Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Special issue
Download
Short summary
The Budyko framework which relies on the supply and demand concept could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response. This framework is extended with a few illustrative examples for quantifying the variability in land-surface fluxes for natural and human-altered watersheds. Potential for using observed and remotely sensed datasets in capturing this variability is also discussed.
HESS | Articles | Volume 24, issue 4
Hydrol. Earth Syst. Sci., 24, 1975–1984, 2020
https://doi.org/10.5194/hess-24-1975-2020

Special issue: HESS Opinions 2020

Hydrol. Earth Syst. Sci., 24, 1975–1984, 2020
https://doi.org/10.5194/hess-24-1975-2020

Opinion article 17 Apr 2020

Opinion article | 17 Apr 2020

HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds

A. Sankarasubramanian et al.

Related authors

Technical Note: Evaluation of the skill in monthly-to-seasonal soil moisture forecasting based on SMAP satellite observations over the southeastern US
Amirhossein Mazrooei, Arumugam Sankarasubramanian, and Venkat Lakshmi
Hydrol. Earth Syst. Sci., 24, 1073–1079, https://doi.org/10.5194/hess-24-1073-2020,https://doi.org/10.5194/hess-24-1073-2020, 2020
Short summary
Variational Assimilation of Streamflow Observations in Improving Monthly Streamflow Forecasting
Amirhossein Mazrooei, A. Sankarasubramanian, and Andrew W. Wood
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-288,https://doi.org/10.5194/hess-2019-288, 2019
Revised manuscript not accepted
Short summary
Assessing the resiliency of surface water and groundwater systems under groundwater pumping
Seung Beom Seo, Gnanamanikam Mahinthakumar, Sankarasubramanian Arumugam, and Mukesh Kumar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-402,https://doi.org/10.5194/hess-2017-402, 2017
Preprint withdrawn
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021,https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021,https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020,https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020,https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020,https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary

Cited articles

Abatzoglou, J. T. and Ficklin, D. L.: Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship, Water Resour. Res., 53, 7630–7643, https://doi.org/10.1002/2017WR020843, 2017. 
Allaire, M. C., Kroll, C. N., and Vogel, R. M.: The hydromorphology of an urbanizing watershed using multivariate elasticity, Adv. Water Resour., 86, 147–154, 2015. 
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., Farmer, W. H., McMillan, H., Seibert, J., Kiang, J. E. , Wagener, T., Bock, A., Hakala, K., Andréassian, V., Attinger, S., Viglione, A., Knight, R. R., and Over, T. M.: Accelerating advances in continental domain hydrologic modeling, Water Resour. Res., 51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015. 
Archfield, S. A., Hirsch, R. M., Viglione, A., and Blöschl, G.: Fragmented patterns of flood change across the United States, Geophys. Res. Lett., 43, 10-232, https://doi.org/10.1002/2016GL070590, 2016. 
Barros, A. P., Duan, Y., Brun, J., and Medina, M. A.: Flood nonstationarity in the Southeast and Mid-Atlantic Regions of the United States, J. Hydraul. Eng., 19, 05014014, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000955, 2014. 
Publications Copernicus
Special issue
Download
Short summary
The Budyko framework which relies on the supply and demand concept could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response. This framework is extended with a few illustrative examples for quantifying the variability in land-surface fluxes for natural and human-altered watersheds. Potential for using observed and remotely sensed datasets in capturing this variability is also discussed.
Citation