Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
HESS | Articles | Volume 22, issue 9
Hydrol. Earth Syst. Sci., 22, 4685–4697, 2018
https://doi.org/10.5194/hess-22-4685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 4685–4697, 2018
https://doi.org/10.5194/hess-22-4685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Sep 2018

Research article | 07 Sep 2018

Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed

David R. Casson et al.

Viewed

Total article views: 1,807 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,255 523 29 1,807 72 32 34
  • HTML: 1,255
  • PDF: 523
  • XML: 29
  • Total: 1,807
  • Supplement: 72
  • BibTeX: 32
  • EndNote: 34
Views and downloads (calculated since 02 May 2018)
Cumulative views and downloads (calculated since 02 May 2018)

Viewed (geographical distribution)

Total article views: 1,688 (including HTML, PDF, and XML) Thereof 1,676 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 07 Aug 2020
Publications Copernicus
Download
Short summary
In high-latitude (> 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff are uncertain due to the lack of data and complex physical processes. This provides challenges for hydrological assessment and operational water management. Global re-analysis datasets have great potential to aid in snowpack representation and snowmelt prediction when combined with a distributed hydrological model, though they still have clear limitations in remote boreal forest and tundra environments.
In high-latitude ( 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff...
Citation