jiang, Dushan Kumarathunge, Kristine Y. Crous, Teresa E. Gimeno, Agnieszka Wujeska-Klause, and David S. Ellsworth
Biogeosciences, 17, 265–279, https://doi.org/10.5194/bg-17-265-2020, https://doi.org/10.5194/bg-17-265-2020, 2020
Short summary
Short summary
This study addressed a major knowledge gap in the response of forest productivity to elevated CO2. We first quantified forest productivity of an evergreen forest under both ambient and elevated CO2, using a model constrained by in situ measurements. The simulation showed the canopy productivity response to elevated CO2 to be smaller than that at the leaf scale due to different limiting processes. This finding provides a key reference for the understanding of CO2 impacts on forest ecosystems.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Short summary
Measurements of surface fluxes are taken around the world and are extremely valuable for understanding how the land and atmopshere interact, and how the land can amplify temerature extremes. However, do these measurements sample extreme temperatures, or are they biased to the average? We examine this question and highlight data that do measure surface fluxes under extreme conditions. This provides a way forward to help model developers improve their models.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Lanying Zhang, George Kuczera, Anthony S. Kiem, and Garry Willgoose
Hydrol. Earth Syst. Sci., 22, 6399–6414, https://doi.org/10.5194/hess-22-6399-2018, https://doi.org/10.5194/hess-22-6399-2018, 2018
Short summary
Short summary
Analyses of run lengths of Pacific decadal variability (PDV) suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ~100 years), or even in the shorter 300–400 year paleoclimate reconstructions, is representative of the full range of variability.
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018, https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary
Short summary
Large uncertainty is inherent in model predictions due to imperfect knowledge of how to describe the processes that a model is intended to represent. Yet methods to quantify and evaluate this model hypothesis uncertainty are limited. To address this, the multi-assumption architecture and testbed (MAAT) automates the generation of all possible models by combining multiple representations of multiple processes. MAAT provides a formal framework for quantification of model hypothesis uncertainty.
Rebecca J. Oliver, Lina M. Mercado, Stephen Sitch, David Simpson, Belinda E. Medlyn, Yan-Shih Lin, and Gerd A. Folberth
Biogeosciences, 15, 4245–4269, https://doi.org/10.5194/bg-15-4245-2018, https://doi.org/10.5194/bg-15-4245-2018, 2018
Short summary
Short summary
Potential gains in terrestrial carbon sequestration over Europe from elevated CO2 can be partially offset by concurrent rises in tropospheric O3. The land surface model JULES was run in a factorial suite of experiments showing that by 2050 simulated GPP was reduced by 4 to 9 % due to plant O3 damage. Large regional variations exist with larger impacts identified for temperate compared to boreal regions. Plant O3 damage was greatest over the twentieth century and declined into the future.
Kashif Mahmud, Belinda E. Medlyn, Remko A. Duursma, Courtney Campany, and Martin G. De Kauwe
Biogeosciences, 15, 4003–4018, https://doi.org/10.5194/bg-15-4003-2018, https://doi.org/10.5194/bg-15-4003-2018, 2018
Short summary
Short summary
A major limitation of current terrestrial vegetation models is that we do not know how to model C balance processes under sink-limited conditions. To address this limitation, we applied data assimilation of a simple C balance model to a manipulative experiment in which sink limitation was induced with low rooting volume. Our analysis framework allowed us to infer that, in addition to a feedback on photosynthetic rates, the reduction in growth was effected by other C balance processes.
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Alexandre A. Renchon, Anne Griebel, Daniel Metzen, Christopher A. Williams, Belinda Medlyn, Remko A. Duursma, Craig V. M. Barton, Chelsea Maier, Matthias M. Boer, Peter Isaac, David Tissue, Victor Resco de Dios, and Elise Pendall
Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018, https://doi.org/10.5194/bg-15-3703-2018, 2018
Short summary
Short summary
We report the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) in a temperate evergreen broadleaved forest in Sydney, Australia. We investigated how carbon exchange varied with climatic drivers and canopy dynamics (leaf area index, litter fall). We found that our site acted as a net source of carbon in summer and a net sink in winter. Ecosystem respiration (ER) drove NEE seasonality, as the seasonal amplitude of ER was greater than gross primary productivity.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 22, 2903–2919, https://doi.org/10.5194/hess-22-2903-2018, https://doi.org/10.5194/hess-22-2903-2018, 2018
Short summary
Short summary
Hydrologic modeling methodologies must be developed that are capable of predicting runoff in catchments with changing land cover conditions. This article investigates the efficacy of a recently developed approach that allows for runoff prediction in catchments with unknown land cover changes, through experimentation in a deforested catchment in Vietnam. The importance of key elements of the method in ensuring its success, such as the chosen hydrologic model, is investigated.
Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft
Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, https://doi.org/10.5194/hess-22-2689-2018, 2018
Short summary
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.
Suresh Hettiarachchi, Conrad Wasko, and Ashish Sharma
Hydrol. Earth Syst. Sci., 22, 2041–2056, https://doi.org/10.5194/hess-22-2041-2018, https://doi.org/10.5194/hess-22-2041-2018, 2018
Short summary
Short summary
The study examines the impact of higher temperatures expected in a future climate on how rainfall varies with time during severe storm events. The results show that these impacts increase future flood risk in urban environments and that current design guidelines need to be adjusted so that effective adaptation measures can be implemented.
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary
Short summary
We present a new global ET dataset and associated uncertainty with monthly temporal resolution for 2000–2009 and 0.5 grid cell size. Six existing gridded ET products are combined using a weighting approach trained by observational datasets from 159 FLUXNET sites. We confirm that point-based estimates of flux towers provide information at the grid scale of these products. We also show that the weighted product performs better than 10 different existing global ET datasets in a range of metrics.
William Howcroft, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 22, 635–653, https://doi.org/10.5194/hess-22-635-2018, https://doi.org/10.5194/hess-22-635-2018, 2018
Short summary
Short summary
Documenting mean transit times is critical for understanding and managing catchments. Mean transit times in six headwater catchments of the Otway Ranges, Australia, determined using tritium, range from 7 to 230 years. Tritium activities correlate well with streamflow but are difficult to predict from catchment attributes or major ion geochemistry. The long mean transit times suggest that the catchments are buffered from short-term rainfall variations.
A. F. M. Kamal Chowdhury, Natalie Lockart, Garry Willgoose, George Kuczera, Anthony S. Kiem, and Nadeeka Parana Manage
Hydrol. Earth Syst. Sci., 21, 6541–6558, https://doi.org/10.5194/hess-21-6541-2017, https://doi.org/10.5194/hess-21-6541-2017, 2017
Short summary
Short summary
Stochastic rainfall models are required to be be able to assess the reliability of dams used for urban water supply. Traditional Markov chain stochastic models do well at reproducing the mean and variance of rainfall at daily to weekly resolution but fail to simultaneously reproduce the variability of monthly to decadal rainfall. This paper presents four new extensions to Markov chain models that address this decadal deficiency and compares their performance for two field sites.
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
Anna M. Ukkola, Ned Haughton, Martin G. De Kauwe, Gab Abramowitz, and Andy J. Pitman
Geosci. Model Dev., 10, 3379–3390, https://doi.org/10.5194/gmd-10-3379-2017, https://doi.org/10.5194/gmd-10-3379-2017, 2017
Short summary
Short summary
Flux towers measure energy, carbon dioxide and water vapour fluxes. These data have become essential for evaluating land surface models (LSMs) – key tools for projecting future climate change. However, these data as released are not immediately usable with LSMs and must be post-processed to change units, screened for missing data and gap-filling. We present an open-source R package that transforms flux tower measurements into a format directly usable by LSMs.
Wade T. Crow, Eunjin Han, Dongryeol Ryu, Christopher R. Hain, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 21, 1849–1862, https://doi.org/10.5194/hess-21-1849-2017, https://doi.org/10.5194/hess-21-1849-2017, 2017
Short summary
Short summary
Terrestrial water storage is defined as the total volume of water stored within the land surface and sub-surface and is a key variable for tracking long-term variability in the global water cycle. Currently, annual variations in terrestrial water storage can only be measured at extremely coarse spatial resolutions (> 200 000 km2) using gravity-based remote sensing. Here we provide evidence that microwave-based remote sensing of soil moisture can be applied to enhance this resolution.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Ian Cartwright and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 20, 4757–4773, https://doi.org/10.5194/hess-20-4757-2016, https://doi.org/10.5194/hess-20-4757-2016, 2016
Short summary
Short summary
This research used tritium to determine the timescales that water is stored in peatlands and eucalyptus forest catchments in upland river systems in southeast Australia. The mean transit times in the peatland catchments of less than a few years contrast with much longer transit times (years to decades) in adjacent eucalyptus catchments. The peat is susceptible to drying which renders it vulnerable to degradation and bushfire and does not represent a long-term water store to upland streams.
Valentijn R. N. Pauwels and Edoardo Daly
Hydrol. Earth Syst. Sci., 20, 4689–4706, https://doi.org/10.5194/hess-20-4689-2016, https://doi.org/10.5194/hess-20-4689-2016, 2016
Short summary
Short summary
We demonstrate that the classical approach to solve the surface energy balance equation in land surface models has its issues, and we propose an improved method.
Shabnam Saffarpour, Andrew W. Western, Russell Adams, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, https://doi.org/10.5194/hess-20-4525-2016, 2016
Short summary
Short summary
A variety of threshold mechanisms influence the transfer of rainfall to runoff from catchments. Some of these mechanisms depend on the occurrence of intense rainfall and others depend on the catchment being wet. This article first provides a framework for considering which mechanisms are important in different situations and then uses that framework to examine the behaviour of a catchment in Australia that exhibits a mix of both rainfall intensity and catchment wetness dependent thresholds.
Ian Cartwright and Harald Hofmann
Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, https://doi.org/10.5194/hess-20-3581-2016, 2016
Short summary
Short summary
This paper uses the natural geochemical tracer Rn together with streamflow measurements to differentiate between actual groundwater inflows and water that exits the river, flows through the near-river sediments, and subsequently re-enters the river downstream (parafluvial flow). Distinguishing between these two components is important to understanding the water balance in gaining streams and in managing and protecting surface water resources.
Anna M. Ukkola, Andy J. Pitman, Mark Decker, Martin G. De Kauwe, Gab Abramowitz, Jatin Kala, and Ying-Ping Wang
Hydrol. Earth Syst. Sci., 20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, https://doi.org/10.5194/hess-20-2403-2016, 2016
Andrew D. Magee, Danielle C. Verdon-Kidd, and Anthony S. Kiem
Nat. Hazards Earth Syst. Sci., 16, 1431–1447, https://doi.org/10.5194/nhess-16-1431-2016, https://doi.org/10.5194/nhess-16-1431-2016, 2016
Short summary
Short summary
We examine the spatiotemporal differences between three TC databases for the southwest Pacific region. In addition, the usefulness of pre-satellite era TC data (1945–1969) is evaluated. While changes in observational technologies from 1945 have undoubtedly improved our ability to detect and monitor TCs, we show that pre-satellite era TC data are not temporally or statistically different to post-satellite era data (1970–present).
Andrew D. Magee, Danielle C. Verdon-Kidd, Anthony S. Kiem, and Stephen A. Royle
Nat. Hazards Earth Syst. Sci., 16, 1091–1105, https://doi.org/10.5194/nhess-16-1091-2016, https://doi.org/10.5194/nhess-16-1091-2016, 2016
Short summary
Short summary
This study investigates how tropical cyclones impact urban residents of Fiji, Vanuatu and Tonga. We investigate how people perceive tropical cyclones (TCs), how they are impacted and what methods of adaptation are used to offset damage from TC activity. We propose a conceptual framework to merge the non-traditional knowledge of weather forecasting and climate science with weather-related traditional knowledge, and explore the possibilities of developing a multidimensional TC forecasting tool.
Carly R. Tozer, Tessa R. Vance, Jason L. Roberts, Anthony S. Kiem, Mark A. J. Curran, and Andrew D. Moy
Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, https://doi.org/10.5194/hess-20-1703-2016, 2016
Short summary
Short summary
A 1013-year annual rainfall reconstruction was developed for the Williams River catchment in coastal eastern Australia, based on a linear relationship between sea salt deposition in East Antarctica and rainfall in eastern Australia. The reconstruction allows for the instrumental climate record (~ 100 years) to be assessed in the context of millennial climate variability, allowing for better characterisation of flood and drought risk.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
I. Cartwright and U. Morgenstern
Hydrol. Earth Syst. Sci., 19, 3771–3785, https://doi.org/10.5194/hess-19-3771-2015, https://doi.org/10.5194/hess-19-3771-2015, 2015
Short summary
Short summary
This study documents the age of water that contributes to rivers in upper catchments using the radioactive tracer tritium. River water in the upper Ovens Valley (Australia) is several years to decades old and water from different parts of the catchment (e.g., soil, regolith, and groundwater) is mobilised at different flow conditions. The results indicate that these rivers are buffered against short term climate variability but are susceptible to longer-term climate and land use changes
Z. Luo, E. Wang, H. Zheng, J. A. Baldock, O. J. Sun, and Q. Shao
Biogeosciences, 12, 4373–4383, https://doi.org/10.5194/bg-12-4373-2015, https://doi.org/10.5194/bg-12-4373-2015, 2015
Short summary
Short summary
Soil carbon models are primary tools for projecting soil carbon balance under changing environment and management. This study shows that the carbon model produces divergent projections but accurate reproduction of measured soil carbon. This projection uncertainty is mainly due to an insufficient understanding of microbial processes and soil carbon composition. Climate conditions and land management in terms of carbon input also have significant effects.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci., 19, 2821–2836, https://doi.org/10.5194/hess-19-2821-2015, https://doi.org/10.5194/hess-19-2821-2015, 2015
F. H. S. Chiew, H. Zheng, and J. Vaze
Proc. IAHS, 371, 3–6, https://doi.org/10.5194/piahs-371-3-2015, https://doi.org/10.5194/piahs-371-3-2015, 2015
Short summary
Short summary
This paper explores the consideration and implication of calibration period on the modelled climate change impact on future runoff.
J. D. Hughes and J. Vaze
Proc. IAHS, 371, 7–12, https://doi.org/10.5194/piahs-371-7-2015, https://doi.org/10.5194/piahs-371-7-2015, 2015
J. Vaze, Y. Q. Zhang, and L. Zhang
Proc. IAHS, 371, 215–221, https://doi.org/10.5194/piahs-371-215-2015, https://doi.org/10.5194/piahs-371-215-2015, 2015
Short summary
Short summary
Most of the forested headwater catchments are an important source of water supply in many parts of the world. A prime example is southeast Australia where forests supply major river systems and towns and cities with water. It is critical for an informed and adaptive water resource management to understand changes in streamflow caused by vegetation changes in these headwater forest catchments. Natural disturbances such as bushfires and anthropogenic activities like forestation, deforestation, or
D. Dutta, S. Kim, J. Vaze, and J. Hughes
Proc. IAHS, 371, 35–42, https://doi.org/10.5194/piahs-371-35-2015, https://doi.org/10.5194/piahs-371-35-2015, 2015
Short summary
Short summary
We used a newly developed river system model to analyse the influence of anthropogenic development and water use on streamflow and to partition this influence from climate variability/change impact on streamflow in a regulated river system. The results have demonstrated that the water storages and anthropogenic water use have significant influence on trends in streamflow.
Z. Lu, Y. Wei, H. Xiao, S. Zou, J. Xie, J. Ren, and A. Western
Hydrol. Earth Syst. Sci., 19, 2261–2273, https://doi.org/10.5194/hess-19-2261-2015, https://doi.org/10.5194/hess-19-2261-2015, 2015
Short summary
Short summary
This paper quantitatively analyzed the evolution of human-water relationships in the Heihe River basin over the past 2000 years by reconstructing the catchment water balance. The results provided the basis for investigating the impacts of human societies on hydrological systems. The evolutionary processes of human-water relationships can be divided into four stages: predevelopment, take-off, acceleration, and rebalancing. And the transition of the human-water relationship had no fixed pattern.
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
J. F. Costelloe, T. J. Peterson, K. Halbert, A. W. Western, and J. J. McDonnell
Hydrol. Earth Syst. Sci., 19, 1599–1613, https://doi.org/10.5194/hess-19-1599-2015, https://doi.org/10.5194/hess-19-1599-2015, 2015
Short summary
Short summary
Groundwater surface mapping is used as an independent data set to better estimate groundwater discharge to streamflow. The groundwater surfaces indicated when other techniques likely overestimated the groundwater discharge component of baseflow. Groundwater surfaces also identified areas where regional groundwater could not be contributing to tributary streamflow. This method adds significant value to water resource management where sufficient groundwater monitoring data are available.
J. Teng, N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans
Hydrol. Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-711-2015, https://doi.org/10.5194/hess-19-711-2015, 2015
Short summary
Short summary
This paper assesses four bias correction methods applied to RCM-simulated precipitation, and their follow-on impact on modelled runoff. The differences between the methods are small, mainly due to the substantial corrections required and inconsistent errors over time. The methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Furthermore, bias correction can introduce additional uncertainty to change signals in modelled runoff.
T. A. McMahon, M. C. Peel, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, https://doi.org/10.5194/hess-19-361-2015, 2015
Short summary
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
C.-H. Su and D. Ryu
Hydrol. Earth Syst. Sci., 19, 17–31, https://doi.org/10.5194/hess-19-17-2015, https://doi.org/10.5194/hess-19-17-2015, 2015
Short summary
Short summary
Global environmental monitoring requires geophysical measurements from a variety of sources and sensors to close the information gap. This paper proposes a novel approach for analysing temporal scale-by-scale differences (biases and errors) between geophysical estimates from disparate sources. This allows assessment of different bias correction schemes, and forms the basis for a multi-scale bias correction scheme and data-adaptive, non-linear de-noising.
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10515-2014, https://doi.org/10.5194/hessd-11-10515-2014, 2014
Revised manuscript not accepted
D. C. Verdon-Kidd, A. S. Kiem, and R. Moran
Hydrol. Earth Syst. Sci., 18, 2235–2256, https://doi.org/10.5194/hess-18-2235-2014, https://doi.org/10.5194/hess-18-2235-2014, 2014
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 18, 2257–2264, https://doi.org/10.5194/hess-18-2257-2014, https://doi.org/10.5194/hess-18-2257-2014, 2014
I. Cartwright, B. Gilfedder, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 15–30, https://doi.org/10.5194/hess-18-15-2014, https://doi.org/10.5194/hess-18-15-2014, 2014
M. C. L. Yu, I. Cartwright, J. L. Braden, and S. T. de Bree
Hydrol. Earth Syst. Sci., 17, 4907–4924, https://doi.org/10.5194/hess-17-4907-2013, https://doi.org/10.5194/hess-17-4907-2013, 2013
T. A. McMahon, M. C. Peel, and J. Szilagyi
Hydrol. Earth Syst. Sci., 17, 4865–4867, https://doi.org/10.5194/hess-17-4865-2013, https://doi.org/10.5194/hess-17-4865-2013, 2013
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177–4187, https://doi.org/10.5194/hess-17-4177-2013, https://doi.org/10.5194/hess-17-4177-2013, 2013
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
Y. Zhou, Y. Zhang, J. Vaze, P. Lane, and S. Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-4397-2013, https://doi.org/10.5194/hessd-10-4397-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
Ratio limits of water storage and outflow in a rainfall–runoff process
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Power law between the apparent drainage density and the pruning area
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
System dynamics perspective: lack of long-term endogenous feedback accounts for failure of bucket models to replicate slow hydrological behaviors
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
HESS Opinions: Are soils overrated in hydrology?
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
A hydrological framework for persistent pools along non-perennial rivers
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Droughts can reduce the nitrogen retention capacity of catchments
Three hypotheses on changing river flood hazards
A multivariate-driven approach for disentangling the reduction in near-natural Iberian water resources post-1980
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Event controls on intermittent streamflow in a temperate climate
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Flood generation: process patterns from the raindrop to the ocean
Use of streamflow indices to identify the catchment drivers of hydrographs
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine
Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice
Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Hydrology and beyond: the scientific work of August Colding revisited
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Recession analysis revisited: impacts of climate on parameter estimation
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Technical note: An improved discharge sensitivity metric for young water fractions
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Trajectories of nitrate input and output in three nested catchments along a land use gradient
Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024, https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024, https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Short summary
In extracting a river network from a digital elevation model, an arbitrary pruning area should be specified. As this value grows, the apparent drainage density is reduced following a power function. This reflects the fractal topographic nature. We prove this relationship related to the known power law in the exceedance probability distribution of drainage area. The power-law exponent is expressed with fractal dimensions. Our findings are supported by analysis of 14 real river networks.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024, https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Yanmin Yang, Shumin Han, Mathias Neumann Andersen, Qingzhou Zhang, Jinghong Liu, Huilong Li, and Yonghui Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-7, https://doi.org/10.5194/hess-2024-7, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Conventional bucket-type hydrological models have struggled to accurately replicate slow dynamics, making model modification a key concern in hydrological science. The system dynamics approach excels at explaining long-term behavioral pattern through the system's endogenous feedback structure. It was employed in a case study and successfully captured the slow hydrological behaviors. This highlights that the time-scale mismatch can be attributed to the failure of conventional hydrological models.
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024, https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Short summary
Normally, lighter oxygen and hydrogen isotopes are preferably evaporated from a water body, which becomes enriched in heavy isotopes. However, we observed that, in a water body subject to prolonged evaporation, some periods of heavy isotope depletion instead of enrichment happened. Furthermore, the usual models that describe the isotopy of evaporating waters may be in error if the atmospheric conditions of temperature and relative humidity are time-averaged instead of evaporation flux-weighted.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Thea Wingfield, Neil Macdonald, Kimberley Peters, and Jack Spees
Hydrol. Earth Syst. Sci., 25, 6239–6259, https://doi.org/10.5194/hess-25-6239-2021, https://doi.org/10.5194/hess-25-6239-2021, 2021
Short summary
Short summary
Human activities are causing greater and more frequent floods. Natural flood management (NFM) uses processes of the water cycle to slow the flow of rainwater, bringing together land and water management. Despite NFM's environmental and social benefits, it is yet to be widely adopted. Two environmental practitioner groups collaborated to produce a picture of the barriers to delivery, showing that there is a perceived lack of support from government and the public for NFM.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, https://doi.org/10.5194/hess-24-561-2020, 2020
Short summary
Short summary
In many places, seasonal variability in precipitation and evapotranspiration (climate) leads to seasonal variability in river flow (streamflow). In this work, we explore how climate seasonality is transformed into streamflow seasonality and what controls this transformation (e.g. climate aridity and geology). The results might be used in grouping catchments, predicting the seasonal streamflow regime in ungauged catchments, and building hydrological simulation models.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Cited articles
ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences): Australia's plantations 2016, Spatial dataset, Australian Government [data set],
https://www.awe.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/australias-plantations
(last access: 12 April 2022), 2016.
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H.,
Dowdy, A. J., Sharples, J. J., Nolan, R. H., Tianran Zhang, T., Wooster, M.
J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy,
B. P., Tapper N. J., and Boer, M. M.: Connections of climate change and
variability to large and extreme forest fires in southeast Australia,
Communications Earth & Environment, 2, 1–17,
https://doi.org/10.1038/s43247-020-00065-8, 2021.
Allen, C. D. and Breshears, D. D.: Drought-induced shift of a
forest–woodland ecotone: rapid landscape response to climate variation.
P. Natl. Acad. Sci., 95, 14839–14842,
https://doi.org/10.1073/pnas.95.25.14839, 1998.
Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., and Vis, M.: Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile, Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, 2021.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ajami, H., Sharma, A., Band, L. E., Evans, J. P., Tuteja, N. K., Amirthanathan, G. E., and Bari, M. A.: On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective, Hydrol. Earth Syst. Sci., 21, 281–294, https://doi.org/10.5194/hess-21-281-2017, 2017.
Argent, R. M.: Inland water, in: Australia state of the environment 2016,
Australian Government Department of the Environment and Energy, Canberra,
https://doi.org/10.4226/94/58b656cfc28d1, 2017.
Arnold, J. G., Potter, K. N., King, K. W., and Allen, P. M.: Estimation of
soil cracking and the effect on surface runoff in a Texas Blackland Prairie
watershed, Hydrol. Process., 19, 589–603,
https://doi.org/10.1002/hyp.5609, 2005.
Avanzi, F., Rungee, J., Maurer, T., Bales, R., Ma, Q., Glaser, S., and Conklin, M.: Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts, Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020, 2020.
Benyon, R. G. and Doody, T. M.: Water use by tree plantations in south east
South Australia, CSIRO Forestry and Forest products report series, no. 148,
ISBN 9780643065321, https://doi.org/10.4225/08/585eb80e79dcd, 2004.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour. Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Beven, K. J.: Uniqueness of place and process representations in hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203–213, https://doi.org/10.5194/hess-4-203-2000, 2000.
Beven, K. J. and Chappell, N. A.: Perceptual perplexity and parameter
parsimony, Wiley Interdisciplinary Reviews: Water, 8, e1530,
https://doi.org/10.1002/wat2.1530, 2021.
Blackman, C. J., Li, X., Choat, B., Rymer, P. D., De Kauwe, M. G., Duursma,
R. A., Tissue, D. T., and Medlyn, B. E.: Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates, New Phytol., 224, 632–643, https://doi.org/10.1111/nph.16042, 2019.
Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.
Bouaziz, L., Weerts, A., Schellekens, J., Sprokkereef, E., Stam, J., Savenije, H., and Hrachowitz, M.: Redressing the balance: quantifying net intercatchment groundwater flows, Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, 2018.
Bouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M.: Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, 2022.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.:
Ecohydrologic separation of water between trees and streams in a
Mediterranean climate, Nat. Geosci., 3, 100–104,
https://doi.org/10.1038/NGEO722, 2010.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R.
A.: A review of paired catchment studies for determining changes in water
yield resulting from alterations in vegetation, J. Hydrol.,
310, 28–61, https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Brown, S. C., Versace, V. L., Lester, R. E., and Walter, M. T.: Assessing
the impact of drought and forestry on streamflows in south-eastern Australia
using a physically based hydrological model, Environ. Earth Sci.,
74, 6047–6063, https://doi.org/10.1007/s12665-015-4628-8, 2015.
Caplan, J. S., Giménez, D., Hirmas, D. R., Brunsell, N. A., Blair, J.
M., and Knapp, A. K.: Decadal-scale shifts in soil hydraulic properties as
induced by altered precipitation, Science Advances, 5, eaau6635,
https://doi.org/10.1126/sciadv.aau6635, 2019.
Cartwright, I. and Gilfedder, B.: Mapping and quantifying groundwater
inflows to Deep Creek (Maribyrnong catchment, SE Australia) using 222Rn,
implications for protecting groundwater-dependant ecosystems, Appl.
Geochem., 52, 118–129, https://doi.org/10.1016/j.apgeochem.2014.11.020,
2015.
Cartwright, I., Weaver, T. R., Fulton, S., Nichol, C., Reid, M., and Cheng,
X.: Hydrogeochemical and isotopic constraints on the origins of dryland
salinity, Murray Basin, Victoria, Australia, Appl. Geochem., 19,
1233–1254, https://doi.org/10.1016/j.apgeochem.2003.12.006, 2004.
Cassel, D. K. and Nielsen, D. R. Field capacity and available water
capacity, Methods of soil analysis: Part 1 Physical and mineralogical
methods, 5, 901–926, https://doi.org/10.2136/sssabookser5.1.2ed.c36, 1986.
Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., Teng, J.,
and Post, D. A.: Observed hydrologic non-stationarity in far south-eastern
Australia: implications for modelling and prediction, Stoch.
Environ. Res. Risk A., 28, 3–15, https://doi.org/10.1007/s00477-013-0755-5, 2014.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for
process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015.
Cheng, L, Zhang, L., Wang, Y. P., Canadell, J. G., Chiew, F. H. S., Beringer, J., Li, L., Miralles, D. G., Piao, S., and Zhang, Y.: Recent increases in terrestrial carbon uptake at little cost to the water cycle, Nat. Commun., 8, 110, https://doi.org/10.1038/s41467-017-00114-5, 2017.
Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J., Ferguson, G., and McIntosh, J. C.: Where is the bottom of a watershed?, Water Resour. Res., 56, e2019WR026010, https://doi.org/10.1029/2019WR026010, 2020.
Connell, D.: The Role of the Commonwealth Environmental Water Holder, in:
Basin futures: water reform in the Murray-Darling basin, edited by: Connell, D. and Quentin Grafton, R., ANU Press, https://doi.org/10.22459/BF.05.2011.20, 2011.
Connell, D. and Grafton, Q. (Eds.): Basin futures: water reform in the Murray-Darling basin, ANU Press, https://doi.org/10.22459/BF.05.2011, 2011.
Cook, P.: A guide to regional groundwater flow in fractured rock aquifers.
CSIRO publishing, ISBN 1 74008 233 8,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8ba781c0a31b6dcae84b31fb6313d44c0c44df5c (last access: 25 November 2022), 2003.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and
drought: From past to future, Current Climate Change Reports, 4, 164–179, https://doi.org/10.1007/s40641-018-0093-2, 2018.
Cornish, P. S., Tullberg, J. N., Lemerle, D., and Flower, K.: No-Till
Farming Systems in Australia, in: No-till Farming Systems for Sustainable
Agriculture, 511–531, Springer, Cham, https://doi.org/10.1007/978-3-030-46409-7_29, 2020.
CSIRO: AUS SRTM 1sec MRVBF mosaic v01, Bioregional Assessment Source Dataset, CSIRO
[data set],
https://data.gov.au/data/dataset/79975b4a-1204-4ab1-b02b-0c6fbbbbbcb5 (last
access: 30 July 2021), 2016.
Deb, P., Kiem, A. S., and Willgoose, G.: Mechanisms influencing
non-stationarity in rainfall-runoff relationships in southeast Australia,
J. Hydrol., 571, 749–764, https://doi.org/10.1016/j.jhydrol.2019.02.025, 2019.
De Kauwe, M. G., Medlyn, B. E., Knauer, J., and Williams, C. A.: Ideas and perspectives: how coupled is the vegetation to the boundary layer?, Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, 2017.
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B., Pitman, A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue, D. T., Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia, Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215, 2020.
De Kauwe, M. G., Medlyn, B. E., and Tissue, D. T.: To what extent can
rising CO2 ameliorate plant drought stress?, New Phytol., 231,
2118–2124, https://doi.org/10.1111/nph.17540, 2021.
Denson, E., Wasko, C., and Peel, M. C.: Decreases in relative humidity across Australia, Environ. Res. Lett., 16, 074023, https://doi.org/10.1088/1748-9326/ac0aca, 2021.
Dey, R., Gallant, A. J. E., Lewis, S.C.,: Evidence of a continent-wide shift
of episodic rainfall in Australia, Weather and Climate Extremes, 29, 100274, https://doi.org/10.1016/j.wace.2020.100274, 2020.
Dresel, P. E., Dean, J. F., Perveen, F., Webb, J. A., Hekmeijer, P.,
Adelana, S. M., and Daly, E.: Effect of Eucalyptus plantations, geology,
and precipitation variability on water resources in upland intermittent
catchments, J. Hydrol., 564, 723–739, https://doi.org/10.1016/j.jhydrol.2018.07.019, 2018.
DSE (Department of Sustainability and Environment, Victoria): SAFE (Secure
Allocations, Future Entitlements) Groundwater Catchment Systems Report, ISBN 978-1-74287-552-1, http://beta.vvg.org.au/maynard/view_resource.php?resource_id=4336&account=a020b5775c3d4447295a4c758a5394ca (last access: 24 November 2022), 2012.
Duff, J., Jenkin, J., and David, G.: The Axe Creek salinity study, part A:
catchment characterisation for salinity control, Report to the Victorian
Government,
https://vro.agriculture.vic.gov.au/dpi/vro/nthcenregn.nsf/pages/nc_axe_creek, (last access: 24 November 2022) 1982.
Dunne, T. and Black, R. D.: Partial area contributions to storm runoff in
a small New England watershed, Water Resour. Res., 6, 1296–1311, https://doi.org/10.1029/WR006i005p01296, 1970.
Elliott, K. J., Miniat, C. F., Pederson, N., and Laseter, S. H.: Forest
tree growth response to hydroclimate variability in the southern
Appalachians, Glob. Change Biol., 21, 4627–4641, https://doi.org/10.1111/gcb.13045, 2015.
Farley, K. A., Jobbágy, E. G., and Jackson, R. B.: Effects of
afforestation on water yield: a global synthesis with implications for
policy, Glob. Change Biol., 11, 1565–1576, https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005.
Ferdowsian, R., D. J. Pannell, C. McCarron, A. Ryder, and Crossing, L.:
Explaining groundwater hydrographs: Separating atypical rainfall events from
time trends, Aust. J. Soil Res., 39, 861–875,
https://doi.org/10.1071/SR00037, 2001.
Feikema, P. M., Sherwin, C. B., and Lane, P. N.: Influence of climate, fire
severity and forest mortality on predictions of long term streamflow:
potential effect of the 2009 wildfire on Melbourne's water supply
catchments, J. Hydrol., 488, 1–16, https://doi.org/10.1016/j.jhydrol.2013.02.001, 2013.
Fensham, R. J., Fairfax, R. J., and Archer, S. R.: Rainfall, land use and
woody vegetation cover change in semi-arid Australian savanna, J.
Ecol., 93, 596–606, https://doi.org/10.1111/j.1365-2745.2005.00998.x,
2005.
Filipović, V., Weninger, T., Filipović, L., Schwen, A., Bristow, K.
L., Zechmeister-Boltenstern, S., and Leitner, S.: Inverse estimation of
soil hydraulic properties and water repellency following artificially
induced drought stress, J. Hydrol. Hydromech., 66, 170, https://doi.org/10.2478/johh-2018-0002, 2018.
Fitzgerald, G. J., Tausz, M., Armstrong, R., Panozzo, J., Trębicki, P., Mollah, M., Tausz-Posch, S., Walker, C., Nuttall, J. G., Bourgault, M., Löw, M., and O'Leary, G. J.: Elevated CO2 in semi-arid cropping
systems: A synthesis of research from the Australian Grains Free Air CO2
Enrichment (AGFACE) research program, Adv. Agron., 171, 1–73,
https://doi.org/10.1016/bs.agron.2021.08.001, 2021.
Fowler, K., Morden, R., Lowe, L., and Nathan, R.: Advances in assessing the
impact of hillside farm dams on streamflow, Australasian Journal of Water
Resources, 19, 96–108, https://doi.org/10.1080/13241583.2015.1116182,
2015.
Fowler, K., Coxon, G., Freer, J., Peel, M., Wagener, T., Western, A., Woods, R., and Zhang, L.: Simulating runoff under changing climatic conditions: A
framework for model improvement, Water Resour. Res., 54, 9812–9832, https://doi.org/10.1029/2018WR023989, 2018.
Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K., and Western, A.: Many commonly used rainfall-runoff models lack long, slow
dynamics: Implications for runoff projections, Water Resour. Res.,
56, e2019WR025286, https://doi.org/10.1029/2019WR025286, 2020a.
Fowler, K., Acharya, S. C., Addor, N., Chou, C., and Peel, M.: CAMELS-AUS v1: Hydrometeorological time series and landscape attributes for 222 catchments in Australia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.921850, 2020b.
Fowler, K., Peel, M., Saft, M., Nathan, R., Horne, A., Wilby, R., McCutcheon, C., and Peterson, T.: Hydrological shifts threaten water resources, Water Resour. Res., 58, e2021WR031210, https://doi.org/10.1029/2021WR031210, 2022.
Fowler, K. J., Peel, M. C., Western, A. W., Zhang, L., and Peterson, T. J.:
Simulating runoff under changing climatic conditions: Revisiting an apparent
deficiency of conceptual rainfall-runoff models, Water Resour. Res.,
52, 1820–1846, https://doi.org/10.1002/2015WR018068, 2016.
Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, 2021.
Freund, M., Henley, B. J., Karoly, D. J., Allen, K. J., and Baker, P. J.: Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions, Clim. Past, 13, 1751–1770, https://doi.org/10.5194/cp-13-1751-2017, 2017.
Frisbee, M. D., Phillips, F. M., Weissmann, G. S., Brooks, P. D., Wilson, J. L., Campbell, A. R., and Liu, F.: Unraveling the mysteries of the large watershed black box: Implications for the streamflow response to climate and landscape perturbations, Geophys. Res. Lett., 39, L01404, https://doi.org/10.1029/2011GL050416, 2012.
Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom flatness for mapping depositional areas, Water Resour. Res., 39, 1347, https://doi.org/10.1029/2002WR001426, 2003.
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., and Zambrano-Bigiarini, M.: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, 2017.
Gawne, B., Hale, J., Stewardson, M. J., Webb, J. A., Ryder, D. S., Brooks, S. S., Campbell, C. J., Capon, S. J., Everingham, P., Grace, M. R., Guarino, F., and Stoffels, R. J.: Monitoring of environmental flow outcomes in a large river basin: The Commonwealth Environmental Water Holder's long-term intervention in the Murray–Darling Basin, Australia, River Res. Appl., 36, 630–644, https://doi.org/10.1002/rra.3504, 2020.
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and
Stott, P. A.: Detection of a direct carbon dioxide effect in continental
river runoff records, Nature, 439, 835–838, https://doi.org/10.1038/nature04504, 2006.
Gharun, M., Turnbull, T. L., and Adams, M. A.: Validation of canopy
transpiration in a mixed-species foothill eucalypt forest using a
soil–plant–atmosphere model, J. Hydrol., 492, 219–227, https://doi.org/10.1016/j.jhydrol.2013.03.051, 2013.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
Guo, Y., Zhang, L., Zhang, Y., Wang, Z., and Zheng, H. X.: Estimating
impacts of wildfire and climate variability on streamflow in Victoria,
Australia, Hydrol. Process., 35, e14439, https://doi.org/10.1002/hyp.14439, 2021.
Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D.: The
cumulative impacts of small reservoirs on hydrology: A review, Sci.
Total Environ., 643, 850–867, https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018.
Hannam, I.: Soil conservation in Australia, J. Soil Water Conserv., 58, 112A–115A, https://www.jswconline.org/content/58/6/112A (last access: 24 November 2022), 2003.
Heath, J. T., Chafer, C. J., Van Ogtrop, F. F., and Bishop, T. F. A.:
Post-wildfire recovery of water yield in the Sydney Basin water supply
catchments: An assessment of the 2001/2002 wildfires, J. Hydrol.,
519, 1428–1440, https://doi.org/10.1016/j.jhydrol.2014.09.033, 2014.
Hirmas, D. R., Giménez, D., Nemes, A., Kerry, R., Brunsell, N. A., and
Wilson, C. J.: Climate-induced changes in continental-scale soil
macroporosity may intensify water cycle, Nature, 561, 100–103, https://doi.org/10.1038/s41586-018-0463-x, 2018.
Horridge, M., Madden, J., and Wittwer, G.: The impact of the 2002–2003
drought on Australia, J. Policy Model., 27, 285–308, https://doi.org/10.1016/j.jpolmod.2005.01.008, 2005.
Hovenden, M. J., Leuzinger, S., Newton, P. C., Fletcher, A., Fatichi, S., Lüscher, A., Reich, P. B., Andresen, L. C., Beier, C., Blumenthal, D. M., and Langley, J. A.: Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2, Nat. Plants, 5, 167–173, https://doi.org/10.1038/s41477-018-0356-x, 2019.
Huang, M. and Zhang, L.: Hydrological responses to conservation practices
in a catchment of the Loess Plateau, China, Hydrol. Process., 18,
1885–1898, https://doi.org/10.1002/hyp.1454, 2004.
Hughes, J. D., Khan, S., Crosbie, R. S., Helliwell, S., and Michalk, D. L.:
Runoff and solute mobilization processes in a semiarid headwater catchment, Water Resour. Res., 43, W09402, https://doi.org/10.1029/2006WR005465, 2007.
Hughes, J. D., Petrone, K. C., and Silberstein, R. P.: Drought, groundwater
storage and stream flow decline in southwestern Australia, Geophys. Res. Lett, 39, L03408, https://doi.org/10.1029/2011GL050797, 2012.
Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Learning from satellite observations: increased understanding of catchment processes through stepwise model improvement, Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, 2021a.
Hulsman, P., Hrachowitz, M., and Savenije, H. H.: Improving the representation of long-term storage variations with conceptual hydrological models in data-scarce regions, Water Resour. Res., 57, e2020WR028837, https://doi.org/10.1029/2020WR028837, 2021b.
Hunt, R. J. and Welter, D. E.: Taking account of “unknown unknowns”,
Ground Water, 48, 477, https://doi.org/10.1111/j.1745-6584.2010.00681.x,
2010.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: MassonDelmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Jaramillo, F., Cory, N., Arheimer, B., Laudon, H., van der Velde, Y., Hasper, T. B., Teutschbein, C., and Uddling, J.: Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space, Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, 2018.
Jensen, C. K., McGuire, K. J., and Prince, P. S.: Headwater stream length
dynamics across four physiographic provinces of the Appalachian Highlands,
Hydrol. Process., 31, 3350–3363, https://doi.org/10.1002/hyp.11259,
2017.
Jensen, C. K., McGuire, K. J., Shao, Y., and Andrew Dolloff, C.: Modeling
wet headwater stream networks across multiple flow conditions in the
Appalachian Highlands, Earth Surf. Proc. Land., 43,
2762–2778, https://doi.org/10.1002/esp.4431, 2018.
Kirono, D. G., Round, V., Heady, C., Chiew, F. H., and Osbrough, S.:
Drought projections for Australia: updated results and analysis of model
simulations, Weather and Climate Extremes, 30, 100280, https://doi.org/10.1016/j.wace.2020.100280, 2020.
Kuczera, G.: Prediction of water yield reductions following a bushfire in
ash-mixed species eucalypt forest, J. Hydrol., 94, 215–236, https://doi.org/10.1016/0022-1694(87)90054-0, 1987.
Lambers, H.: Dryland salinity: A key environmental issue in southern Australia. Plant and Soil, v-vii, https://www.jstor.org/stable/24124331 (last access: 24 November 2022), 2003.
Lane, P. N., Best, A. E., Hickel, K., and Zhang, L.: The response of flow
duration curves to afforestation, J. Hydrol., 310, 253–265, https://doi.org/10.1016/j.jhydrol.2005.01.006, 2005.
Lane, P. N., Sheridan, G. J., and Noske, P. J.: Changes in sediment loads
and discharge from small mountain catchments following wildfire in south
eastern Australia, J. Hydrol., 331, 495–510, https://doi.org/10.1016/j.jhydrol.2006.05.035, 2006.
Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S. O., and Fakes, A.:
Basin-scale, integrated observations of the early 21st century multiyear
drought in southeast Australia, Water Resour. Res., 45, W04408, https://doi.org/10.1029/2008WR007333, 2009.
Legg, P., Frakes, I., and Gavran, M.: Australian plantation statistics and log
availability report 2021, ABARES research report, Canberra, October, https://doi.org/10.25814/xj7c-p829, 2021.
Liu, N., Kala, J., Liu, S., Haverd, V., Dell, B., Smettem, K. R., and
Harper, R. J.: Drought can offset potential water use efficiency of forest
ecosystems from rising atmospheric CO2, J. Environ. Sci.,
90, 262–274, https://doi.org/10.1016/j.jes.2019.11.020, 2020.
Liu, Y., Tian, F., Hu, H., and Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model, Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, 2014.
Marcar, N.: Prospects for managing salinity in southern Australia using trees
on farmland, in: Agroforestry for the management of waterlogged saline soils and poor-quality waters, edited by: Dagar, J. C. and Minhas, P., Switzerland: Springer India, https://link.springer.com/content/pdf/10.1007/978-81-322-2659-8.pdf (last access: 24 November 2022), 2016.
Malerba, M. E., Wright, N., and Macreadie, P. I.: A continental-scale
assessment of density, size, distribution and historical trends of farm dams
using deep learning convolutional neural networks, Remote Sensing, 13,
319, https://doi.org/10.3390/rs13020319, 2021.
Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C.:
Mountain-block recharge: A review of current understanding, Water Resour. Res., 55, 8278–8304, https://doi.org/10.1029/2019WR025676, 2019.
Massari, C., Avanzi, F., Bruno, G., Gabellani, S., Penna, D., and Camici, S.: Evaporation enhancement drives the European water-budget deficit during multi-year droughts, Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, 2022.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, E., and Yepez, E. A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?, New Phytol., 178, 719–739, https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
McGlynn, B. L., McDonnel, J. J., and Brammer, D. D.: A review of the
evolving perceptual model of hillslope flowpaths at the Maimai catchments,
New Zealand, J. Hydrol., 257, 1–26, https://doi.org/10.1016/S0022-1694(01)00559-5, 2002.
McNaughton, K. G. and Jarvis, P. G.: Effects of spatial scale on stomatal
control of transpiration, Agr. Forest Meteorol., 54,
279–302, https://doi.org/10.1016/0168-1923(91)90010-N, 1991.
Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither water management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei – everything flows”: change in
hydrology and society – the IAHS scientific decade 2013–2022, Hydrolog.
Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Morden, R., Horne, A., Bond, N. R., Nathan, R., and Olden, J. D.: Small
artificial impoundments have big implications for hydrology and freshwater
biodiversity, Front. Ecol. Environ., 20, 141–146, https://doi.org/10.1002/fee.2454, 2021.
Morgan, J. A., Pataki, D. E., Körner, C., Clark, H. E. N. R. Y., Del Grosso, S. J., Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W. and Shaw, M. R.: Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2, Oecologia, 140, 11–25, https://doi.org/10.1007/s00442-004-1550-2, 2004.
Morgan, J. A., LeCain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., and West, M.: C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland, Nature, 476, 202–205, https://doi.org/10.1038/nature10274, 2011.
Morin, E.: To know what we cannot know: Global mapping of minimal detectable
absolute trends in annual precipitation, Water Resour. Res., 47, W07505, https://doi.org/10.1029/2010WR009798, 2011.
Morton, F. I.: Practical estimates of lake evaporation, J. Appl.
Meteorol. Clim., 25, 371–387, https://doi.org/10.1175/1520-0450(1986)025<0371:PEOLE>2.0.CO;2, 1986.
Munroe , S. E., McInerney, F. A., Andrae, J., Welti, N., Guerin, G. R., Leitch, E., Hall, T., Szarvas, S., Atkins, R., Caddy-Retalic, S., and Sparrow, B.: The photosynthetic pathways of plant species surveyed in Australia's national terrestrial monitoring network, Scientific Data, 8, 1–10, https://doi.org/10.1038/s41597-021-00877-z, 2021.
Naeth, M. A., Bailey, A. W., Chanasyk, D. S., and Pluth, D. J.: Water
holding capacity of litter and soil organic matter in mixed prairie and
fescue grassland ecosystems of Alberta, Rangeland Ecology &
Management/Journal of Range Management Archives, 44, 13–17, https://doi.org/10.2307/4002630, 1991.
Nimmo, J. R.: The processes of preferential flow in the unsaturated zone,
Soil Sci. Soc. Am. J., 85, 1–27, https://doi.org/10.1002/saj2.20143, 2021.
Nolan, R. H., Mitchell, P. J., Bradstock, R. A., and Lane, P. N.:
Structural adjustments in resprouting trees drive differences in post-fire
transpiration, Tree Physiol., 34, 123–136, https://doi.org/10.1093/treephys/tpt125, 2014.
Nolan, R. H., Lane, P. N., Benyon, R. G., Bradstock, R. A., and Mitchell,
P. J.: Trends in evapotranspiration and streamflow following wildfire in
resprouting eucalypt forests, J. Hydrol., 524, 614–624, https://doi.org/10.1016/j.jhydrol.2015.02.045, 2015.
Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J. and Choat, B.: Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought, New Phytol., 230, 1354–1365, https://doi.org/10.1111/nph.17298, 2021.
Nyman, P., Sheridan, G., and Lane, P. N.: Synergistic effects of water
repellency and macropore flow on the hydraulic conductivity of a burned
forest soil, south-east Australia, Hydrol. Process., 24,
2871–2887, https://doi.org/10.1002/hyp.7701, 2010.
O'Grady, A., Carter, J., and Holland, K.: Review of Australian groundwater
discharge studies of terrestrial systems, CSIRO: Water for a Healthy Country
National Research Flagship Report series, ISSN 1835-095X, 60 pp., https://publications.csiro.au/rpr/download?pid=csiro:EP101579&dsid=DS7 (last access: 25 November 2022), 2010.
Peel, M. C.: Hydrology: catchment vegetation and runoff, Prog. Phys. Geogr., 33, 837–844, https://doi.org/10.1177/0309133309350122, 2009.
Pepler, A. S., Dowdy, A. J., and Hope, P.: The differing role of weather
systems in southern Australian rainfall between 1979–1996 and 1997–2015,
Clim. Dynam., 56, 2289–2302, https://doi.org/10.1007/s00382-020-05588-6, 2021.
Peterson, T. J. and Western, A. W.: Nonlinear time-series modeling of
unconfined groundwater head, Water Resour. Res., 50, 8330–8355,
https://doi.org/10.1002/2013WR014800, 2014.
Peterson, T. J., Argent, R. M., Western, A. W., and Chiew, F. H. S.: Multiple stable states in hydrological models: An ecohydrological investigation, Water Resour. Res., 45, W03406, https://doi.org/10.1029/2008WR006886, 2009.
Peterson, T. J., Saft, M., Peel, M. C., and John, A.: Watersheds may not
recover from drought, Science, 372, 745–749, https://doi.org/10.1126/science.abd5085, 2021.
Petheram, C., Potter, N., Vaze, J., Chiew, F., and Zhang, L.: Towards
better understanding of changes in rainfall-runoff relationships during the
recent drought in south-eastern Australia, in: 19th International Congress on
Modelling and Simulation, Perth, Australia, 12–16, https://doi.org/10.36334/modsim.2011.I6.petheram, 2011.
Petrone, K. C., Hughes, J. D., Van Niel, T. G., and Silberstein, R. P.:
Streamflow decline in southwestern Australia, 1950–2008, Geophys. Res. Lett., 37, L11401, https://doi.org/10.1029/2010GL043102, 2010.
Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat,
D., and Zaehle, S.: Changes in climate and land use have a larger direct
impact than rising CO2 on global river runoff trends, P.
Natl. Acad. Sci. USA, 104, 15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Potter, N. J., Chiew, F. H. S., and Frost, A. J.: An assessment of the
severity of recent reductions in rainfall and runoff in the Murray–Darling
Basin, J. Hydrol., 381, 52–64, https://doi.org/10.1016/j.jhydrol.2009.11.025, 2010.
Potter, N. J. and Chiew, F. H. S.: An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models, Water Resour. Res., 47, W00G10, https://doi.org/10.1029/2010WR010333, 2011.
Rempe, D. and Dietrich, W.: Direct observations of rock moisture, a hidden
component of the hydrologic cycle, P. Natl. Acad. Sci. Mar, 2018, 115, 2664–2669,
https://doi.org/10.1073/pnas.1800141115, 2018.
Renchon, A. A., Griebel, A., Metzen, D., Williams, C. A., Medlyn, B., Duursma, R. A., Barton, C. V. M., Maier, C., Boer, M. M., Isaac, P., Tissue, D., Resco de Dios, V., and Pendall, E.: Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest, Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018, 2018.
Rifai, S. W., De Kauwe, M. G., Ukkola, A. M., Cernusak, L. A., Meir, P., Medlyn, B. E., and Pitman, A. J.: Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems, Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, 2022.
Robinson , D., Jones, S. B., Lebron, I., Reinsch, S., Domínguez, M. T., Smith, A. R., Jones, D. L., Marshall, M. R., and Emmett, B. A.: Experimental evidence for drought induced alternative stable states of soil moisture, Sci. Rep.-UK, 6, 1–6, https://doi.org/10.1038/srep20018, 2018.
Rodriguez-Iturbe, I., D'odorico, P., Porporato, A., and Ridolfi, L.: On the
spatial and temporal links between vegetation, climate, and soil moisture, Water Resour. Res., 35, 3709–3722, https://doi.org/10.1029/1999WR900255, 1999.
Roodari, A., Hrachowitz, M., Hassanpour, F., and Yaghoobzadeh, M.: Signatures of human intervention – or not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change, Hydrol. Earth Syst. Sci., 25, 1943–1967, https://doi.org/10.5194/hess-25-1943-2021, 2021.
Saffarpour, S., Western, A. W., Adams, R., and McDonnell, J. J.: Multiple runoff processes and multiple thresholds control agricultural runoff generation, Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, 2016.
Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The
influence of multiyear drought on the annual rainfall-runoff relationship:
An Australian perspective, Water Resour. Res., 51, 2444–2463, https://doi.org/10.1002/2014WR015348, 2015.
Saft, M., Peel, M. C., Western, A. W., Perraud, J. M., and Zhang, L.: Bias
in streamflow projections due to climate-induced shifts in catchment
response, Geophys. Res. Lett., 43, 1574–1581, https://doi.org/10.1002/2015GL067326, 2016a.
Saft, M., Peel, M. C., Western, A. W., and Zhang, L.: Predicting shifts in
rainfall-runoff partitioning during multiyear drought: Roles of dry period
and catchment characteristics, Water Resour. Res., 52, 9290–9305, https://doi.org/10.1002/2016WR019525, 2016b.
Saft, M., Peel, M. C., and Peterson, T. J.: Explaining the shifts in hydrological response due to multiyear drought and subsequent recovery or non-recovery, in: Vol. 2019, AGU Fall Meeting Abstracts, H33A-05, 2019.
Salama, R. B., Farrington, P., Bartle, G. A., and Watson, G. D.: The role
of geological structures and relict channels in the development of dryland
salinity in the wheatbelt of Western Australia, Aust. J. Earth
Sci., 40, 45–56, https://doi.org/10.1080/08120099308728062, 1993.
Sawada, Y. and Koike, T.: Ecosystem resilience to the Millennium drought
in southeast Australia (2001–2009), J. Geophys. Res.-Biogeo., 121, 2312–2327, https://doi.org/10.1002/2016JG003356,
2016.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D.
B., et al.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014.
Schofield, N. J.: Tree planting for dryland salinity control in Australia,
Agroforest. Syst., 20, 1–23, https://doi.org/10.1007/978-94-011-1832-3_1, 1992.
Semple, B., Rankin, M., Koen, T., and Geeves, G.: A note on tree deaths
during the current (2001–?) drought in South-eastern Australia, Aust.
Geogr., 41, 391–401, https://doi.org/10.1080/00049182.2010.498042,
2010.
Skinner, D. and Langford, J.: Legislating for sustainable basin
management: the story of Australia's Water Act (2007), Water Policy, 15,
871–894, https://doi.org/10.2166/wp.2013.017, 2013.
SKM, CSIRO and Bureau of Regional Sciences: Surface and/or groundwater
interception activities: initial estimates. Waterlines report, National
Water Commission, Canberra, ISBN 978-1-921107-97-9, https://www.mdba.gov.au/sites/default/files/pubs/1006-BPKId-surface-groundwater-interception-activities_0.pdf (last access: 25 November 2022), 2010.
Speich, M. J. R., Zappa, M., Scherstjanoi, M., and Lischke, H.: FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics, Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, 2020.
Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., and
Hunkeler, D.: Your work is my boundary condition!: Challenges and approaches
for a closer collaboration between hydrologists and hydrogeologists, J. Hydrol., 571, 235–243, https://doi.org/10.1016/j.jhydrol.2019.01.058,
2019.
Stenson, M. P., Littleboy, M., and Gilfedder, M.: Estimation of water and
salt generation from unregulated upland catchments, Environ. Modell.
Softw., 26, 1268–1278, https://doi.org/10.1016/j.envsoft.2011.05.013, 2011.
Stephens, C. M., McVicar, T. R., Johnson, F. M., and Marshall, L. A.:
Revisiting pan evaporation trends in Australia a decade on, Geophys. Res. Lett., 45, 11–164, https://doi.org/10.1029/2018GL079332, 2018.
Stephens, C. M., Marshall, L. A., Johnson, F. M., Lin, L., Band, L. E., and
Ajami, H.: Is past variability a suitable proxy for future change? A virtual
catchment experiment, Water Resour. Res., 56, e2019WR026275, https://doi.org/10.1029/2019WR026275, 2020.
Stephens, C. M., Lall, U., Johnson, F. M., and Marshall, L. A.: Landscape
changes and their hydrologic effects: Interactions and feedbacks across
scales, Earth-Sci. Rev., 212, 103466, https://doi.org/10.1016/j.earscirev.2020.103466, 2021.
Tauro, F.: River basins on the edge of change, Science, 372, 680–681, https://doi.org/10.1126/science.abi8770, 2021.
Tian, W., Bai, P., Wang, K., Liang, K., and Liu, C.: Simulating the change
of precipitation-runoff relationship during drought years in the eastern
monsoon region of China, Sci. Total Environ., 723, 138172, https://doi.org/10.1016/j.scitotenv.2020.138172, 2020.
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R., and McAlpine, C.
A.: CO2-vegetation feedbacks and other climate changes implicated in
reducing base flow, Geophys. Res. Lett., 44, 2310–2318, https://doi.org/10.1002/2017GL072759, 2017.
Uddin, S., Parvin, S., Löw, M., Fitzgerald, G. J., Tausz-Posch, S., Armstrong, R., and Tausz, M.: Water use dynamics of dryland canola
(Brassica napus L.) grown on contrasting soils under elevated CO2, Plant Soil, 438, 205–222, https://doi.org/10.1007/s11104-019-03987-1, 2019.
Uddling, J., Teclaw, R. M., Kubiske, M. E., Pregitzer, K. S., and
Ellsworth, D. S.: Sap flux in pure aspen and mixed aspen–birch forests
exposed to elevated concentrations of carbon dioxide and ozone, Tree
Physiol., 28, 1231–1243, https://doi.org/10.1093/treephys/28.8.1231,
2008.
Ukkola, A. M., Prentice, I. C., Keenan, T. F., Van Dijk, A. I., Viney, N.
R., Myneni, R. B., and Bi, J.: Reduced streamflow in water-stressed
climates consistent with CO2 effects on vegetation, Nat. Clim. Change,
6, 75–78, https://doi.org/10.1038/nclimate2831, 2016.
Van Dijk, A. I., Beck, H. E., Crosbie, R. S., de Jeu, R. A., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res.,
49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., Di aldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Verdon-Kidd, D. C. and Kiem, A. S.: Nature and causes of protracted
droughts in southeast Australia: Comparison between the Federation, WWII,
and Big Dry droughts, Geophys. Res. Lett., 36, L22707, https://doi.org/10.1029/2009GL041067, 2009.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science for a changing world, Water Resour. Res., 46, W05301, https://doi.org/10.1029/2009WR008906, 2010.
Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F., Rahman, M., Rosolem, R., Stein, L., and Woods, R.: On doing hydrology with dragons: Realizing the value of perceptual models and knowledge accumulation, Wiley Interdisciplinary Reviews: Water, 8, e1550, https://doi.org/10.1002/wat2.1550, 2021.
Walker, G., Gilfeder, M., Evans, R., Dyson, P., and Stauffacher, M. Groundwater flow systems framework – essential tools for salinity management, https://www.mdba.gov.au/sites/default/files/archived/mdbc-GW-reports/2082_GW_Flow_Systems_framework_report.pdf (last access: 25 November 2022), 2003.
Warren, J. M., Pötzelsberger, E., Wullschleger, S. D., Thornton, P. E.,
Hasenauer, H., and Norby, R. J.: Ecohydrologic impact of reduced stomatal
conductance in forests exposed to elevated CO2, Ecohydrology, 4, 196–210, https://doi.org/10.1002/eco.173, 2011.
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture on trends in flooding, J. Hydrol., 575, 432–441, https://doi.org/10.1016/j.jhydrol.2019.05.054, 2019.
Wasko, C., Nathan, R., and Peel, M. C.: Changes in antecedent soil moisture
modulate flood seasonality in a changing climate, Water Resour. Res.,
56, e2019WR026300, https://doi.org/10.1029/2019WR026300, 2020.
Webb, A. A. and Kathuria, A.: Response of streamflow to afforestation and
thinning at Red Hill, Murray Darling Basin, Australia, J. Hydrol., 412–413, 133–140, https://doi.org/10.1016/j.jhydrol.2011.05.033, 2012.
Weligamage, H., Fowler, K., Peterson, T., Saft, M., Ryu, D., and Peel, M.:
Observation based gridded annual runoff estimates over Victoria, Australia,
MODSIM21, 24th International Congress on Modelling & Simulation, https://doi.org/10.36334/modsim.2021.k11.weligamage, 2021.
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A
strategy for diagnosing and interpreting hydrological model nonstationarity, Water Resour. Res., 50, 5090–5113, 2014.
Xie, Q., Huete, A., Hall, C. C., Medlyn, B. E., Power, S. A., Davies, J. M., Medek, D. E., and Beggs, P. J.: Satellite-observed shifts in C3/C4 abundance in Australian grasslands are associated with rainfall patterns, Remote Sens. Environ., 273, 112983, https://doi.org/10.1016/j.rse.2022.112983, 2022.
Yang, J., Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: Applying the
concept of ecohydrological equilibrium to predict steady state leaf area
index, J. Adv. Model. Earth Sy., 10, 1740–1758, https://doi.org/10.1029/2017MS001169, 2018.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang, W., Liu, B., Jin, Z., and Simmons, C. T.: Contrasting responses of water use efficiency to drought across global terrestrial ecosystems, Sci. Rep.-UK, 6, 1–8, https://doi.org/10.1038/srep23284, 2016.
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour.
Res., 37, 701–708, https://doi.org/10.1029/2000WR900325, 2001.
Zhang, Y. and Schilling, K.: Increasing streamflow and baseflow in
Mississippi River since the 1940 s: Effect of land use change, J. Hydrol., 324, 412–422,
https://doi.org/10.1016/j.jhydrol.2005.09.033, 2006.
Zhu, R., Zheng, H., Jakeman, A., and Zhang, L.: Tracer-aided assessment of
catchment groundwater dynamics and residence time, J. Hydrol., 598,
126230, https://doi.org/10.1016/j.jhydrol.2021.126230, 2021.
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between...