Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-4685-2018
https://doi.org/10.5194/hess-22-4685-2018
Research article
 | 
07 Sep 2018
Research article |  | 07 Sep 2018

Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed

David R. Casson, Micha Werner, Albrecht Weerts, and Dimitri Solomatine

Related authors

Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
The impact of future climate projections and anthropogenic activities on basin-scale groundwater availability
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-26,https://doi.org/10.5194/hess-2024-26, 2024
Preprint under review for HESS
Short summary
Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic characteristics and agricultural and hydrological drought severity: case of study Cesar River basin
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci., 23, 3863–3883, https://doi.org/10.5194/nhess-23-3863-2023,https://doi.org/10.5194/nhess-23-3863-2023, 2023
Short summary
Future changes in flash flood frequency and magnitude over the European Alps
Marjanne J. Zander, Pety J. Viguurs, Frederiek C. Sperna Weiland, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-274,https://doi.org/10.5194/hess-2023-274, 2023
Manuscript not accepted for further review
Short summary
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023,https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024,https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024,https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024,https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M: Crop evapotranspiration-Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, 56, 6541, 1998. 
AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, SWIPA 2011, Gaustadalléen 21, 0349 Oslo, Norway, 2012. 
Beck, H., van Dijk, A., Leviizzani, V., Schellekens, J., Miralles, G., Martrens, B., de Roo, A., Pappenberger, F., Huffman, G., and Wood, E.: MSWEP: 3-hourly 0.1? fully global precipitation (1979–present) by merging gauge, satellite, and weather model data [Abstract], Geophysical Research Abstracts, 19, 2017. 
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017. 
Bergström, S.: The HBV Model – its structure and applications, NORRKÖPING, Sweden, 1992. 
Download
Short summary
In high-latitude (> 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff are uncertain due to the lack of data and complex physical processes. This provides challenges for hydrological assessment and operational water management. Global re-analysis datasets have great potential to aid in snowpack representation and snowmelt prediction when combined with a distributed hydrological model, though they still have clear limitations in remote boreal forest and tundra environments.