Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-217-2017
https://doi.org/10.5194/hess-21-217-2017
Research article
 | 
11 Jan 2017
Research article |  | 11 Jan 2017

A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere

Elham Rouholahnejad Freund and James W. Kirchner

Related authors

Averaging over spatiotemporal heterogeneity substantially biases evapotranspiration rates in a mechanistic large-scale land evaporation model
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020,https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020,https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Will rivers become more intermittent in France? Learning from an extended set of hydrological projections
Tristan Jaouen, Lionel Benoit, Louis Héraut, and Eric Sauquet
Hydrol. Earth Syst. Sci., 29, 3629–3671, https://doi.org/10.5194/hess-29-3629-2025,https://doi.org/10.5194/hess-29-3629-2025, 2025
Short summary
Integration of the vegetation phenology module improves ecohydrological simulation by the SWAT-Carbon model
Mingwei Li, Shouzhi Chen, Fanghua Hao, Nan Wang, Zhaofei Wu, Yue Xu, Jing Zhang, Yongqiang Zhang, and Yongshuo H. Fu
Hydrol. Earth Syst. Sci., 29, 2081–2095, https://doi.org/10.5194/hess-29-2081-2025,https://doi.org/10.5194/hess-29-2081-2025, 2025
Short summary
Calibrating a large-domain land/hydrology process model in the age of AI: the SUMMA CAMELS experiments
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
EGUsphere, https://doi.org/10.5194/egusphere-2025-38,https://doi.org/10.5194/egusphere-2025-38, 2025
Short summary
Revealing Seasonal Plasticity of Whole-Plant Hydraulic Properties Using Sap-Flow and Stem Water-Potential Monitoring
Zhechen Zhang, Huade Guan, Erik Veneklaas, Kamini Singha, and Okke Batelaan
EGUsphere, https://doi.org/10.5194/egusphere-2025-749,https://doi.org/10.5194/egusphere-2025-749, 2025
Short summary
Green water availability and water-limited crop yields under a changing climate in Ethiopia
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025,https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary

Cited articles

Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory High-Resolution Climate Simulations using the Community Atmosphere Model (CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014.
Bagrov, N. A.: Mean long-term evaporation from land surface, Meteorol. Gidrol., 10, 20–25, 1953.
Beven, K.: Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995.
Boyle, J. and Klein, S. A.: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period, J. Geophys. Res.-Atmos., 115, D23113, https://doi.org/10.1029/2010JD014262, 2010.
Budyko, M. l.: Climate and life, Academic, New York, 1974.
Download
Short summary
Our analysis shows that averaging over sub-grid heterogeneity in precipitation and potential evapotranspiration (ET), as typical earth system models do, overestimates the average of the spatially variable ET. We also show when aridity index increases with altitude, lateral redistribution would transfer water from more humid uplands to more arid lowlands, resulting in a net increase in ET. Therefore, the Earth system models that neglect lateral transfer underestimate ET in those regions.
Share