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Tim J. Peterson11, Jānis Bikše12, Antoine Di Ciacca13, Xinyue Wang14, Yang Zheng14, Maximilian Nölscher15,
Julian Koch16, Raphael Schneider16, Nikolas Benavides Höglund17, Sivarama Krishna Reddy Chidepudi18,19,
Abel Henriot19, Nicolas Massei18, Abderrahim Jardani18, Max Gustav Rudolph20, Amir Rouhani21,
J. Jaime Gómez-Hernández22, Seifeddine Jomaa21, Anna Pölz23,24, Tim Franken25, Morteza Behbooei26, Jimmy Lin26,
and Rojin Meysami26

1Department Water Resources and Drinking Water (W+T), Eawag, Duebendorf, Switzerland
2Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
3Department of Water Management, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands
4Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology, Karlsruhe, Germany
5Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany
6Intera, Fort Collins, Colorado, USA
7Southwest Research Institute (SWRI), San Antonio, Texas, USA
8Burgeap, Ginger Group, Lyon, France
9Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University
Erlangen-Nuremberg (FAU), Erlangen, Germany
10Institute of Geography & Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
11Department of Civil Engineering, Monash University, Clayton, Australia
12Department of Geology, University of Latvia, Riga, Latvia
13Environmental Research, Lincoln Agritech Ltd, Lincoln, New Zealand
14Data Science Institute (DSI), Brown University, Providence, Rhode Island, USA
15German Federal Institute for Geoscience and Resources (BGR), Berlin, Germany
16Department of Hydrology, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
17Department of Geology, Lund University, Lund, Sweden
18Morphodynamique Continentale et Côtière, Univ. Rouen Normandie, UNICAEN,
CNRS, M2C UMR 6143, 76000 Rouen, France
19BRGM, 3 av. C. Guillemin, 45060 Orleans CEDEX 02, France
20Institute of Groundwater Management, Dresden University of Technology, Dresden, Germany
21Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for
Environmental Research – UFZ, Magdeburg, Germany
22Institute for Water and Environmental Engineering, Universitat Politècnica de València, Valencia, Spain
23Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria
24Interuniversity Cooperation Centre Water and Health, Vienna, Austria
25Sumaqua, Louvain, Belgium
26David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
27Department of Geoscience & Engineering, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands

Published by Copernicus Publications on behalf of the European Geosciences Union.



5194 Raoul A. Collenteur et al.: Groundwater modelling challenge

Correspondence: Raoul A. Collenteur (raoul.collenteur@eawag.ch)

Received: 9 April 2024 – Discussion started: 14 May 2024
Revised: 23 August 2024 – Accepted: 2 October 2024 – Published: 4 December 2024

Abstract. This paper presents the results of the 2022
Groundwater Time Series Modelling Challenge, where 15
teams from different institutes applied various data-driven
models to simulate hydraulic-head time series at four moni-
toring wells. Three of the wells were located in Europe and
one was located in the USA in different hydrogeological set-
tings in temperate, continental, or subarctic climates. Partic-
ipants were provided with approximately 15 years of mea-
sured heads at (almost) regular time intervals and daily mea-
surements of weather data starting some 10 years prior to the
first head measurements and extending around 5 years af-
ter the last head measurement. The participants were asked
to simulate the measured heads (the calibration period), to
provide a prediction for around 5 years after the last mea-
surement (the validation period for which weather data were
provided but not head measurements), and to include an un-
certainty estimate. Three different groups of models were
identified among the submissions: lumped-parameter mod-
els (three teams), machine learning models (four teams),
and deep learning models (eight teams). Lumped-parameter
models apply relatively simple response functions with few
parameters, while the artificial intelligence models used
models of varying complexity, generally with more param-
eters and more input, including input engineered from the
provided data (e.g. multi-day averages).

The models were evaluated on their performance in simu-
lating the heads in the calibration period and in predicting the
heads in the validation period. Different metrics were used
to assess performance, including metrics for average relative
fit, average absolute fit, fit of extreme (high or low) heads,
and the coverage of the uncertainty interval. For all wells,
reasonable performance was obtained by at least one team
from each of the three groups. However, the performance
was not consistent across submissions within each group,
which implies that the application of each method to indi-
vidual sites requires significant effort and experience. In par-
ticular, estimates of the uncertainty interval varied widely
between teams, although some teams submitted confidence
intervals rather than prediction intervals. There was not one
team, let alone one method, that performed best for all wells
and all performance metrics. Four of the main takeaways
from the model comparison are as follows: (1) lumped-
parameter models generally performed as well as artificial
intelligence models, which means they capture the funda-
mental behaviour of the system with only a few parameters.
(2) Artificial intelligence models were able to simulate ex-
tremes beyond the observed conditions, which is contrary to
some persistent beliefs about these methods. (3) No overfit-

ting was observed in any of the models, including in the mod-
els with many parameters, as performance in the validation
period was generally only a bit lower than in the calibration
period, which is evidence of appropriate application of the
different models. (4) The presented simulations are the com-
bined results of the applied method and the choices made
by the modeller(s), which was especially visible in the per-
formance range of the deep learning methods; underperfor-
mance does not necessarily reflect deficiencies of any of the
models. In conclusion, the challenge was a successful initia-
tive to compare different models and learn from each other.
Future challenges are needed to investigate, for example, the
performance of models in more variable climatic settings to
simulate head series with significant gaps or to estimate the
effect of drought periods.

1 Introduction

Time series of hydraulic heads are one of the most important
sources of information about groundwater systems. These
time series contain information about the subsurface con-
ditions and about the stresses causing the observed fluctu-
ations. Modelling makes such information explicit and in-
creases our understanding of groundwater systems (Shapiro
and Day-Lewis, 2022). Modelling is essential to assess the
impact of future land use and climatic scenarios on ground-
water systems. Although the solution of groundwater-related
problems often requires a spatial model, Bakker and Schaars
(2019) argue that many problems can be solved by modelling
the heads with a point-scale model (i.e. a time series model
at a single monitoring well). Over the years, many types of
models have been developed to simulate heads measured in
a monitoring well. These models range from artificial intel-
ligence to purely statistical models and from simple analytic
solutions to complex numerical (3D) models based on phys-
ical laws. The choice of a useful model can be challenging
due to the wide range of available models for similar tasks.
The choice of an appropriate model for a certain task is com-
monly based on the purpose of the model; on the data avail-
ability; and, often, on the previous experience of the modeller
(e.g. Addor and Melsen, 2019).

Studies that systematically compare different models can
help in model selection. Comparing the performance of dif-
ferent models can help both practitioners and developers to
improve existing models by learning from other modelling
concepts (Kollet et al., 2017) or calibration approaches (e.g.
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Freyberg, 1988). This is commonly mentioned as a reason
why hydrologists should be interested in machine learning
models (e.g. Haaf et al., 2023; Nolte et al., 2024; Kratzert
et al., 2019) as these may result in new knowledge that, in
turn, may be used to improve empirical and process-based
groundwater models. It is important, however, to be aware
that model results are the combined result of the capabilities
of the applied method and the choices made by the modeller
in applying the method. These choices are often the result
of personal judgement (Holländer et al., 2009) or the experi-
ence of colleagues (Melsen, 2022), while some choices may
simply be erroneous (Menard et al., 2021).

Several studies have compared models to simulate head
time series (e.g. Sahoo and Jha, 2013; Shapoori et al., 2015;
Wunsch et al., 2021; Zarafshan et al., 2023; Vonk et al.,
2024). However, many comparison studies consider only one
type of model (e.g. only statistical or process-based mod-
els) instead of different types of models. A fair and unbiased
comparison of models is not straightforward as a modeller
may be more familiar with one model than another or may
lack the experience to obtain optimal results for all models
used in the comparison. A more fair and less biased com-
parison may be obtained by asking different modellers to
simulate the same data with their model of choice. Simula-
tions can subsequently be evaluated on independent (unseen)
data. An example of this approach to model comparison is
the karst modelling challenge (Jeannin et al., 2021) where
different groups were asked to model a spring discharge time
series. The present study was inspired by this project.

The 2022 Groundwater Time Series Modelling Challenge
was organized by the first five authors of this paper to com-
pare the performance of different types of groundwater mod-
els in simulating hydraulic-head time series under temper-
ate, subarctic, and continental climates. The aim of the mod-
elling challenge was to simulate the heads for a given ∼ 15-
year calibration period and to predict the heads for an un-
known ∼ 5-year validation period, with the validation itself
being performed solely by the organizers of the challenge.
The fundamental idea was to investigate the strengths and
weaknesses of different approaches rather than to find the
“best” model to simulate heads. Spoiler alert: there was no
model that performed best based on all performance criteria
for all the head series. Teams that wanted to participate were
asked to model four time series of hydraulic heads from dif-
ferent regions with their model of choice. A total of 17 teams
took up the challenge and submitted results. An analysis of
the results is presented in this paper. This paper is organized
as follows. First, the setup of the challenge is presented, in-
cluding the available data and performance metrics used in
the evaluation. Next, the submissions are discussed, and their
performances are compared. The paper ends with recommen-
dations and conclusions.

2 Setup of the challenge

2.1 Background

The Groundwater Time Series Modelling Challenge was an-
nounced publicly at the General Assembly of the European
Geophysical Union (EGU) in 2022 (Haaf et al., 2022) and
was further advertised via social media and personal commu-
nication. The challenge itself was administered through the
GitHub platform (https://github.com/gwmodeling/challenge,
last access: 25 November 2024). On this website, all infor-
mation and data were made public. All participants had ac-
cess to the same information. There was no incentive given
for participation in the challenge (e.g. there was no award for
the best submission) other than the potential co-authorship of
this paper.

The modelling rules were kept relatively simple. Partici-
pants were provided with several time series of stresses (also
called forcings, explanatory variables, or exogenous vari-
ables) that might cause the head fluctuations. The goal was
to provide predictions of hydraulic heads for a validation pe-
riod to the organizers; the organizers performed the valida-
tion. The participants were allowed to use any model and
any or all of the provided stresses, with the only restriction
being that they were not allowed to use the observed head
data as an explanatory variable (i.e. to predict the heads with
historic head measurements). This restriction ensures that the
models can be used to learn what stresses and processes re-
sult in the observed head dynamics (for example, for use in a
traditional process-based groundwater model) rather than the
fact that the head at a certain time is strongly related to the
head a few time steps prior. Participants were not allowed to
use any stresses other than the ones provided to ensure that
any differences in the model outcomes were the result of the
model and the provided stresses.

Participants were asked to submit the name of their team,
their modelling results, and additional information about
their modelling procedure using predefined submission for-
mats. Submissions were required to include simulated heads,
including uncertainty intervals, for both the period of ob-
served heads and for an additional validation period for
which stresses were supplied but where no observed heads
were made available. Further information on the submission
had to be submitted through a README file in Markdown
format. Finally, the modelling rules stated that “The mod-
elling workflow must be reproducible, preferably through the
use of scripts, but otherwise described in enough detail to re-
produce the results”.

2.2 Provided data

The participants were provided with four time series of hy-
draulic heads measured in monitoring wells, as well as rel-
evant stresses (e.g. climate data). Three wells are located
in Europe (in the Netherlands, Germany, and Sweden), and
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one is located in the USA. The wells were selected to cover
different hydrogeological settings (porous, fractured, and
karstic aquifers; confined and unconfined), different climates
(e.g. influenced by snow or not), and other aspects (possi-
ble influence by surface water). Additionally, the organizers
sought long, mostly gapless times series with high-frequency
head measurements (daily to weekly). It is noted here, how-
ever, that, because this challenge only considered four wells,
no statements can be made about which model performs best
for which condition. The initial challenge contained mea-
surements at a fifth monitoring well (named Sweden_1), but
because none of the models could predict the measurements
in the validation period (i.e. a Nash–Sutcliffe efficiency be-
low zero for all models in the validation period), it was re-
moved from the challenge. Short descriptions of the settings
of the monitoring wells and the general locations (country
and region) were provided (these were similar to those found
below) in addition to the head measurements and the time
series of stresses that potentially affect the measured head
fluctuations. Exact locations were not provided to guarantee
that no team would be able to leverage the publicly avail-
able head data to predict the validation period. Detailed de-
scriptions of the geology, setting, subsurface, and construc-
tion of the monitoring wells were not provided to limit the
challenge to use cases where detailed information about the
subsurface is not available. This clearly limited the applica-
bility of process-based models that generally require such in-
formation; no teams used such models as a result.

Observed hydraulic-head data were provided for approx-
imately 15 years for each monitoring well. The head data
are of a high quality, with minimal gaps and (close to) con-
stant frequency. Measurements were available approximately
weekly for the well in Sweden, while daily data were avail-
able for all other wells. Head data with regular time intervals
were selected to not exclude methods that cannot deal with ir-
regular time series, even though these are often found in prac-
tice. Head data were selected from various continental and
temperate climates and with seemingly negligible anthro-
pogenic influences. The head series for each of the four wells
are shown in Fig. 1, including the distribution of the measure-
ments. A brief description of each monitoring well and its
climatic setting is given in the following. The exact descrip-
tions provided to the participants can be found in the Zenodo
repository: https://doi.org/10.5281/zenodo.10438290 (Col-
lenteur et al., 2024).

– The monitoring well in the Netherlands is located in
the province of Drenthe in the northern part of the
country. The monitoring well has the identification no.
B12C0274-001 and was downloaded from https://www.
dinoloket.nl (last access: 15 September 2022) on 15
September 2022. The well is located in an unconfined
aquifer, consisting of a ∼ 1.5 m layer of peat mate-
rial underlain by fine sands. The area is drained by
many small ditches and drains. The water table regularly

reaches the surface level. The surface elevation is about
11.33 m above mean sea level, and the well is screened
from 0.05 to 0.95 m below the surface in the peat layer.
The climate is classified as a temperate oceanic climate,
with an average annual precipitation of 876 mm and an-
nual potential evaporation of 559 mm.

– The monitoring well in Germany is located in Bavaria
in the southeastern part of the country and is drilled in
the Upper Jurassic Malm Karst aquifer. It is a deep, con-
fined aquifer (partially artesian), which is overlain by a
local alluvial aquifer in a small river valley. The sur-
face elevation is about 375 m a.s.l., and the head is, on
average, 0.9 m below the surface. The climate is clas-
sified as continental with warm summers. The average
annual precipitation and potential evaporation are ap-
proximately equal, with 692 and 641 mm per year, re-
spectively. The well has the ID no. 11149 and the name
Gungolfing 928. The head data were downloaded from
https://www.gkd.bayern.de (last access: 5 May 2022) on
5 May 2022.

– The monitoring well in Sweden is located on a hillside
in moraine terrain with shrub- and/or grass-dominated
land cover near Abisko National Park above the po-
lar circle. The well is located in an unsorted till, con-
taining both high contents of gravel and fine fractions
with normal boulder frequency. The sediment thick-
ness around the wells is between 5 and 10 m. The well
is a steel standpipe with a perforated section of ap-
proximately 1 m and a diameter of 5.08 cm. The av-
erage distance to the groundwater table is 5.8 m, and
the length of the pipe is 7.4 m, approximately reach-
ing the fractured granitic bedrock. The climate is classi-
fied as subarctic, with cold summers and an average an-
nual temperature around 0 °C. This location has the low-
est amounts of average annual precipitation (353 mm
per year) and potential evaporation (332 mm per year).
The head data were downloaded from https://www.sgu.
se/grundvatten/grundvattennivaer/matstationer/ (last ac-
cess: 17 May 2022) (site ID: Abisko 8) on 17 May 2022
and were processed using linear regression to fill short
gaps and irregular measurement intervals.

– The monitoring well in the USA is located in the town
of Mansfield in the state of Connecticut and is screened
in a confined bedrock aquifer. The aquifer consists of
crystalline non-carbonated rock; predominantly meta-
morphic schist; and gneiss that is highly folded, with
numerous fractures and joints. The surface elevation is
approximately 157 m a.s.l., and the well screen is ap-
proximately 135 m below the land surface. The well
site no. is 414831072173002; the head data were down-
loaded from https://waterdata.usgs.gov (last access: 1
July 2022) on 1 July 2022. The distance to the nearby
river is approximately 1.5 km, with some small river
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Figure 1. Hydraulic-head time series, their probability density distributions, and summary statistics (the mean µ, the standard deviation σ ,
and the skewness µ3) for the calibration period (grey data) and the validation period (coloured data); heads in the validation period were not
provided to the participants.

branches being even closer at around 500 m. The cli-
mate at this location is classified as continental, simi-
larly to Germany. The average annual precipitation and
potential evaporation fluxes are, however, much larger
at 1344 and 956 mm per year, respectively.

Time series of several stresses were provided to model the
heads. All the variables were provided as time series with
daily values starting approximately 10 years before the first
head measurement and extending 4 to 5 years (the length of
the validation period) after the last head measurement. For
the wells located in Europe, stresses were obtained from the
E-OBS database (Cornes et al., 2018, v0.25.0e). The data
provided for these three wells included nine daily variables:
precipitation; mean, maximum, and minimum temperature;
potential evaporation; mean sea level pressure; mean wind
speed; mean relative humidity; and global radiation. For the
well in the USA, only the precipitation, the potential evapo-
ration (computed using the Hamon method; Hamon, 1961),
the mean and maximum daily temperature, and the stage of
a nearby river were provided; this was the only well where
river stage data were provided. Summary statistics of the
most common meteorological stresses (temperature, precipi-
tation, and potential evaporation) are provided in Table 1 for
reference and comparison.

2.3 Evaluation of modelling results

The aim of the modelling challenge was to simulate the heads
for the calibration period and to predict the heads for the val-

idation period. Therefore, the model evaluation is focused on
how well the models predicted the heads in each of these pe-
riods. The simulated head time series and the estimated pre-
diction intervals are evaluated and compared using various
performance metrics, as summarized in Table 2. All metrics
are computed separately for the calibration and validation pe-
riods.

The simulated heads are evaluated using the Nash–
Sutcliffe efficiency (NSE), a relative error metric, and the
mean absolute error (MAE), an absolute error metric. In
addition, it is evaluated how well the models simulate the
lower and higher heads. The performance of the models
in simulating low heads is measured using the MAE com-
puted on the heads below the 0.2 quantile (MAE0.2), while
the performance in simulating high heads is evaluated us-
ing the MAE computed on the heads above the 0.8 quantile
(MAE0.8). The thresholds 0.2 and 0.8 are chosen based on
a visual interpretation of the distribution of highs and lows,
but, of course, this remains somewhat arbitrary. Analyses us-
ing other thresholds (0.05, 0.1, 0.9, and 0.95) showed that
the results and conclusions about the models’ performances
in simulating the extremes do not change substantially with
different thresholds (see also the Supplement).

All teams were also asked to provide 95 % prediction in-
tervals for their simulations. The quality of these intervals
is assessed by computing the prediction interval coverage
probability (PICP). A PICP value of 0.95 means that 95 % of
the observed values are within the 95 % prediction intervals.
PICP values below 0.95 mean that the uncertainty is under-
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Table 1. For each monitoring well: latitude (lat.), longitude (long.), climate, and average annual values for the common meteorological
stresses of temperature (T ), precipitation (P ), and potential evaporation (ETp).

Country Lat. Long. Climate T P ETp
(°C) (mm yr−1) (mm yr−1)

Netherlands 53.00 6.42 Cfb 9.9 876 559
Germany 48.92 11.35 Dfb 8.7 692 641
Sweden 68.36 18.82 Dfc 0.0 353 332
USA 41.81 −72.29 Dfb 8.9 1344 956

Table 2. The performance metrics used for model evaluation. N is the number of measurements in the measured head time series hi ; ĥi is
the modelled head; µh is the average measured head; hq=0.2 and hq=0.8 are the 0.2 and 0.8 quantiles of the measured head, respectively;
and ĥL

i
and ĥU

i
are the lower and upper limits of the estimated prediction interval for measurement i, respectively.

Metric Formula Range

Nash–Sutcliffe efficiency (NSE) 1−
∑N
i=1(hi−ĥi )

2∑N
i=1(hi−µh)2

−∞–1

Mean absolute error (MAE) 1
N

∑N
i=1|hi − ĥi | 0–∞

Metric for low levels (MAE0.2) 1
N

∑N
i=1|hi − ĥi | for hi < hq=0.2 0–∞

Metric for high levels (MAE0.8) 1
N

∑N
i=1|hi − ĥi | for hi > hq=0.8 0–∞

Prediction interval coverage probability (PICP) 1
N

∑N
i=1ai ,ai =

{
1 if hi ∈ [ĥL

i
, ĥU
i
],

0 otherwise
0–1

estimated; on the other hand, for PICP values above 0.95, the
uncertainty is overestimated.

3 Submissions

A total of 17 teams from different institutes participated in
the challenge. After an initial analysis of the results and con-
sultation of the participants, it was decided to exclude the
results of two teams from further analysis. The models of
these two teams had performance levels worse than if the
mean head was taken as the simulation. Table 3 provides
an overview of the data of the remaining 15 participating
groups. The geographical locations of participating groups
are unevenly distributed, with two-thirds of the teams com-
ing from continental Europe. This was expected as three of
the four monitoring wells were located in Europe, and the
main promotion of the challenge was at the EGU. A total
of 12 teams modelled all four time series provided for the
challenge, and three teams simulated only two (for unknown
reasons).

All submissions were collected through the GitHub plat-
form, where participating groups made pull requests to sub-
mit their results. The pull requests were manually checked
before being merged. Many of the teams made sure that their
analysis is reproducible by submitting not only the results
and a description of the models but also the scripts and infor-
mation on the computing environment used for the analysis.

In general, the submissions were of high quality, and the re-
sults were reproducible.

3.1 Model types

All teams used different models and software to simulate the
hydraulic heads. The models were roughly categorized into
three groups: lumped-parameter models, machine learning
models, and deep learning models. None of the teams used a
process-based or analytical model, which may be explained
(as mentioned before) by the limited description of the sub-
surface conditions and the exact locations of the wells. De-
tailed referenced descriptions of the individual models and
methods can be found in the Supplement of this paper. The
files submitted by the participants, including detailed scripts
and workflows for most models, can be found in a dedicated
Zenodo repository (see the “Code and data availability” sec-
tion). An overview of the methods and the most important
differences are provided below.

3.1.1 Lumped-parameter models

Three of the teams used a type of lumped-parameter model to
simulate the heads. All three models (HydroSight, Peterson
and Western, 2014; Pastas, Collenteur et al., 2019; Gardenia,
Thiéry, 2015) use reservoir models to compute groundwater
recharge from precipitation and potential evaporation. This
recharge flux is translated into groundwater levels using a
response function (Pastas and HydroSight) or a routing rou-
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Table 3. Groups participating in the groundwater modelling challenge, including the model they used, the type of model, and the wells that
they simulated. ML refers to machine learning, and DL refers to deep learning. Affiliation numbers correspond to the numbers on the first
page of this paper.

Team Model Affiliations Type NLD GER SWE USA

da_collective Pastas 6, 7 Lumped X X X X
gardenia Gardenia 8 Lumped X X X X
HydroSight HydroSight 9, 10, 11 Lumped X X X X

Janis RF 12 ML X X X X
Mirkwood RF 13 ML X X X X
MxNl RF/RBF-SVM/MLP/P-SVM 15 ML X X X X
Selina_Yang SVR 14 ML X X

GEUS LSTM 16 DL X X X X
LUHG N-HiTS 17 DL X X X X
M2C_BRGM BC-MODWT-DL 18, 19 DL X X X X
TUD LSTM 20 DL X X
RouhaniEtAl CNN 21, 22 DL X X X X
TUV Transformer 23, 24 DL X X X X
haidro LSTM 25 DL X X X X
uw RNN 26 DL X X

tine (Gardenia). Additional stresses can be added in a similar
manner. These models are characterized by a small number
of parameters (5 to 15) and short computation times.

Each team used different strategies for calibration. The pa-
rameters of the Pastas models were calibrated with PESTPP-
IES and pyEMU (White et al., 2016). Parameters for the Hy-
droSight models were calibrated using a shuffled complex al-
gorithm (a global calibration scheme; Chu et al., 2011). Gar-
denia was the only model in the challenge that was calibrated
manually by minimizing the NSE and through visual inter-
pretation even though the developers recommend using Gar-
denia’s automatic calibration procedure (Thiéry, 2024). All
of these models used only precipitation and potential evap-
oration as explanatory variables, and some models used the
temperature data (Sweden) and the river stage (USA) even
though all three models have the ability to do both.

3.1.2 Machine learning models

Four teams used a supervised machine learning algorithm
to model the heads: Janis, Mirkwood, Selina_Yang, and
MxNI. The first two teams applied (ensembles of) random
forest models applying the R packages tidymodels (Kuhn
and Wickham, 2020) and ranger (Wright and Ziegler, 2017).
Both teams used the root mean squared error (RMSE) as the
objective function. A detailed description of the random for-
est approach from team Mirkwood can be found in Di Ciacca
et al. (2023). Team Selina_Yang used a support vector re-
gression (SVR) model from the Python package scikit-learn
(Pedregosa et al., 2011) to simulate the heads and used the
mean squared error (MSE) as the calibration target. Team
MxNI applied an ensemble of random forests, multi-layer
perceptron, and Radial Basis Function Support Vector Ma-

chine models in various configurations (Wright and Ziegler,
2017; Venables et al., 2002; Karatzoglou et al., 2004). The
weights for each member in the ensemble were optimized
using the RMSE as the objective function.

All of these models used most of the supplied data, plus
additional time series compiled from the supplied data; such
compiled time series are referred to as engineered features.
The features were often lagged versions of the original vari-
ables or moving-window features (e.g. averages) to capture
memory effects of the variables. Such engineered features
can incorporate existing domain knowledge and thus provide
the model with more relevant information, which can lead to
better predictions and improved accuracy compared to lever-
aging the provided data directly.

3.1.3 Deep learning models

The majority of the teams, eight in total, applied a deep
learning (DL) model to simulate the heads. Seven of them
applied a model based on neural networks (e.g. convolu-
tional neural networks (CNNs), recurrent neural network
(RNN), or long short-term memory (LSTM)). Four teams
(TUD, Haidro, GEUS, and UW) used a long short-term
memory (LSTM) network (e.g. Hochreiter and Schmidhuber,
1997), where Haidro used a multi-timescale LSTM (MTS-
LSTM) network. TUD used a sequence-to-sequence neu-
ral network model (Transformer, Vaswani et al., 2017), and
RouhaniEtAL applied a convolutional neural network (CNN,
based on Wunsch et al., 2022). Team M2c_BRGM applied
a Boundary Corrected Maximal Overlap Wavelet Transform
deep learning (BC-MODWT-DL) model based on (BI)LSTM
and GRU models (Chidepudi et al., 2023). LUHG used a
Neural Hierarchical Interpolation for Time Series Forecast-
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ing model (N-HiTS, Challu et al., 2023), optimized using a
Gaussian likelihood function. All other teams in this group
used the mean squared error as the loss function to opti-
mize the models. All these models simulate nonlinear rela-
tionships between the input data and the heads and used all
the data provided for each well.

In contrast to the machine learning models, only three
teams derived additional features from the provided input
data (GEUS, LUHG, and Haidro). For example, team GEUS
computed snow accumulation, to be used as an additional in-
put variable. The reasons why other teams did not use feature
engineering are not known; however, although deep learning
methods can benefit from additional features in a similar way
to machine learning models (see above), they are better at ex-
tracting features themselves during training. In addition, the
inclusion of additional inputs increases the complexity (num-
ber of parameters) of a deep learning model, which can be
counterproductive.

4 Results

4.1 Overall performance

The overall model performances were measured by the
Nash–Sutcliffe efficiency (NSE) and the mean absolute er-
ror (MAE), which are presented in Figs. 2 and 3, respec-
tively. Each column shows a different monitoring well, and
each row represents a team. The lighter-coloured bars show
the metric values for the calibration period, and the darker-
coloured bars show the metric values for the validation pe-
riod. The numbered circles denote the rank of each team per
well in the validation period, and the star denotes the best
model. At the top, boxplots of the metric values of all teams
are shown. All boxplots in this paper show the interquartile
range, and whiskers indicate 1.5 times the interquartile range.
For the NSE, the highest value is best (Fig. 2). For the MAE,
the lowest value is best (Fig. 3). Note that the MAE is ex-
pected to be higher for wells where the range of the head
data is larger (i.e. the MAE is expected to be larger for the
well in Sweden than for the well in the Netherlands).

Most models generally showed reasonable performance,
except for the well in Sweden, with an average NSE of 0.64
over all four wells in the validation period. Without the well
in Sweden, the average NSE for the three remaining wells in
the validation period is 0.72. This shows the general capabil-
ity of the models to simulate the observed groundwater levels
with the provided input data. Model performances generally
decreased from the calibration to the validation period from
an NSE of 0.80 to an NSE of 0.64 on average (for all four
wells).

The results shown in Figs. 2 and 3 indicate that none of
the models consistently outperformed all other models for all
wells. Moreover, no models were consistently ranked (based
on these two metrics) in the top five for all four wells. There

Figure 2. Bar plots of the Nash–Sutcliffe efficiency (NSE) for each
of the wells (each column) and for each team (each row) for the
calibration (lighter colour) and for the predicted validation period
(darker colour). The teams are grouped together by their model
type. The numbered circles denote the rank of the team for each
well, and the star denotes the best model per well in the validation
period (highest NSE is best). If no model was provided by a team,
there is no rank for that well. Boxplots of the metric values over all
teams are shown for each well at the top.

Figure 3. The same as for Fig. 2 but for the mean absolute error
(MAE). Note that the lowest MAE is best.
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is also not one model type (lumped, ML, or DL) that con-
sistently outperforms the others. For the MAE metric, for ex-
ample, the two best ranking models are deep learning models
for the Netherlands, lumped-parameter models for Germany,
and machine learning models for Sweden. The deep learning
models, however, have the best models for two out of four
wells, as measured by MAE and NSE. The different perfor-
mance metrics measure different error metrics (relative vs.
absolute) or focus on different parts of the head time series
(low heads or high heads). The ranking of the models differs
for each error metric, which highlights the importance of us-
ing multiple metrics. Although the best-performing model is
indicated for each metric, it must be pointed out that the dif-
ference between the top-performing models is small for each
metric.

The performance of the lumped-parameter models is sub-
stantially lower for the well in the USA. This is also the only
well where river stage data were provided. Here, the rela-
tively low model performances for HydroSight and Gardenia
can probably be explained by the fact that river stage data
were not used in these models, contrarily to all other teams.
The Spearman correlation between the river stage and the
head is R = 0.78, making the river stage a good predictor of
the head for this well. It is noted, however, that including the
river as a stress is possible in both HydroSight and Garde-
nia and would likely improve the results. The substantially
lower performances may thus be considered to be the result
of modelling choices rather than model deficiencies. Missing
data and processes are also likely to be the reasons for the
low model performance of the Gardenia model for the well
in Sweden; i.e. it is the only model in the challenge that did
not use temperature data, while Gardenia has an option to
simulate the snow process. Temperature data for Sweden are
important to account for the impact of snow processes on the
heads.

The model fit is further illustrated by plots of the best
model for each model type according to the NSE for each
of the four wells (Fig. 4). The results show that the best mod-
els simulate the heads fairly accurately, except for the well
in Sweden. For the wells in the Netherlands, Germany, and
Sweden, substantial differences exist between the three best
models despite the use of similar or the same input data.

4.2 Low and high groundwater levels

The performance of the models in simulating low and high
groundwater levels (lows and highs) was measured using the
mean absolute error (MAE) computed on the head measure-
ments below the 0.2 quantile and above the 0.8 quantile. The
results for the MAE0.2 and MAE0.8 for the validation period
are shown in Fig. 5. Again, there is no model that consis-
tently outperforms the others for all wells in simulating low
heads or high heads (or both).

In general, the MAEs are higher in the direction of the
skewness of the head distribution (see Fig. 1). For example,

the MAE0.2 is higher than the MAE0.8 values for the Nether-
lands and the USA, which are skewed to the lower head val-
ues (i.e. the distribution has a longer tail for the lower heads),
while the MAE0.8 is higher than the MAE0.2 values for Ger-
many and Sweden, which are skewed to the higher head val-
ues. For the data of the Netherlands in particular, where the
heads are skewed due to capping near the drainage level, all
models simulate the higher heads much better than the lower
heads.

4.3 Comparison of uncertainty estimates

The teams were asked to provide uncertainty estimates in the
form of 95 % prediction intervals for the head simulations
(one team did not submit uncertainty estimates). It was tested
what percentage of the measurements lay within the intervals
using the PICP. Figure 6 shows bar plots of the PICP, where
0.95 is a perfect score. A lower value means that the predic-
tion interval is too narrow, and a higher value means that the
prediction interval is too wide. It is noted that none of the
models had a PICP of 1.0, which would indicate that the es-
timated 95 % prediction interval is so wide that it includes
all measurements. On the other hand, many teams severely
underestimated the prediction intervals. Depending on the
well, between 5 and 8 teams had a PICP of 0.5 or less, which
means that at least 50 % of the observed heads lie outside the
95 % prediction interval.

Five teams, LUHG, GEUS, da_collective, HydroSight,
and TUV, had reasonable to very good estimates of the
prediction intervals at all sites. These teams represent both
lumped-parameter models and deep learning models, which
indicates that the quality of the uncertainty estimates is not
related to the type of model but to the method of uncer-
tainty estimation. For the machine learning models, only
Selina_Yang provided good estimates of the prediction inter-
vals, but this team also only supplied intervals for two sites.
It is noted that some of the teams provided confidence inter-
vals (indicated with a star ∗ behind the team name in Fig. 6),
which are narrower than prediction intervals.

4.4 Evaluation of effort

All participating groups were asked to self-report estimates
of the time investment required to develop the models and to
perform the calibration and uncertainty estimation. Figure 7
shows the time estimates, grouped into four categories: less
than 1 h, 1 to 4 h, 4 to 8 h, and more than 8 h. The total time
to develop and calibrate a single model ranged from less than
1 h to 19 h, averaging approximately 4 h per well. From the
data shown in Fig. 7, it is clear that most models were de-
veloped and calibrated in less than 1 d. Some teams (at least
Janis, Selina_Yang, TUD) spent most of the time developing
an approach for a single site and then used the same approach
and/or script for all the other sites so it was much faster for
the other sites. As a general rule, it appears that teams that es-
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Figure 4. Observed and simulated head time series for the model with the highest NSE in the validation period (values shown in the legends)
of each model type (blue line is for deep learning, the orange line is lumped-parameter models, and the green line is machine learning). The
vertical dashed line shows the start of the validation period.

timated the uncertainty intervals more accurately (PICP near
0.95) had longer calibration times. While not surprising, this
indicates that a significant time investment is required to ob-
tain good uncertainty estimates.

A straightforward interpretation of the time investments is
difficult. One reason for this is that the actual computational
time depends on the computational resources that were used.
The estimates should thus be interpreted as an indication.
Furthermore, the applied models and software may be at dif-
ferent states of development and may have more options or
only a few options to explore. Another less tractable reason
is that the teams had varying familiarity with the used mod-
els: while some teams had previously used the model in one
or multiple studies, other teams applied a model for the first
time and started from scratch. Time investment may also be
impacted by participants being at different stages in their ca-
reers, but no information to verify this was collected. These
problems suggest that model complexity cannot be assessed
from time investment and that other measures are needed
to assess model complexity (e.g. Azmi et al., 2021; Weijs
and Ruddell, 2020). Nonetheless, it can be concluded that
the time investment required to develop and calibrate data-
driven models is relatively short compared to more classical
groundwater models.

5 Discussion and conclusions

Results were presented for the 2022 Groundwater Time Se-
ries Modelling Challenge. A total of 17 teams picked up
the challenge and submitted results (2 of the 17 teams were
excluded after initial assessment of the results). The chal-
lenge focused on the simulation of four head time series
with relatively limited information regarding the subsurface
(a fifth series was removed from the challenge as none of
the teams were able to obtain an NSE above zero in the val-
idation period). All monitoring wells are located in areas
with temperate or continental climates where the environ-
ment is more energy-limited rather than water-limited, with
relatively low inter-annual variability. Head time series were
selected with (almost) regular time intervals so as to not ex-
clude methods that cannot deal with irregular time series. The
15 analysed contributions were categorized into three gen-
eral approaches: lumped-parameter modelling (three submis-
sions), machine learning (four submissions), and deep learn-
ing (eight submissions). Performance was assessed using ab-
solute and relative performance metrics for both the calibra-
tion and validation periods; the number of model parameters
was not included in the performance metrics. The general dy-
namics of the measured hydraulic heads could be simulated
reasonably well, with at least one model from each category.
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Figure 5. Bar plots of the MAE0.2 (lighter colour) and the MAE0.8
(darker colour) for the validation period (lower is better). Boxplots
of the metric values are shown in the two rows at the top for com-
parison.

Figure 6. Bar plot of the PICP as a measure of the quality of the
prediction intervals (0.95 is best, indicated by the vertical dashed
line). The star in the bar plot indicates the best model. A star behind
the team name indicates that the team provided confidence intervals
instead of prediction intervals.

No clear relationship between the model type and hydroge-
ological setting was observed. The general performance de-

Figure 7. Estimated time of development (blue bars) and calibration
(orange bars) in hours for each team.

creased slightly from the calibration to the validation period,
as may be expected.

5.1 Learning from model comparisons

In general, the performance metrics for models that per-
formed best in each category did not differ much. This
means that each of the three major methods can, in principle,
be applied to obtain reasonable results in the current chal-
lenge. Within the deep learning category, substantial varia-
tions were observed between the models: some were good
while others were not (e.g. Fig. 3). Such variation was not ob-
served in the other two categories, but those had substantially
fewer submissions. This may reflect on the difficulty (some
would say the art) of applying deep learning methods but
may also reflect on the experience of the different teams with
the application of these methods; experienced teams gener-
ally obtain better results (e.g. Holländer et al., 2009; Melsen,
2022). The materials submitted by the teams may serve as a
resource for others to further investigate and learn why these
differences exist and what strategies work best.

The lumped-parameter models only applied stresses that
are also applied in “traditional” groundwater models: rain-
fall, potential evaporation, and river stages (and some used
temperature for simulating snow processes) in combination
with response functions with only a few parameters. If model
performance is better when a stress is included, this does not
necessarily mean that there is a causal relationship as the
stress can be a proxy of another stress that behaves in a sim-
ilar manner. It is highly likely, however, that, if a stress is
needed to obtain good results in a lumped-parameter model
and if the stress makes physical sense, a traditional ground-
water model also needs this stress. The AI models gener-
ally used more of the provided (meteorological) data than the
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lumped-parameter models, including engineered data such as
multi-day averages. The AI models generally use many more
parameters than the lumped-parameter models, which may
result in overfitting when applied incorrectly. No overfitting
was observed, however, as performance in the validation pe-
riod was generally somewhat lower than in the calibration
period, which is evidence of the aptitude of the AI teams. All
models can potentially benefit from an improved estimate of
the potential evaporation, which was estimated for all sites
using a simple temperature-based method.

The performance increase of AI models was limited as
compared to lumped-parameter models for most wells. This
means that the lumped-parameter models, which are specif-
ically developed to simulate head variations, reproduce the
fundamental behaviour of the groundwater flow systems in-
cluded in the challenge reasonably well. Because some of
the AI models learned more from the provided data (i.e.
achieved higher performance), it is expected that small per-
formance gains may be obtained for the lumped-parameter
models by improving some of the process representations
(e.g. snowmelt, evaporation) in the models.

For the well in the USA, the AI models performed substan-
tially better than the lumped-parameter models, which may
be attributed to the fact that river stage data were not used
in two out of three lumped-parameter models. The represen-
tation of the river stage in the AI models leads to better re-
sults compared to the one lumped-parameter model that used
the river stage (da_collective), although it is noted that this
team simulated the response to river stage variations as im-
mediate rather than using a response function to transform
the stage to a groundwater response. In general, artificial in-
telligence approaches have more flexibility in the use and
design of input data than lumped-parameter models, allow-
ing many more types and sources of data, which may also
be transformed and combined through feature engineering.
Such transformations of input data, which can be interpreted
as simple response functions that are further transformed by
the AI model, have the primary aim of delivering informa-
tion to the AI model that may lead to improved predictions.
Such transformed input data increase flexibility and improve
the fit, but they are often not straightforward to interpret for
hydrogeological system understanding. Therefore, AI mod-
els are generally characterized as black-box models. How-
ever, recent studies have shown that methods from the field
of explainable AI (XAI) can be leveraged to gain hydroge-
ological system understanding from trained AI models (e.g.
Wunsch et al., 2024; Haaf et al., 2023; Jung et al., 2024).
Lumped-parameter models, on the other hand, rely on pre-
defined (simplified) response functions that shed light on the
mechanistic functioning of the hydrogeological system. As
such, lumped-parameter models may be used to unravel and
quantify the effect of different stresses on the groundwater
level over time, e.g. the effect of variations in rainfall vs. the
effect of variations in river stage.

A common concern about machine and deep learning
models is that they cannot accurately simulate hydrologi-
cal extremes or extend predictions beyond observed condi-
tions. Other model types (e.g. models constrained by empir-
ical relationships) are sometimes thought to perform better
in this regard. The results of the current challenge contradict
this and indicate that no substantial differences exist between
artificial intelligence models on the one hand and lumped-
parameter models on the other hand, provided both are ap-
plied appropriately. This is in line with other analyses test-
ing this concern for streamflow modelling (e.g. Frame et al.,
2022). This was especially interesting for the Netherlands,
where the validation period was much drier than the calibra-
tion period, resulting in much lower heads than in the cali-
bration period (see Fig. 4); yet, the best deep learning model
performed better than the best lumped-parameter model in
the validation period.

5.2 The impact of modelling choices on head
simulations

The simulated heads are the combined result of the applied
method and the choices made by the modeller(s). Many
choices needed to be made by the modeller for each method,
all affecting the final model outcome. The effect of (hu-
man) choices on the outcome of analyses is a known is-
sue in the Earth sciences (see, for example, Menard et al.,
2021; Melsen, 2022) and other sciences (see, for example,
Silberzahn et al., 2018). It is difficult to distinguish between
the effect of actual model deficiencies (i.e. a model’s inher-
ent inability to simulate certain hydrological behaviour) and
model choices (e.g. inclusion of a stress or the choice of
the calibration procedure) due to the setup of this challenge.
The effect of modelling choices in this challenge is apparent
from the significant performance difference between teams
that applied deep learning methods (Figs. 2 and 3). Another
good example is the effect of modelling choices made for
the Gardenia model. During the public review process of this
paper, the Gardenia developers pointed out that substantially
better results could be obtained with Gardenia by choosing
different model structures (e.g. including snow in Sweden
and river stages in the USA) and using automatic calibration
(Thiéry, 2024).

It is emphasized, however, that the results clearly show
that the current setup and choices led to good results for
most models and that even better results could have been ob-
tained for many models if other modelling choices had been
made. This highlights how difficult model inter-comparisons
are and how important the choices by the modeller are for the
final result.

5.3 Recommendations for future challenges

The organization of a modelling challenge is a challenge in
itself. Five lessons learned from organizing this challenge are
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listed below, which are envisioned to be helpful recommen-
dations for organizers of future challenges.

1. Clearly state the objective of the challenge and the
methods of performance evaluation. The objective for
this challenge was to predict the heads during both the
calibration and validations periods, i.e. all aspects of the
time series. The exact metrics used to evaluate the per-
formance were not determined in advance. It is conceiv-
able that teams would have reached different outcomes
had they known the exact performance criteria before-
hand. Further investigation into the effect of varying
performance criteria during benchmarking is warranted,
given that the paper demonstrated the significant influ-
ence of metrics on the final results.

2. Be as explicit as possible when describing the deliver-
ables. This challenge, for example, initially asked for
uncertainty intervals although prediction intervals were
meant. As a result, some teams submitted confidence
intervals, which could have been prevented with more
explicit descriptions. Furthermore, the challenge did not
explicitly ask for a description of the calibration method
(global, local) or for a description of the method to esti-
mate the uncertainty, which would have been interesting
information.

3. Provide a clear structure for the submission of informa-
tion on data pre-processing. For example, teams apply-
ing AI models widely employed different engineered in-
put data. Their design likely has an important influence
on model performance in combination with model ar-
chitecture. A clear structure for submitting this model
information would have made the evaluation of the ef-
fect of engineered input data more tractable across the
different submissions and data sets.

4. Evaluate the response of the models to a few scenar-
ios of future stresses. For example, for this challenge,
it would have been interesting to supply a few scenar-
ios with a significant rainfall event or drought period in
the validation period. A comparison of model results for
such scenarios is pertinent information on how models
behave, especially when performances are similar in the
calibration and validation periods.

5. Automate the validation of the submitted materials to
save time and prevent errors. Continuous integration
can possibly help to check new submissions, like unit
tests for software development, especially when han-
dled through pull requests on code-sharing platforms.

5.4 Concluding remarks

The 2022 Groundwater Time Series Modelling Challenge
was a successful challenge, attracting many contributions
from the groundwater modelling community. This allowed

us to compare a large number of different models, many of
which can be successfully used to simulate head time series.
The materials provided by all the teams participating in this
challenge may be used to further explore different methods
and to learn from each other (see the “Code and data avail-
ability” section).

Several of the teams that submitted results commented
that, although it took considerable effort to obtain good re-
sults and uncertainty estimates, the challenge did not explore
the full potential of their model. It is emphasized that it is
not possible to contribute below-average performance to ei-
ther model deficiencies or model choices due to the setup of
this challenge. Modelling choices clearly affected the model
results for this challenge (Thiéry, 2024) as they did for previ-
ous challenges (Holländer et al., 2009; Menard et al., 2021).
Some of the model choices that had a significant impact on
the model results include the choice or stresses (temperature
or river stage), calibration method, response function, and
engineered features. In particular, the variation in the perfor-
mance of the AI models highlights the importance of mod-
elling choices. It is concluded that the setup of data-driven
models takes relatively little time (i.e. hours), but getting
good results still strongly depends on the choices made by
the modeller.

This challenge investigates the performance of data-driven
models for a small subset of conditions. New challenges
may be organized for different climate zones with more
inter-annual variations (e.g. longer dry periods or more arid
climates), for time series with significant gaps or missing
data, or for different purposes in groundwater modelling (e.g.
drawdown estimation, recharge estimation), where other
types of models (i.e. process-based models) are more com-
monly applied. One such challenge is already being orga-
nized to spatially predict nitrate concentrations (Nölscher
et al., 2024).

Code and data availability. All data and code necessary to repro-
duce the results and figures shown in this paper are available from
the Zenodo repository: https://doi.org/10.5281/zenodo.10438290
(Collenteur et al., 2024). There, you will also find all the materi-
als submitted by the teams to reproduce the modelling results.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-5193-2024-supplement.
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