Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6073-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6073-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Murray Peel
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Margarita Saft
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Tim J. Peterson
Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
Andrew Western
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Lawrence Band
Department of Environmental Science, University of Virginia,
Charlottesville, Virginia, USA
Department of Engineering Systems and Environment, University of
Virginia, Charlottesville, Virginia, USA
Cuan Petheram
CSIRO Land and Water, Sandy Bay, Tasmania, Australia
Sandra Dharmadi
Department of Environment, Land, Water and Planning, Melbourne,
Victoria, Australia
Kim Seong Tan
Melbourne Water, Docklands, Victoria, Australia
Lu Zhang
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Patrick Lane
School of Ecosystem and Forest Sciences, University of Melbourne,
Parkville, Victoria, Australia
Anthony Kiem
Centre for Water, Climate and Land (CWCL), College of Engineering,
Science and Environment (CESE), University of Newcastle, Newcastle, New South Wales, Australia
Lucy Marshall
School of Civil and Environmental Engineering, University of New
South Wales, Kensington, New South Wales, Australia
ARC Training Centre Data Analytics for Resources and Environments,
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
Anne Griebel
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Belinda E. Medlyn
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Dongryeol Ryu
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Giancarlo Bonotto
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Conrad Wasko
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Anna Ukkola
Climate Change Research Centre, University of New South Wales,
Kensington, New South Wales, Australia
Clare Stephens
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
Andrew Frost
Bureau of Meteorology, Sydney, New South Wales, Australia
Hansini Gardiya Weligamage
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Patricia Saco
Centre for Water Security and Environmental Sustainability and School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
Hongxing Zheng
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Francis Chiew
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Edoardo Daly
Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
Glen Walker
Grounded In Water, Adelaide, South Australia, Australia
R. Willem Vervoort
ARC Training Centre Data Analytics for Resources and Environments,
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
Justin Hughes
CSIRO Land and Water, Black Mountain, Australian Capital Territory,
Australia
Luca Trotter
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Brad Neal
Hydrology and Risk Consulting (HARC), Blackburn, Victoria, Australia
Ian Cartwright
School of Earth, Atmosphere and Environment, Monash University,
Clayton, Victoria, Australia
Rory Nathan
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Related authors
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data, 17, 4079–4095, https://doi.org/10.5194/essd-17-4079-2025, https://doi.org/10.5194/essd-17-4079-2025, 2025
Short summary
Short summary
This paper presents version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS (Australia) v2 comprises data for an increased number (561) of catchments, each with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Gabrielle Burns, Keirnan Fowler, Murray Peel, and Clare Stephens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3122, https://doi.org/10.5194/egusphere-2025-3122, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Improving how rainfall-runoff models estimate evapotranspiration is key to better reproducing water partitioning under current conditions, and will increase model realism under future changing conditions. We tested how well different conceptual rainfall-runoff model equations simulate evapotranspiration using Australian catchment and flux tower data. We found one equation consistently worked better than the others. However, even this equation had flaws, pointing to missing vegetation processes.
Hansini Gardiya Weligamage, Keirnan Fowler, Margarita Saft, Tim Peterson, Dongryeol Ryu, and Murray Peel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3373, https://doi.org/10.5194/egusphere-2025-3373, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study adopts actual evapotranspiration (AET) signatures to diagnose deficiencies in simulation of AET within conceptual rainfall-runoff models. Five models are assessed using flux tower data at 14 Australian sites. Even when AET is included in the calibration, the models struggle to represent aspects of AET dynamics, including interannual variability and timing on seasonal and event scales. The approach shows promise for more insightful critique of model simulations.
Sandra Pool, Keirnan Fowler, Hansini Gardiya Weligamage, and Murray Peel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1598, https://doi.org/10.5194/egusphere-2025-1598, 2025
Short summary
Short summary
Multivariate calibration has become a widely used method to improve model realism. We found that multivariate calibration can lead to less constrained flux maps and more uncertain hydrographs relative to univariate calibration. These symptoms could be caused by non-overlapping behavioural parameter distributions for the individual calibration variables. The results emphasize that the value of non-discharge data in calibration is contingent on the suitability of the model structure.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Hansini Gardiya Weligamage, Keirnan Fowler, Margarita Saft, Tim Peterson, Dongryeol Ryu, and Murray Peel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-373, https://doi.org/10.5194/hess-2024-373, 2025
Preprint under review for HESS
Short summary
Short summary
This study is the first to propose actual evapotranspiration (AET) signatures, which can be used to assess multiple aspects of AET dynamics across various temporal scales. As a demonstration, we applied AET signatures to evaluate two remotely sensed (RS) AET products against flux tower AET. The results reveal specific deficiencies in RS AET and provide guidance for selecting appropriate RS AET, including for modelling studies.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data, 17, 4079–4095, https://doi.org/10.5194/essd-17-4079-2025, https://doi.org/10.5194/essd-17-4079-2025, 2025
Short summary
Short summary
This paper presents version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS (Australia) v2 comprises data for an increased number (561) of catchments, each with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Gabrielle Burns, Keirnan Fowler, Murray Peel, and Clare Stephens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3122, https://doi.org/10.5194/egusphere-2025-3122, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Improving how rainfall-runoff models estimate evapotranspiration is key to better reproducing water partitioning under current conditions, and will increase model realism under future changing conditions. We tested how well different conceptual rainfall-runoff model equations simulate evapotranspiration using Australian catchment and flux tower data. We found one equation consistently worked better than the others. However, even this equation had flaws, pointing to missing vegetation processes.
Tobias Frederick Selkirk, Andrew W. Western, and J. Angus Webb
EGUsphere, https://doi.org/10.5194/egusphere-2025-2427, https://doi.org/10.5194/egusphere-2025-2427, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study finds three cycles in yearly rainfall worldwide of approximately 13, 20 and 28 years. The cycles rise and fall together across continents and also appear in the El Niño–Southern Oscillation (ENSO), a major climate driver of rain. However the signal in ENSO is too small to explain the strong local influence, the results point to another, still-unknown force that may shape both ENSO and global rainfall.
Hansini Gardiya Weligamage, Keirnan Fowler, Margarita Saft, Tim Peterson, Dongryeol Ryu, and Murray Peel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3373, https://doi.org/10.5194/egusphere-2025-3373, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study adopts actual evapotranspiration (AET) signatures to diagnose deficiencies in simulation of AET within conceptual rainfall-runoff models. Five models are assessed using flux tower data at 14 Australian sites. Even when AET is included in the calibration, the models struggle to represent aspects of AET dynamics, including interannual variability and timing on seasonal and event scales. The approach shows promise for more insightful critique of model simulations.
Olaleye Babatunde, Meenakshi Arora, Siva Naga Venkat Nara, Danlu Guo, Ian Cartwright, and Andrew W. Western
EGUsphere, https://doi.org/10.5194/egusphere-2025-2456, https://doi.org/10.5194/egusphere-2025-2456, 2025
Short summary
Short summary
Nitrogen inputs can pollute streams and degrade water quality. We estimated fertiliser nitrogen inputs across different land uses and assessed their relationship with stream nitrogen concentrations. Only a small fraction of the applied nitrogen was exported, with most retained within the landscape. Land use, rainfall, and flow patterns strongly influenced nitrogen dynamics and export. These findings support strategies to reduce stream pollution and protect water quality in agricultural areas.
Sandra Pool, Keirnan Fowler, Hansini Gardiya Weligamage, and Murray Peel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1598, https://doi.org/10.5194/egusphere-2025-1598, 2025
Short summary
Short summary
Multivariate calibration has become a widely used method to improve model realism. We found that multivariate calibration can lead to less constrained flux maps and more uncertain hydrographs relative to univariate calibration. These symptoms could be caused by non-overlapping behavioural parameter distributions for the individual calibration variables. The results emphasize that the value of non-discharge data in calibration is contingent on the suitability of the model structure.
Tobias F. Selkirk, Andrew W. Western, and J. Angus Webb
Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025, https://doi.org/10.5194/hess-29-2167-2025, 2025
Short summary
Short summary
This study investigated rainfall in eastern Australia to search for patterns that may aid in predicting flood and drought. The current popular consensus is that such cycles do not exist. We analysed 130 years of rainfall using a very modern technique for identifying cycles in complex signals. The results showed strong evidence of three clear cycles of 12.9, 20.4 and 29.1 years with a confidence of 99.99 %. When combined, they showed an 80 % alignment with years of extremely high and low rainfall.
Ashkan Shokri, James C. Bennett, David E. Robertson, Jean-Michel Perraud, Andrew J. Frost, and Eric A. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-805, https://doi.org/10.5194/egusphere-2025-805, 2025
Short summary
Short summary
Predicting river flow accurately is crucial for managing water resources, especially in a changing climate. This study used deep learning to improve streamflow predictions across Australia. By either enhancing existing models or working independently with climate data, the deep learning approaches provided more reliable results than traditional methods. These findings can help water managers better plan for floods, droughts, and long-term water availability.
Rutger Willem Vervoort, Floris van Ogtrop, Mina Tambrchi, Farzina Akter, Alexander Buzacott, Jason Lessels, James Moloney, Dipangkar Kundu, Feike Dijkstra, and Thomas Bishop
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-105, https://doi.org/10.5194/essd-2025-105, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
A detailed water quality dataset for a 1000 km2 catchment in NSW, Australia is presented. The water quality data for surface and groundwater was collected over 14 years and contains more than 1000 records. Despite missing values and different sampling methods and groups, the data provides a consistent overview of the hydrogeochemistry of the catchment. This dataset is valuable for global modelling studies as well as better understanding of local dryland salinity and water quality processes.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025, https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed 10.5 g CO2 m−2 on average daily from the atmosphere. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit a smaller one. Cool temperatures and high cloud cover inhibit carbon sequestration.
Thomas A. McMahon, Rory Nathan, and Richard George
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-320, https://doi.org/10.5194/hess-2024-320, 2025
Revised manuscript under review for HESS
Short summary
Short summary
Master Recession Curves have long been used to estimate the decline in streamflows following rainfall. Although the approach has wide practical application in water management, it can be overly simple and not match all observations. We propose an approach that represents the changes in streamflow behaviour due to variations in climate and geology. The approach matches observed behaviour well, is consistent with field observations, and is well suited to uncertainty analysis.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Hansini Gardiya Weligamage, Keirnan Fowler, Margarita Saft, Tim Peterson, Dongryeol Ryu, and Murray Peel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-373, https://doi.org/10.5194/hess-2024-373, 2025
Preprint under review for HESS
Short summary
Short summary
This study is the first to propose actual evapotranspiration (AET) signatures, which can be used to assess multiple aspects of AET dynamics across various temporal scales. As a demonstration, we applied AET signatures to evaluate two remotely sensed (RS) AET products against flux tower AET. The results reveal specific deficiencies in RS AET and provide guidance for selecting appropriate RS AET, including for modelling studies.
Michelle Ho, Declan O'Shea, Conrad Wasko, Rory Nathan, and Ashish Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-403, https://doi.org/10.5194/hess-2024-403, 2025
Revised manuscript under review for HESS
Short summary
Short summary
There is unequivocal evidence that climate change will impact the risk profile of dams, which are critical for water supply and flood mitigation. We project changes in the overtopping risk for 18 large dams in Australia in response to global warming. We consider the impacts of climate change on rainfall depth, rainfall temporal pattern, and rainfall losses. Under 4 °C of global warming, the risk of overtopping floods was 2.4–17 times that of historical conditions.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024, https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Short summary
Human-induced nitrogen (N) from fertilization and septic effluents is the primary N source in urban watersheds. We developed a model to understand how spatial and temporal patterns of these loads affect hydrologic and biogeochemical processes at the hillslope level. The comparable simulations to observations showed the ability of our model to enhance insights into current water quality conditions, identify high-N-retention locations, and plan future restorations to improve urban water quality.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Rafael Navas, Pablo Gamazo, and R. Willem Vervoort
Proc. IAHS, 385, 399–406, https://doi.org/10.5194/piahs-385-399-2024, https://doi.org/10.5194/piahs-385-399-2024, 2024
Short summary
Short summary
It’s difficult to estimate the daily discharge of a river when only one instantaneous level record is available per day. This work proposes to estimate synthetic daily rating curves from nearby gauged locations using a rainfall-runoff model and bayesian inference. The results can help provide a more comprehensive understanding of the hydrological functioning of systems where only one instantaneous stage level per day is available.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022, https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary
Short summary
Lake surface water temperature (LSWT) is a critical physical property of the aquatic ecosystem and an indicator of climate change. By combining the strengths of satellites and models, we produced an integrated dataset on daily LSWT of 160 large lakes across the Tibetan Plateau (TP) for the period 1978–2017. LSWT increased significantly at a rate of 0.01–0.47° per 10 years. The dataset can contribute to research on water and heat balance changes and their ecological effects in the TP.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022, https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Short summary
Watershed models are used to simulate streamflow and water quality, and to inform siting and sizing decisions for runoff and nutrient control projects. Data are limited for many watershed processes that are represented in such models, which requires selecting the most important processes to be calibrated. We show that this selection should be based on decision-relevant metrics at the spatial scales of interest for the control projects. This should enable more robust project designs.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022, https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Short summary
Decomposing parameter and input errors in model calibration is a considerable challenge. This study transfers the direct estimation of an input error series to their rank estimation and develops a new algorithm, i.e., Bayesian error analysis with reordering (BEAR). In the context of a total suspended solids simulation, two synthetic studies and a real study demonstrate that the BEAR method is effective for improving the input error estimation and water quality model calibration.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Hang Chen, Zailin Huo, Lu Zhang, Jing Cui, Yingying Shen, and Zhenzhong Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-80, https://doi.org/10.5194/hess-2021-80, 2021
Manuscript not accepted for further review
Short summary
Short summary
With a parameter introduced, Fu's equation has been widely used to study the water allocation in natural catchments. For agricultural irrigation districts, the extra water sources including groundwater evaporation were considered as water availability to improve the applicability of Fu's equation in unsteady-state districts. Soil texture and vegetation cover have been considered to investigate the relationship between irrigation districts characteristics and Budyko parameter.
Angelo Breda, Patricia M. Saco, Steven G. Sandi, Neil Saintilan, Gerardo Riccardi, and José F. Rodríguez
Hydrol. Earth Syst. Sci., 25, 769–786, https://doi.org/10.5194/hess-25-769-2021, https://doi.org/10.5194/hess-25-769-2021, 2021
Short summary
Short summary
We study accretion, retreat and transgression of mangrove and saltmarsh wetlands affected by sea-level rise (SLR) using simulations on typical configurations with different levels of tidal obstruction. Interactions and feedbacks between flow, sediment deposition, vegetation migration and soil accretion result in wetlands not surviving the predicted high-emission scenario SLR, despite dramatic increases in sediment supply. Previous simplified models overpredict wetland resilience to SLR.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Anna L. Flack, Anthony S. Kiem, Tessa R. Vance, Carly R. Tozer, and Jason L. Roberts
Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, https://doi.org/10.5194/hess-24-5699-2020, 2020
Short summary
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Cited articles
ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences): Australia's plantations 2016, Spatial dataset, Australian Government [data set],
https://www.awe.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/australias-plantations
(last access: 12 April 2022), 2016.
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H.,
Dowdy, A. J., Sharples, J. J., Nolan, R. H., Tianran Zhang, T., Wooster, M.
J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy,
B. P., Tapper N. J., and Boer, M. M.: Connections of climate change and
variability to large and extreme forest fires in southeast Australia,
Communications Earth & Environment, 2, 1–17,
https://doi.org/10.1038/s43247-020-00065-8, 2021.
Allen, C. D. and Breshears, D. D.: Drought-induced shift of a
forest–woodland ecotone: rapid landscape response to climate variation.
P. Natl. Acad. Sci., 95, 14839–14842,
https://doi.org/10.1073/pnas.95.25.14839, 1998.
Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., and Vis, M.: Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile, Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, 2021.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ajami, H., Sharma, A., Band, L. E., Evans, J. P., Tuteja, N. K., Amirthanathan, G. E., and Bari, M. A.: On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective, Hydrol. Earth Syst. Sci., 21, 281–294, https://doi.org/10.5194/hess-21-281-2017, 2017.
Argent, R. M.: Inland water, in: Australia state of the environment 2016,
Australian Government Department of the Environment and Energy, Canberra,
https://doi.org/10.4226/94/58b656cfc28d1, 2017.
Arnold, J. G., Potter, K. N., King, K. W., and Allen, P. M.: Estimation of
soil cracking and the effect on surface runoff in a Texas Blackland Prairie
watershed, Hydrol. Process., 19, 589–603,
https://doi.org/10.1002/hyp.5609, 2005.
Avanzi, F., Rungee, J., Maurer, T., Bales, R., Ma, Q., Glaser, S., and Conklin, M.: Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts, Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020, 2020.
Benyon, R. G. and Doody, T. M.: Water use by tree plantations in south east
South Australia, CSIRO Forestry and Forest products report series, no. 148,
ISBN 9780643065321, https://doi.org/10.4225/08/585eb80e79dcd, 2004.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour. Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Beven, K. J.: Uniqueness of place and process representations in hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203–213, https://doi.org/10.5194/hess-4-203-2000, 2000.
Beven, K. J. and Chappell, N. A.: Perceptual perplexity and parameter
parsimony, Wiley Interdisciplinary Reviews: Water, 8, e1530,
https://doi.org/10.1002/wat2.1530, 2021.
Blackman, C. J., Li, X., Choat, B., Rymer, P. D., De Kauwe, M. G., Duursma,
R. A., Tissue, D. T., and Medlyn, B. E.: Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates, New Phytol., 224, 632–643, https://doi.org/10.1111/nph.16042, 2019.
Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.
Bouaziz, L., Weerts, A., Schellekens, J., Sprokkereef, E., Stam, J., Savenije, H., and Hrachowitz, M.: Redressing the balance: quantifying net intercatchment groundwater flows, Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, 2018.
Bouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M.: Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, 2022.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.:
Ecohydrologic separation of water between trees and streams in a
Mediterranean climate, Nat. Geosci., 3, 100–104,
https://doi.org/10.1038/NGEO722, 2010.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R.
A.: A review of paired catchment studies for determining changes in water
yield resulting from alterations in vegetation, J. Hydrol.,
310, 28–61, https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Brown, S. C., Versace, V. L., Lester, R. E., and Walter, M. T.: Assessing
the impact of drought and forestry on streamflows in south-eastern Australia
using a physically based hydrological model, Environ. Earth Sci.,
74, 6047–6063, https://doi.org/10.1007/s12665-015-4628-8, 2015.
Caplan, J. S., Giménez, D., Hirmas, D. R., Brunsell, N. A., Blair, J.
M., and Knapp, A. K.: Decadal-scale shifts in soil hydraulic properties as
induced by altered precipitation, Science Advances, 5, eaau6635,
https://doi.org/10.1126/sciadv.aau6635, 2019.
Cartwright, I. and Gilfedder, B.: Mapping and quantifying groundwater
inflows to Deep Creek (Maribyrnong catchment, SE Australia) using 222Rn,
implications for protecting groundwater-dependant ecosystems, Appl.
Geochem., 52, 118–129, https://doi.org/10.1016/j.apgeochem.2014.11.020,
2015.
Cartwright, I., Weaver, T. R., Fulton, S., Nichol, C., Reid, M., and Cheng,
X.: Hydrogeochemical and isotopic constraints on the origins of dryland
salinity, Murray Basin, Victoria, Australia, Appl. Geochem., 19,
1233–1254, https://doi.org/10.1016/j.apgeochem.2003.12.006, 2004.
Cassel, D. K. and Nielsen, D. R. Field capacity and available water
capacity, Methods of soil analysis: Part 1 Physical and mineralogical
methods, 5, 901–926, https://doi.org/10.2136/sssabookser5.1.2ed.c36, 1986.
Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., Teng, J.,
and Post, D. A.: Observed hydrologic non-stationarity in far south-eastern
Australia: implications for modelling and prediction, Stoch.
Environ. Res. Risk A., 28, 3–15, https://doi.org/10.1007/s00477-013-0755-5, 2014.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for
process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015.
Cheng, L, Zhang, L., Wang, Y. P., Canadell, J. G., Chiew, F. H. S., Beringer, J., Li, L., Miralles, D. G., Piao, S., and Zhang, Y.: Recent increases in terrestrial carbon uptake at little cost to the water cycle, Nat. Commun., 8, 110, https://doi.org/10.1038/s41467-017-00114-5, 2017.
Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J., Ferguson, G., and McIntosh, J. C.: Where is the bottom of a watershed?, Water Resour. Res., 56, e2019WR026010, https://doi.org/10.1029/2019WR026010, 2020.
Connell, D.: The Role of the Commonwealth Environmental Water Holder, in:
Basin futures: water reform in the Murray-Darling basin, edited by: Connell, D. and Quentin Grafton, R., ANU Press, https://doi.org/10.22459/BF.05.2011.20, 2011.
Connell, D. and Grafton, Q. (Eds.): Basin futures: water reform in the Murray-Darling basin, ANU Press, https://doi.org/10.22459/BF.05.2011, 2011.
Cook, P.: A guide to regional groundwater flow in fractured rock aquifers.
CSIRO publishing, ISBN 1 74008 233 8,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8ba781c0a31b6dcae84b31fb6313d44c0c44df5c (last access: 25 November 2022), 2003.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and
drought: From past to future, Current Climate Change Reports, 4, 164–179, https://doi.org/10.1007/s40641-018-0093-2, 2018.
Cornish, P. S., Tullberg, J. N., Lemerle, D., and Flower, K.: No-Till
Farming Systems in Australia, in: No-till Farming Systems for Sustainable
Agriculture, 511–531, Springer, Cham, https://doi.org/10.1007/978-3-030-46409-7_29, 2020.
CSIRO: AUS SRTM 1sec MRVBF mosaic v01, Bioregional Assessment Source Dataset, CSIRO
[data set],
https://data.gov.au/data/dataset/79975b4a-1204-4ab1-b02b-0c6fbbbbbcb5 (last
access: 30 July 2021), 2016.
Deb, P., Kiem, A. S., and Willgoose, G.: Mechanisms influencing
non-stationarity in rainfall-runoff relationships in southeast Australia,
J. Hydrol., 571, 749–764, https://doi.org/10.1016/j.jhydrol.2019.02.025, 2019.
De Kauwe, M. G., Medlyn, B. E., Knauer, J., and Williams, C. A.: Ideas and perspectives: how coupled is the vegetation to the boundary layer?, Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, 2017.
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B., Pitman, A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue, D. T., Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia, Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215, 2020.
De Kauwe, M. G., Medlyn, B. E., and Tissue, D. T.: To what extent can
rising CO2 ameliorate plant drought stress?, New Phytol., 231,
2118–2124, https://doi.org/10.1111/nph.17540, 2021.
Denson, E., Wasko, C., and Peel, M. C.: Decreases in relative humidity across Australia, Environ. Res. Lett., 16, 074023, https://doi.org/10.1088/1748-9326/ac0aca, 2021.
Dey, R., Gallant, A. J. E., Lewis, S.C.,: Evidence of a continent-wide shift
of episodic rainfall in Australia, Weather and Climate Extremes, 29, 100274, https://doi.org/10.1016/j.wace.2020.100274, 2020.
Dresel, P. E., Dean, J. F., Perveen, F., Webb, J. A., Hekmeijer, P.,
Adelana, S. M., and Daly, E.: Effect of Eucalyptus plantations, geology,
and precipitation variability on water resources in upland intermittent
catchments, J. Hydrol., 564, 723–739, https://doi.org/10.1016/j.jhydrol.2018.07.019, 2018.
DSE (Department of Sustainability and Environment, Victoria): SAFE (Secure
Allocations, Future Entitlements) Groundwater Catchment Systems Report, ISBN 978-1-74287-552-1, http://beta.vvg.org.au/maynard/view_resource.php?resource_id=4336&account=a020b5775c3d4447295a4c758a5394ca (last access: 24 November 2022), 2012.
Duff, J., Jenkin, J., and David, G.: The Axe Creek salinity study, part A:
catchment characterisation for salinity control, Report to the Victorian
Government,
https://vro.agriculture.vic.gov.au/dpi/vro/nthcenregn.nsf/pages/nc_axe_creek, (last access: 24 November 2022) 1982.
Dunne, T. and Black, R. D.: Partial area contributions to storm runoff in
a small New England watershed, Water Resour. Res., 6, 1296–1311, https://doi.org/10.1029/WR006i005p01296, 1970.
Elliott, K. J., Miniat, C. F., Pederson, N., and Laseter, S. H.: Forest
tree growth response to hydroclimate variability in the southern
Appalachians, Glob. Change Biol., 21, 4627–4641, https://doi.org/10.1111/gcb.13045, 2015.
Farley, K. A., Jobbágy, E. G., and Jackson, R. B.: Effects of
afforestation on water yield: a global synthesis with implications for
policy, Glob. Change Biol., 11, 1565–1576, https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005.
Ferdowsian, R., D. J. Pannell, C. McCarron, A. Ryder, and Crossing, L.:
Explaining groundwater hydrographs: Separating atypical rainfall events from
time trends, Aust. J. Soil Res., 39, 861–875,
https://doi.org/10.1071/SR00037, 2001.
Feikema, P. M., Sherwin, C. B., and Lane, P. N.: Influence of climate, fire
severity and forest mortality on predictions of long term streamflow:
potential effect of the 2009 wildfire on Melbourne's water supply
catchments, J. Hydrol., 488, 1–16, https://doi.org/10.1016/j.jhydrol.2013.02.001, 2013.
Fensham, R. J., Fairfax, R. J., and Archer, S. R.: Rainfall, land use and
woody vegetation cover change in semi-arid Australian savanna, J.
Ecol., 93, 596–606, https://doi.org/10.1111/j.1365-2745.2005.00998.x,
2005.
Filipović, V., Weninger, T., Filipović, L., Schwen, A., Bristow, K.
L., Zechmeister-Boltenstern, S., and Leitner, S.: Inverse estimation of
soil hydraulic properties and water repellency following artificially
induced drought stress, J. Hydrol. Hydromech., 66, 170, https://doi.org/10.2478/johh-2018-0002, 2018.
Fitzgerald, G. J., Tausz, M., Armstrong, R., Panozzo, J., Trębicki, P., Mollah, M., Tausz-Posch, S., Walker, C., Nuttall, J. G., Bourgault, M., Löw, M., and O'Leary, G. J.: Elevated CO2 in semi-arid cropping
systems: A synthesis of research from the Australian Grains Free Air CO2
Enrichment (AGFACE) research program, Adv. Agron., 171, 1–73,
https://doi.org/10.1016/bs.agron.2021.08.001, 2021.
Fowler, K., Morden, R., Lowe, L., and Nathan, R.: Advances in assessing the
impact of hillside farm dams on streamflow, Australasian Journal of Water
Resources, 19, 96–108, https://doi.org/10.1080/13241583.2015.1116182,
2015.
Fowler, K., Coxon, G., Freer, J., Peel, M., Wagener, T., Western, A., Woods, R., and Zhang, L.: Simulating runoff under changing climatic conditions: A
framework for model improvement, Water Resour. Res., 54, 9812–9832, https://doi.org/10.1029/2018WR023989, 2018.
Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K., and Western, A.: Many commonly used rainfall-runoff models lack long, slow
dynamics: Implications for runoff projections, Water Resour. Res.,
56, e2019WR025286, https://doi.org/10.1029/2019WR025286, 2020a.
Fowler, K., Acharya, S. C., Addor, N., Chou, C., and Peel, M.: CAMELS-AUS v1: Hydrometeorological time series and landscape attributes for 222 catchments in Australia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.921850, 2020b.
Fowler, K., Peel, M., Saft, M., Nathan, R., Horne, A., Wilby, R., McCutcheon, C., and Peterson, T.: Hydrological shifts threaten water resources, Water Resour. Res., 58, e2021WR031210, https://doi.org/10.1029/2021WR031210, 2022.
Fowler, K. J., Peel, M. C., Western, A. W., Zhang, L., and Peterson, T. J.:
Simulating runoff under changing climatic conditions: Revisiting an apparent
deficiency of conceptual rainfall-runoff models, Water Resour. Res.,
52, 1820–1846, https://doi.org/10.1002/2015WR018068, 2016.
Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, 2021.
Freund, M., Henley, B. J., Karoly, D. J., Allen, K. J., and Baker, P. J.: Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions, Clim. Past, 13, 1751–1770, https://doi.org/10.5194/cp-13-1751-2017, 2017.
Frisbee, M. D., Phillips, F. M., Weissmann, G. S., Brooks, P. D., Wilson, J. L., Campbell, A. R., and Liu, F.: Unraveling the mysteries of the large watershed black box: Implications for the streamflow response to climate and landscape perturbations, Geophys. Res. Lett., 39, L01404, https://doi.org/10.1029/2011GL050416, 2012.
Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom flatness for mapping depositional areas, Water Resour. Res., 39, 1347, https://doi.org/10.1029/2002WR001426, 2003.
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., and Zambrano-Bigiarini, M.: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, 2017.
Gawne, B., Hale, J., Stewardson, M. J., Webb, J. A., Ryder, D. S., Brooks, S. S., Campbell, C. J., Capon, S. J., Everingham, P., Grace, M. R., Guarino, F., and Stoffels, R. J.: Monitoring of environmental flow outcomes in a large river basin: The Commonwealth Environmental Water Holder's long-term intervention in the Murray–Darling Basin, Australia, River Res. Appl., 36, 630–644, https://doi.org/10.1002/rra.3504, 2020.
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and
Stott, P. A.: Detection of a direct carbon dioxide effect in continental
river runoff records, Nature, 439, 835–838, https://doi.org/10.1038/nature04504, 2006.
Gharun, M., Turnbull, T. L., and Adams, M. A.: Validation of canopy
transpiration in a mixed-species foothill eucalypt forest using a
soil–plant–atmosphere model, J. Hydrol., 492, 219–227, https://doi.org/10.1016/j.jhydrol.2013.03.051, 2013.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
Guo, Y., Zhang, L., Zhang, Y., Wang, Z., and Zheng, H. X.: Estimating
impacts of wildfire and climate variability on streamflow in Victoria,
Australia, Hydrol. Process., 35, e14439, https://doi.org/10.1002/hyp.14439, 2021.
Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D.: The
cumulative impacts of small reservoirs on hydrology: A review, Sci.
Total Environ., 643, 850–867, https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018.
Hannam, I.: Soil conservation in Australia, J. Soil Water Conserv., 58, 112A–115A, https://www.jswconline.org/content/58/6/112A (last access: 24 November 2022), 2003.
Heath, J. T., Chafer, C. J., Van Ogtrop, F. F., and Bishop, T. F. A.:
Post-wildfire recovery of water yield in the Sydney Basin water supply
catchments: An assessment of the 2001/2002 wildfires, J. Hydrol.,
519, 1428–1440, https://doi.org/10.1016/j.jhydrol.2014.09.033, 2014.
Hirmas, D. R., Giménez, D., Nemes, A., Kerry, R., Brunsell, N. A., and
Wilson, C. J.: Climate-induced changes in continental-scale soil
macroporosity may intensify water cycle, Nature, 561, 100–103, https://doi.org/10.1038/s41586-018-0463-x, 2018.
Horridge, M., Madden, J., and Wittwer, G.: The impact of the 2002–2003
drought on Australia, J. Policy Model., 27, 285–308, https://doi.org/10.1016/j.jpolmod.2005.01.008, 2005.
Hovenden, M. J., Leuzinger, S., Newton, P. C., Fletcher, A., Fatichi, S., Lüscher, A., Reich, P. B., Andresen, L. C., Beier, C., Blumenthal, D. M., and Langley, J. A.: Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2, Nat. Plants, 5, 167–173, https://doi.org/10.1038/s41477-018-0356-x, 2019.
Huang, M. and Zhang, L.: Hydrological responses to conservation practices
in a catchment of the Loess Plateau, China, Hydrol. Process., 18,
1885–1898, https://doi.org/10.1002/hyp.1454, 2004.
Hughes, J. D., Khan, S., Crosbie, R. S., Helliwell, S., and Michalk, D. L.:
Runoff and solute mobilization processes in a semiarid headwater catchment, Water Resour. Res., 43, W09402, https://doi.org/10.1029/2006WR005465, 2007.
Hughes, J. D., Petrone, K. C., and Silberstein, R. P.: Drought, groundwater
storage and stream flow decline in southwestern Australia, Geophys. Res. Lett, 39, L03408, https://doi.org/10.1029/2011GL050797, 2012.
Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Learning from satellite observations: increased understanding of catchment processes through stepwise model improvement, Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, 2021a.
Hulsman, P., Hrachowitz, M., and Savenije, H. H.: Improving the representation of long-term storage variations with conceptual hydrological models in data-scarce regions, Water Resour. Res., 57, e2020WR028837, https://doi.org/10.1029/2020WR028837, 2021b.
Hunt, R. J. and Welter, D. E.: Taking account of “unknown unknowns”,
Ground Water, 48, 477, https://doi.org/10.1111/j.1745-6584.2010.00681.x,
2010.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: MassonDelmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Jaramillo, F., Cory, N., Arheimer, B., Laudon, H., van der Velde, Y., Hasper, T. B., Teutschbein, C., and Uddling, J.: Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space, Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, 2018.
Jensen, C. K., McGuire, K. J., and Prince, P. S.: Headwater stream length
dynamics across four physiographic provinces of the Appalachian Highlands,
Hydrol. Process., 31, 3350–3363, https://doi.org/10.1002/hyp.11259,
2017.
Jensen, C. K., McGuire, K. J., Shao, Y., and Andrew Dolloff, C.: Modeling
wet headwater stream networks across multiple flow conditions in the
Appalachian Highlands, Earth Surf. Proc. Land., 43,
2762–2778, https://doi.org/10.1002/esp.4431, 2018.
Kirono, D. G., Round, V., Heady, C., Chiew, F. H., and Osbrough, S.:
Drought projections for Australia: updated results and analysis of model
simulations, Weather and Climate Extremes, 30, 100280, https://doi.org/10.1016/j.wace.2020.100280, 2020.
Kuczera, G.: Prediction of water yield reductions following a bushfire in
ash-mixed species eucalypt forest, J. Hydrol., 94, 215–236, https://doi.org/10.1016/0022-1694(87)90054-0, 1987.
Lambers, H.: Dryland salinity: A key environmental issue in southern Australia. Plant and Soil, v-vii, https://www.jstor.org/stable/24124331 (last access: 24 November 2022), 2003.
Lane, P. N., Best, A. E., Hickel, K., and Zhang, L.: The response of flow
duration curves to afforestation, J. Hydrol., 310, 253–265, https://doi.org/10.1016/j.jhydrol.2005.01.006, 2005.
Lane, P. N., Sheridan, G. J., and Noske, P. J.: Changes in sediment loads
and discharge from small mountain catchments following wildfire in south
eastern Australia, J. Hydrol., 331, 495–510, https://doi.org/10.1016/j.jhydrol.2006.05.035, 2006.
Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S. O., and Fakes, A.:
Basin-scale, integrated observations of the early 21st century multiyear
drought in southeast Australia, Water Resour. Res., 45, W04408, https://doi.org/10.1029/2008WR007333, 2009.
Legg, P., Frakes, I., and Gavran, M.: Australian plantation statistics and log
availability report 2021, ABARES research report, Canberra, October, https://doi.org/10.25814/xj7c-p829, 2021.
Liu, N., Kala, J., Liu, S., Haverd, V., Dell, B., Smettem, K. R., and
Harper, R. J.: Drought can offset potential water use efficiency of forest
ecosystems from rising atmospheric CO2, J. Environ. Sci.,
90, 262–274, https://doi.org/10.1016/j.jes.2019.11.020, 2020.
Liu, Y., Tian, F., Hu, H., and Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model, Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, 2014.
Marcar, N.: Prospects for managing salinity in southern Australia using trees
on farmland, in: Agroforestry for the management of waterlogged saline soils and poor-quality waters, edited by: Dagar, J. C. and Minhas, P., Switzerland: Springer India, https://link.springer.com/content/pdf/10.1007/978-81-322-2659-8.pdf (last access: 24 November 2022), 2016.
Malerba, M. E., Wright, N., and Macreadie, P. I.: A continental-scale
assessment of density, size, distribution and historical trends of farm dams
using deep learning convolutional neural networks, Remote Sensing, 13,
319, https://doi.org/10.3390/rs13020319, 2021.
Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C.:
Mountain-block recharge: A review of current understanding, Water Resour. Res., 55, 8278–8304, https://doi.org/10.1029/2019WR025676, 2019.
Massari, C., Avanzi, F., Bruno, G., Gabellani, S., Penna, D., and Camici, S.: Evaporation enhancement drives the European water-budget deficit during multi-year droughts, Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, 2022.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, E., and Yepez, E. A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?, New Phytol., 178, 719–739, https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
McGlynn, B. L., McDonnel, J. J., and Brammer, D. D.: A review of the
evolving perceptual model of hillslope flowpaths at the Maimai catchments,
New Zealand, J. Hydrol., 257, 1–26, https://doi.org/10.1016/S0022-1694(01)00559-5, 2002.
McNaughton, K. G. and Jarvis, P. G.: Effects of spatial scale on stomatal
control of transpiration, Agr. Forest Meteorol., 54,
279–302, https://doi.org/10.1016/0168-1923(91)90010-N, 1991.
Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither water management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei – everything flows”: change in
hydrology and society – the IAHS scientific decade 2013–2022, Hydrolog.
Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Morden, R., Horne, A., Bond, N. R., Nathan, R., and Olden, J. D.: Small
artificial impoundments have big implications for hydrology and freshwater
biodiversity, Front. Ecol. Environ., 20, 141–146, https://doi.org/10.1002/fee.2454, 2021.
Morgan, J. A., Pataki, D. E., Körner, C., Clark, H. E. N. R. Y., Del Grosso, S. J., Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W. and Shaw, M. R.: Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2, Oecologia, 140, 11–25, https://doi.org/10.1007/s00442-004-1550-2, 2004.
Morgan, J. A., LeCain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., and West, M.: C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland, Nature, 476, 202–205, https://doi.org/10.1038/nature10274, 2011.
Morin, E.: To know what we cannot know: Global mapping of minimal detectable
absolute trends in annual precipitation, Water Resour. Res., 47, W07505, https://doi.org/10.1029/2010WR009798, 2011.
Morton, F. I.: Practical estimates of lake evaporation, J. Appl.
Meteorol. Clim., 25, 371–387, https://doi.org/10.1175/1520-0450(1986)025<0371:PEOLE>2.0.CO;2, 1986.
Munroe , S. E., McInerney, F. A., Andrae, J., Welti, N., Guerin, G. R., Leitch, E., Hall, T., Szarvas, S., Atkins, R., Caddy-Retalic, S., and Sparrow, B.: The photosynthetic pathways of plant species surveyed in Australia's national terrestrial monitoring network, Scientific Data, 8, 1–10, https://doi.org/10.1038/s41597-021-00877-z, 2021.
Naeth, M. A., Bailey, A. W., Chanasyk, D. S., and Pluth, D. J.: Water
holding capacity of litter and soil organic matter in mixed prairie and
fescue grassland ecosystems of Alberta, Rangeland Ecology &
Management/Journal of Range Management Archives, 44, 13–17, https://doi.org/10.2307/4002630, 1991.
Nimmo, J. R.: The processes of preferential flow in the unsaturated zone,
Soil Sci. Soc. Am. J., 85, 1–27, https://doi.org/10.1002/saj2.20143, 2021.
Nolan, R. H., Mitchell, P. J., Bradstock, R. A., and Lane, P. N.:
Structural adjustments in resprouting trees drive differences in post-fire
transpiration, Tree Physiol., 34, 123–136, https://doi.org/10.1093/treephys/tpt125, 2014.
Nolan, R. H., Lane, P. N., Benyon, R. G., Bradstock, R. A., and Mitchell,
P. J.: Trends in evapotranspiration and streamflow following wildfire in
resprouting eucalypt forests, J. Hydrol., 524, 614–624, https://doi.org/10.1016/j.jhydrol.2015.02.045, 2015.
Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J. and Choat, B.: Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought, New Phytol., 230, 1354–1365, https://doi.org/10.1111/nph.17298, 2021.
Nyman, P., Sheridan, G., and Lane, P. N.: Synergistic effects of water
repellency and macropore flow on the hydraulic conductivity of a burned
forest soil, south-east Australia, Hydrol. Process., 24,
2871–2887, https://doi.org/10.1002/hyp.7701, 2010.
O'Grady, A., Carter, J., and Holland, K.: Review of Australian groundwater
discharge studies of terrestrial systems, CSIRO: Water for a Healthy Country
National Research Flagship Report series, ISSN 1835-095X, 60 pp., https://publications.csiro.au/rpr/download?pid=csiro:EP101579&dsid=DS7 (last access: 25 November 2022), 2010.
Peel, M. C.: Hydrology: catchment vegetation and runoff, Prog. Phys. Geogr., 33, 837–844, https://doi.org/10.1177/0309133309350122, 2009.
Pepler, A. S., Dowdy, A. J., and Hope, P.: The differing role of weather
systems in southern Australian rainfall between 1979–1996 and 1997–2015,
Clim. Dynam., 56, 2289–2302, https://doi.org/10.1007/s00382-020-05588-6, 2021.
Peterson, T. J. and Western, A. W.: Nonlinear time-series modeling of
unconfined groundwater head, Water Resour. Res., 50, 8330–8355,
https://doi.org/10.1002/2013WR014800, 2014.
Peterson, T. J., Argent, R. M., Western, A. W., and Chiew, F. H. S.: Multiple stable states in hydrological models: An ecohydrological investigation, Water Resour. Res., 45, W03406, https://doi.org/10.1029/2008WR006886, 2009.
Peterson, T. J., Saft, M., Peel, M. C., and John, A.: Watersheds may not
recover from drought, Science, 372, 745–749, https://doi.org/10.1126/science.abd5085, 2021.
Petheram, C., Potter, N., Vaze, J., Chiew, F., and Zhang, L.: Towards
better understanding of changes in rainfall-runoff relationships during the
recent drought in south-eastern Australia, in: 19th International Congress on
Modelling and Simulation, Perth, Australia, 12–16, https://doi.org/10.36334/modsim.2011.I6.petheram, 2011.
Petrone, K. C., Hughes, J. D., Van Niel, T. G., and Silberstein, R. P.:
Streamflow decline in southwestern Australia, 1950–2008, Geophys. Res. Lett., 37, L11401, https://doi.org/10.1029/2010GL043102, 2010.
Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat,
D., and Zaehle, S.: Changes in climate and land use have a larger direct
impact than rising CO2 on global river runoff trends, P.
Natl. Acad. Sci. USA, 104, 15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Potter, N. J., Chiew, F. H. S., and Frost, A. J.: An assessment of the
severity of recent reductions in rainfall and runoff in the Murray–Darling
Basin, J. Hydrol., 381, 52–64, https://doi.org/10.1016/j.jhydrol.2009.11.025, 2010.
Potter, N. J. and Chiew, F. H. S.: An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models, Water Resour. Res., 47, W00G10, https://doi.org/10.1029/2010WR010333, 2011.
Rempe, D. and Dietrich, W.: Direct observations of rock moisture, a hidden
component of the hydrologic cycle, P. Natl. Acad. Sci. Mar, 2018, 115, 2664–2669,
https://doi.org/10.1073/pnas.1800141115, 2018.
Renchon, A. A., Griebel, A., Metzen, D., Williams, C. A., Medlyn, B., Duursma, R. A., Barton, C. V. M., Maier, C., Boer, M. M., Isaac, P., Tissue, D., Resco de Dios, V., and Pendall, E.: Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest, Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018, 2018.
Rifai, S. W., De Kauwe, M. G., Ukkola, A. M., Cernusak, L. A., Meir, P., Medlyn, B. E., and Pitman, A. J.: Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems, Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, 2022.
Robinson , D., Jones, S. B., Lebron, I., Reinsch, S., Domínguez, M. T., Smith, A. R., Jones, D. L., Marshall, M. R., and Emmett, B. A.: Experimental evidence for drought induced alternative stable states of soil moisture, Sci. Rep.-UK, 6, 1–6, https://doi.org/10.1038/srep20018, 2018.
Rodriguez-Iturbe, I., D'odorico, P., Porporato, A., and Ridolfi, L.: On the
spatial and temporal links between vegetation, climate, and soil moisture, Water Resour. Res., 35, 3709–3722, https://doi.org/10.1029/1999WR900255, 1999.
Roodari, A., Hrachowitz, M., Hassanpour, F., and Yaghoobzadeh, M.: Signatures of human intervention – or not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change, Hydrol. Earth Syst. Sci., 25, 1943–1967, https://doi.org/10.5194/hess-25-1943-2021, 2021.
Saffarpour, S., Western, A. W., Adams, R., and McDonnell, J. J.: Multiple runoff processes and multiple thresholds control agricultural runoff generation, Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, 2016.
Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The
influence of multiyear drought on the annual rainfall-runoff relationship:
An Australian perspective, Water Resour. Res., 51, 2444–2463, https://doi.org/10.1002/2014WR015348, 2015.
Saft, M., Peel, M. C., Western, A. W., Perraud, J. M., and Zhang, L.: Bias
in streamflow projections due to climate-induced shifts in catchment
response, Geophys. Res. Lett., 43, 1574–1581, https://doi.org/10.1002/2015GL067326, 2016a.
Saft, M., Peel, M. C., Western, A. W., and Zhang, L.: Predicting shifts in
rainfall-runoff partitioning during multiyear drought: Roles of dry period
and catchment characteristics, Water Resour. Res., 52, 9290–9305, https://doi.org/10.1002/2016WR019525, 2016b.
Saft, M., Peel, M. C., and Peterson, T. J.: Explaining the shifts in hydrological response due to multiyear drought and subsequent recovery or non-recovery, in: Vol. 2019, AGU Fall Meeting Abstracts, H33A-05, 2019.
Salama, R. B., Farrington, P., Bartle, G. A., and Watson, G. D.: The role
of geological structures and relict channels in the development of dryland
salinity in the wheatbelt of Western Australia, Aust. J. Earth
Sci., 40, 45–56, https://doi.org/10.1080/08120099308728062, 1993.
Sawada, Y. and Koike, T.: Ecosystem resilience to the Millennium drought
in southeast Australia (2001–2009), J. Geophys. Res.-Biogeo., 121, 2312–2327, https://doi.org/10.1002/2016JG003356,
2016.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D.
B., et al.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014.
Schofield, N. J.: Tree planting for dryland salinity control in Australia,
Agroforest. Syst., 20, 1–23, https://doi.org/10.1007/978-94-011-1832-3_1, 1992.
Semple, B., Rankin, M., Koen, T., and Geeves, G.: A note on tree deaths
during the current (2001–?) drought in South-eastern Australia, Aust.
Geogr., 41, 391–401, https://doi.org/10.1080/00049182.2010.498042,
2010.
Skinner, D. and Langford, J.: Legislating for sustainable basin
management: the story of Australia's Water Act (2007), Water Policy, 15,
871–894, https://doi.org/10.2166/wp.2013.017, 2013.
SKM, CSIRO and Bureau of Regional Sciences: Surface and/or groundwater
interception activities: initial estimates. Waterlines report, National
Water Commission, Canberra, ISBN 978-1-921107-97-9, https://www.mdba.gov.au/sites/default/files/pubs/1006-BPKId-surface-groundwater-interception-activities_0.pdf (last access: 25 November 2022), 2010.
Speich, M. J. R., Zappa, M., Scherstjanoi, M., and Lischke, H.: FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics, Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, 2020.
Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., and
Hunkeler, D.: Your work is my boundary condition!: Challenges and approaches
for a closer collaboration between hydrologists and hydrogeologists, J. Hydrol., 571, 235–243, https://doi.org/10.1016/j.jhydrol.2019.01.058,
2019.
Stenson, M. P., Littleboy, M., and Gilfedder, M.: Estimation of water and
salt generation from unregulated upland catchments, Environ. Modell.
Softw., 26, 1268–1278, https://doi.org/10.1016/j.envsoft.2011.05.013, 2011.
Stephens, C. M., McVicar, T. R., Johnson, F. M., and Marshall, L. A.:
Revisiting pan evaporation trends in Australia a decade on, Geophys. Res. Lett., 45, 11–164, https://doi.org/10.1029/2018GL079332, 2018.
Stephens, C. M., Marshall, L. A., Johnson, F. M., Lin, L., Band, L. E., and
Ajami, H.: Is past variability a suitable proxy for future change? A virtual
catchment experiment, Water Resour. Res., 56, e2019WR026275, https://doi.org/10.1029/2019WR026275, 2020.
Stephens, C. M., Lall, U., Johnson, F. M., and Marshall, L. A.: Landscape
changes and their hydrologic effects: Interactions and feedbacks across
scales, Earth-Sci. Rev., 212, 103466, https://doi.org/10.1016/j.earscirev.2020.103466, 2021.
Tauro, F.: River basins on the edge of change, Science, 372, 680–681, https://doi.org/10.1126/science.abi8770, 2021.
Tian, W., Bai, P., Wang, K., Liang, K., and Liu, C.: Simulating the change
of precipitation-runoff relationship during drought years in the eastern
monsoon region of China, Sci. Total Environ., 723, 138172, https://doi.org/10.1016/j.scitotenv.2020.138172, 2020.
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R., and McAlpine, C.
A.: CO2-vegetation feedbacks and other climate changes implicated in
reducing base flow, Geophys. Res. Lett., 44, 2310–2318, https://doi.org/10.1002/2017GL072759, 2017.
Uddin, S., Parvin, S., Löw, M., Fitzgerald, G. J., Tausz-Posch, S., Armstrong, R., and Tausz, M.: Water use dynamics of dryland canola
(Brassica napus L.) grown on contrasting soils under elevated CO2, Plant Soil, 438, 205–222, https://doi.org/10.1007/s11104-019-03987-1, 2019.
Uddling, J., Teclaw, R. M., Kubiske, M. E., Pregitzer, K. S., and
Ellsworth, D. S.: Sap flux in pure aspen and mixed aspen–birch forests
exposed to elevated concentrations of carbon dioxide and ozone, Tree
Physiol., 28, 1231–1243, https://doi.org/10.1093/treephys/28.8.1231,
2008.
Ukkola, A. M., Prentice, I. C., Keenan, T. F., Van Dijk, A. I., Viney, N.
R., Myneni, R. B., and Bi, J.: Reduced streamflow in water-stressed
climates consistent with CO2 effects on vegetation, Nat. Clim. Change,
6, 75–78, https://doi.org/10.1038/nclimate2831, 2016.
Van Dijk, A. I., Beck, H. E., Crosbie, R. S., de Jeu, R. A., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res.,
49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., Di aldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Verdon-Kidd, D. C. and Kiem, A. S.: Nature and causes of protracted
droughts in southeast Australia: Comparison between the Federation, WWII,
and Big Dry droughts, Geophys. Res. Lett., 36, L22707, https://doi.org/10.1029/2009GL041067, 2009.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science for a changing world, Water Resour. Res., 46, W05301, https://doi.org/10.1029/2009WR008906, 2010.
Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F., Rahman, M., Rosolem, R., Stein, L., and Woods, R.: On doing hydrology with dragons: Realizing the value of perceptual models and knowledge accumulation, Wiley Interdisciplinary Reviews: Water, 8, e1550, https://doi.org/10.1002/wat2.1550, 2021.
Walker, G., Gilfeder, M., Evans, R., Dyson, P., and Stauffacher, M. Groundwater flow systems framework – essential tools for salinity management, https://www.mdba.gov.au/sites/default/files/archived/mdbc-GW-reports/2082_GW_Flow_Systems_framework_report.pdf (last access: 25 November 2022), 2003.
Warren, J. M., Pötzelsberger, E., Wullschleger, S. D., Thornton, P. E.,
Hasenauer, H., and Norby, R. J.: Ecohydrologic impact of reduced stomatal
conductance in forests exposed to elevated CO2, Ecohydrology, 4, 196–210, https://doi.org/10.1002/eco.173, 2011.
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture on trends in flooding, J. Hydrol., 575, 432–441, https://doi.org/10.1016/j.jhydrol.2019.05.054, 2019.
Wasko, C., Nathan, R., and Peel, M. C.: Changes in antecedent soil moisture
modulate flood seasonality in a changing climate, Water Resour. Res.,
56, e2019WR026300, https://doi.org/10.1029/2019WR026300, 2020.
Webb, A. A. and Kathuria, A.: Response of streamflow to afforestation and
thinning at Red Hill, Murray Darling Basin, Australia, J. Hydrol., 412–413, 133–140, https://doi.org/10.1016/j.jhydrol.2011.05.033, 2012.
Weligamage, H., Fowler, K., Peterson, T., Saft, M., Ryu, D., and Peel, M.:
Observation based gridded annual runoff estimates over Victoria, Australia,
MODSIM21, 24th International Congress on Modelling & Simulation, https://doi.org/10.36334/modsim.2021.k11.weligamage, 2021.
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A
strategy for diagnosing and interpreting hydrological model nonstationarity, Water Resour. Res., 50, 5090–5113, 2014.
Xie, Q., Huete, A., Hall, C. C., Medlyn, B. E., Power, S. A., Davies, J. M., Medek, D. E., and Beggs, P. J.: Satellite-observed shifts in C3/C4 abundance in Australian grasslands are associated with rainfall patterns, Remote Sens. Environ., 273, 112983, https://doi.org/10.1016/j.rse.2022.112983, 2022.
Yang, J., Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: Applying the
concept of ecohydrological equilibrium to predict steady state leaf area
index, J. Adv. Model. Earth Sy., 10, 1740–1758, https://doi.org/10.1029/2017MS001169, 2018.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang, W., Liu, B., Jin, Z., and Simmons, C. T.: Contrasting responses of water use efficiency to drought across global terrestrial ecosystems, Sci. Rep.-UK, 6, 1–8, https://doi.org/10.1038/srep23284, 2016.
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour.
Res., 37, 701–708, https://doi.org/10.1029/2000WR900325, 2001.
Zhang, Y. and Schilling, K.: Increasing streamflow and baseflow in
Mississippi River since the 1940 s: Effect of land use change, J. Hydrol., 324, 412–422,
https://doi.org/10.1016/j.jhydrol.2005.09.033, 2006.
Zhu, R., Zheng, H., Jakeman, A., and Zhang, L.: Tracer-aided assessment of
catchment groundwater dynamics and residence time, J. Hydrol., 598,
126230, https://doi.org/10.1016/j.jhydrol.2021.126230, 2021.
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between...