Articles | Volume 28, issue 23
https://doi.org/10.5194/hess-28-5193-2024
https://doi.org/10.5194/hess-28-5193-2024
Research article
 | 
04 Dec 2024
Research article |  | 04 Dec 2024

Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge

Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami

Related authors

Towards an Operational Groundwater Level Forecasting System in Switzerland
Raoul Alexandre Collenteur, Konrad Bogner, Christian Moeck, Massimiliano Zappa, and Mario Schirmer
Abstr. Int. Cartogr. Assoc., 9, 5, https://doi.org/10.5194/ica-abs-9-5-2025,https://doi.org/10.5194/ica-abs-9-5-2025, 2025
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Technical note: Improved handling of potential evapotranspiration in hydrological studies with PyEt
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417,https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021,https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Laboratory heat transport experiments reveal grain-size- and flow-velocity-dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025,https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary
Improvement of the KarstMod modelling platform for a better assessment of karst groundwater resources
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025,https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary
Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what is the best way to leverage regionalised information?
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
Hydrol. Earth Syst. Sci., 29, 841–861, https://doi.org/10.5194/hess-29-841-2025,https://doi.org/10.5194/hess-29-841-2025, 2025
Short summary
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024,https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Numerical Analysis of the Effect of Heterogeneity on CO2 Dissolution Enhanced by Gravity Driven Convection
Yufei Wang, Daniel Fernandez Garcia, and Maarten W. Saaltink
EGUsphere, https://doi.org/10.22541/au.170709021.19680723/v1,https://doi.org/10.22541/au.170709021.19680723/v1, 2024
Short summary

Cited articles

Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019. a
Azmi, E., Ehret, U., Weijs, S. V., Ruddell, B. L., and Perdigão, R. A. P.: Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance, Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, 2021. a
Bakker, M. and Schaars, F.: Solving Groundwater Flow Problems with Time Series Analysis: You May Not Even Need Another Model, Groundwater, 57, 826–833, https://doi.org/10.1111/gwat.12927, 2019. a
Challu, C., Olivares, K. G., Oreshkin, B. N., Garza Ramirez, F., Mergenthaler Canseco, M., and Dubrawski, A.: NHITS: Neural Hierarchical Interpolation for Time Series Forecasting. in: Proceedings of the AAAI Conference on Artificial Intelligence, 37th AAAI Conference on Artificial Intelligence, Washington DC, USA, 7–14 February 2023, 6989–6997, https://doi.org/10.1609/aaai.v37i6.25854, 2023 a
Chidepudi, S. K. R., Massei, N., Jardani, A., Henriot, A., Allier, D., and Baulon, L.: A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability, Sci. Total Environ., 865, 161035, https://doi.org/10.1016/j.scitotenv.2022.161035, 2023. a
Download
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Share