Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-217-2017
https://doi.org/10.5194/hess-21-217-2017
Research article
 | 
11 Jan 2017
Research article |  | 11 Jan 2017

A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere

Elham Rouholahnejad Freund and James W. Kirchner

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (01 Nov 2016) by Ross Woods
AR by Elham R. Freund on behalf of the Authors (16 Nov 2016)  Author's response   Manuscript 
ED: Publish as is (17 Nov 2016) by Ross Woods
AR by Elham R. Freund on behalf of the Authors (21 Nov 2016)
Download
Short summary
Our analysis shows that averaging over sub-grid heterogeneity in precipitation and potential evapotranspiration (ET), as typical earth system models do, overestimates the average of the spatially variable ET. We also show when aridity index increases with altitude, lateral redistribution would transfer water from more humid uplands to more arid lowlands, resulting in a net increase in ET. Therefore, the Earth system models that neglect lateral transfer underestimate ET in those regions.