Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
  • CiteScore value: 7.8 CiteScore
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Volume 19, issue 1
Hydrol. Earth Syst. Sci., 19, 631–643, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 631–643, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jan 2015

Research article | 30 Jan 2015

Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

A. Md Ali1,2, D. P. Solomatine1,3, and G. Di Baldassarre4 A. Md Ali et al.
  • 1Department of Integrated Water System and Knowledge Management, UNESCO-IHE Institute for Water Education, Delft, the Netherlands
  • 2Department of Irrigation and Drainage, Kuala Lumpur, Malaysia
  • 3Water Resource Section, Delft University of Technology, the Netherlands
  • 4Department of Earth Sciences, Uppsala University, Sweden

Abstract. Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due to the use of low-cost DEM that have not only a lower resolution, but also a lower quality. Lastly, to better explore the sensitivity of the 1-D hydraulic models to different DEMs, we performed an uncertainty analysis based on the GLUE methodology.

Publications Copernicus