Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4861-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4861-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, United
Kingdom
Christian Birkel
Department of Geography, University of Costa Rica, San Pedro, Costa
Rica
Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, United
Kingdom
Marco P. Maneta
Geosciences Department, University of Montana, Missoula, MT, USA
Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
Doerthe Tetzlaff
Department of Ecohydrology, IGB Leibniz Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
Department of Geography, Humboldt University of Berlin, Berlin,
Germany
Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, United
Kingdom
Chris Soulsby
Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, United
Kingdom
Related authors
No articles found.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537, https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach using stable water isotopes, hydrochemistry and microbial and macrophyte diversity, to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBS impacts on water quality and biodiversity in response to hydroclimate and urban water sources.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022, https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Laura Balzer, Katrin Schulz, Christian Birkel, and Harald Biester
SOIL Discuss., https://doi.org/10.5194/soil-2020-20, https://doi.org/10.5194/soil-2020-20, 2020
Manuscript not accepted for further review
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019, https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Short summary
The applications and availability of large tracer data sets have vastly increased in recent years leading to research into the contributions of multiple sources to a mixture. We introduce a method based on Taylor series approximation to estimate the uncertainties of such sources' contributions. The method is illustrated with examples of hydrology (14 tracers) and a MATLAB code is provided for reproducibility. This method can be generalized to any number of tracers across a range of disciplines.
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Thea I. Piovano, Doerthe Tetzlaff, Sean K. Carey, Nadine J. Shatilla, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 2507–2523, https://doi.org/10.5194/hess-23-2507-2019, https://doi.org/10.5194/hess-23-2507-2019, 2019
Short summary
Short summary
We adapted the spatially distributed, tracer-aided model, STARR, to a permafrost-influenced catchment in the Yukon Territory, Canada, with a time-variable implementation of field capacity to capture thaw layer spatio-temporal dynamics. We applied a multi-criteria calibration with multi-year field data. This study demonstrates the value of the integration of isotope data in a spatially distributed model to quantify catchment water storage and age dynamics in a permafrost-influenced environment.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Zhicai Zhang, Xi Chen, Qinbo Cheng, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 51–71, https://doi.org/10.5194/hess-23-51-2019, https://doi.org/10.5194/hess-23-51-2019, 2019
Short summary
Short summary
We developed a new tracer-aided hydrological model for karst catchments. This model captured the flow and tracer dynamics within each landscape unit quite well, and we could estimate the storage, fluxes and age of water within each. Such tracer-aided models enhance our understanding of the hydrological connectivity between different landscape units and the mixing processes between various flow sources. It is an encouraging step forward in tracer-aided modelling of karst catchments.
Sylvain Kuppel, Doerthe Tetzlaff, Marco P. Maneta, and Chris Soulsby
Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, https://doi.org/10.5194/gmd-11-3045-2018, 2018
Short summary
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Aaron A. Smith, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-57, https://doi.org/10.5194/hess-2018-57, 2018
Preprint withdrawn
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
J. R. Poulsen, E. Sebok, C. Duque, D. Tetzlaff, and P. K. Engesgaard
Hydrol. Earth Syst. Sci., 19, 1871–1886, https://doi.org/10.5194/hess-19-1871-2015, https://doi.org/10.5194/hess-19-1871-2015, 2015
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Ecohydrological responses to solar radiation changes
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
A regional-scale ecological risk framework for environmental flow evaluations
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows in aquatic microhabitats
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236, https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost-benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed as financially profitable.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Rui Rivaes, Isabel Boavida, José M. Santos, António N. Pinheiro, and Teresa Ferreira
Hydrol. Earth Syst. Sci., 21, 5763–5780, https://doi.org/10.5194/hess-21-5763-2017, https://doi.org/10.5194/hess-21-5763-2017, 2017
Short summary
Short summary
We analyzed the influence of considering riparian requirements for the long-term efficiency of environmental flows. After a decade, environmental flows disregarding riparian requirements promoted riparian degradation and consequently the change in the hydraulic characteristics of the river channel and the modification of the available habitat area for fish species. Environmental flows regarding riparian vegetation requirements were able to sustain the fish habitat close to the natural condition.
Cited articles
Aerts, R., Bakker, C., and De Caluwe, H.: Root turnover as determinant of the
cycling of C, N, and P in a dry heathland ecosystem, Biogeochemistry, 15,
175–190, https://doi.org/10.1007/BF00002935, 1992.
Ala-aho, P., Soulsby, C., Wang, H., and Tetzlaff, D.: Integrated
surface-subsurface model to investigate the role of groundwater in headwater
catchment runoff generation: A minimalist approach to parameterisation, J.
Hydrol., 547, 664–677, https://doi.org/10.1016/j.jhydrol.2017.02.023, 2017.
Alila, Y., Kuraś, P. K., Schnorbus, M., and Hudson, R.: Forests and
floods: A new paradigm sheds light on age-old controversies, Water Resour.
Res., 45, W08416, https://doi.org/10.1029/2008WR007207, 2009.
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019.
Archer, N. A. L., Bonell, M., Coles, N., MacDonald, A. M., Auton, C. A., and
Stevenson, R.: Soil characteristics and landcover relationships on soil
hydraulic conductivity at a hillslope scale: A view towards local flood
management, J. Hydrol., 497, 208–222,
https://doi.org/10.1016/j.jhydrol.2013.05.043, 2013.
Bergstrom, A., Jencso, K., and McGlynn, B.: Spatiotemporal processes that
contribute to hydrologic exchange between hillslopes, valley bottoms, and
streams, Water Resour. Res., 52, 4628–4645,
https://doi.org/10.1002/2015WR017972, 2016.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff
modelling: a review of progress, problems and unrealised potential, Hydrol.
Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Towards a simple
dynamic process conceptualization in rainfall-runoff models using
multi-criteria calibration and tracers in temperate, upland catchments,
Hydrol. Process., 24, 260–275, https://doi.org/10.1002/hyp.7478, 2010.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Modelling catchment-scale water
storage dynamics: reconciling dynamic storage with tracer-inferred passive
storage, Hydrol. Process., 25, 3924–3936, https://doi.org/10.1002/hyp.8201,
2011.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Conceptual modelling to assess how
the interplay of hydrological connectivity, catchment storage and tracer
dynamics controls nonstationary water age estimates, Hydrol. Process., 29,
2956–2969, https://doi.org/10.1002/hyp.10414, 2015.
Birkinshaw, S. J., Bathurst, J. C., and Robinson, M.: 45 years of
non-stationary hydrology over a forest plantation growth cycle, Coalburn
catchment, Northern England, J. Hydrol., 519, 559–573,
https://doi.org/10.1016/j.jhydrol.2014.07.050, 2014.
Blumstock, M., Tetzlaff, D., Malcolm, I. A., Nuetzmann, G., and Soulsby, C.:
Baseflow dynamics: Multi-tracer surveys to assess variable groundwater
contributions to montane streams under low flows, J. Hydrol., 527,
1021–1033, https://doi.org/10.1016/j.jhydrol.2015.05.019, 2015.
Blumstock, M., Tetzlaff, D., Dick, J. J., Nuetzmann, G., and Soulsby, C.:
Spatial organisation of groundwater dynamics and streamflow response from
different hydropedological units in a montane catchment, Hydrol. Process.,
30, 3735–3753, https://doi.org/10.1002/hyp.10848, 2016.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to
determine the effect of vegetation changes on water yield and
evapotranspiration, J. Hydrol., 55, 3–23,
https://doi.org/10.1016/0022-1694(82)90117-2, 1982.
Brinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., and Kahmen,
A.: Employing stable isotopes to determine the residence times of soil water
and the temporal origin of water taken up by Fagus sylvatica and Picea abies
in a temperate forest, New Phytol., 219, 1300–1313,
https://doi.org/10.1111/nph.15255, 2018.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A
review of paired catchment studies for determining changes in water yield
resulting from alterations in vegetation, J. Hydrol., 310, 28–61,
https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Calder, I. R.: The Balquhidder catchment water balance and process experiment
results in context what do they reveal?, J. Hydrol., 145, 467–477,
https://doi.org/10.1016/0022-1694(93)90070-P, 1993.
Calder, I. R., Smyle, J., and Bruce, A.: Debate over flood-proofing effects of
planting forests, Nature, 450, 945, https://doi.org/10.1038/450945b, 2007.
Capell, R., Tetzlaff, D., Essery, R., and Soulsby, C.: Projecting climate
change impacts on stream flow regimes with tracer-aided runoff models –
Preliminary assessment of heterogeneity at the mesoscale, Hydrol. Process.,
28, 545–558, https://doi.org/10.1002/hyp.9612, 2014.
Chai, T. and Draxler, R. R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.
Chandler, K. R., Stevens, C. J., Binley, A., and Keith, A. M.: Influence of tree
species and forest land use on soil hydraulic conductivity and implications
for surface runoff generation, Geoderma, 310, 120–127,
https://doi.org/10.1016/j.geoderma.2017.08.011, 2018.
Chappell, N., Stobbs, A., Ternan, L., and Williams, A.: Localised impact of
Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability, Plant
Soil, 182, 157–169, https://doi.org/10.1007/BF00011004, 1996.
Coble, A. A., Barnard, H., Du, E., Johnson, S., Jones, J., Keppeler, E.,
Kwon, H., Link, T. E., Penaluna, B., Reiter, M., River, M., Puettmann, K., and
Wagenbrenner, J.: Long-term hydrological response to forest harvest during
seasonal low flow: Potential implications for current forest practices, Sci.
Total Environ., 730, 138926,
https://doi.org/10.1016/j.scitotenv.2020.138926, 2020.
Collentine, D. and Futter, M. N.: Realising the potential of natural water
retention measures in catchment flood management: trade-offs and matching
interests, J. Flood Risk Manag., 11, 76–84,
https://doi.org/10.1111/jfr3.12269, 2018.
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean
and the marine atmosphere, in: Stable Isotopes in Oceanographic Studies and
Paleotemperatures, edited by: Tongiorgi, E., Consiglio nazionale delle
richerche, Laboratorio di Geologia Nucleare, Pisa, 9–130, 1965.
Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., and
Malcolm, I. A.: Influence of hydrology and seasonality on DOC exports from
three contrasting upland catchments, Biogeochemistry, 90, 93–113,
https://doi.org/10.1007/s10533-008-9234-3, 2008.
Deary, H. and Warren, C. R.: Divergent visions of wildness and naturalness in
a storied landscape: Practices and discourses of rewilding in Scotland's
wild places, J. Rural Stud., 54, 211–222,
https://doi.org/10.1016/j.jrurstud.2017.06.019, 2017.
Delzon, S. and Loustau, D.: Age-related decline in stand water use: sap flow
and transpiration in a pine forest chronosequence, Agr. Forest Meteorol.,
129, 105–119, https://doi.org/10.1016/j.agrformet.2005.01.002, 2005.
Douinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte-Bisping, H., and
Soulsby, C.: Ecohydrological modelling with EcH2O-iso to quantify
forest and grassland effects on water partitioning and flux ages, Hydrol.
Process., 33, 2174–2191, https://doi.org/10.1002/hyp.13480, 2019.
Du, E., Link, T. E., Wei, L., and Marshall, J. D.: Evaluating hydrologic
effects of spatial and temporal patterns of forest canopy change using
numerical modelling, Hydrol. Process., 30, 217–231,
https://doi.org/10.1002/hyp.10591, 2016.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., Van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau,
D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot,
S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and
Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world,
Global Environ. Chang., 43, 51–61,
https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017.
Falkenmark, M. and Rockström, J.: The new blue and green water paradigm:
Breaking new ground for water resources planning and management, J. Water
Res. Plan. Man., 132, 129–132, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129),
2006.
Falkenmark, M. and Rockström, J.: Building water resilience in the face
of global change: From a blue-only to a green-blue water approach to
land-water management, J. Water Res. Plan. Man., 136, 606–610,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000118, 2010.
Farley, K. A., Jobbagy, E. G., and Jackson, R. B.: Effects of afforestation on
water yield: a global synthesis with implications for policy, Glob. Change
Biol., 11, 1565–1576, https://doi.org/1 0.1111/j.1365-2486.2005.01011.x,
2005.
Fatichi, S., Pappas, C., and Ivanov, V. Y.: Modeling plant–water
interactions: an ecohydrological overview from the cell to the global scale,
WIREs Water, 3, 327–368, https://doi.org/10.1002/wat2.1125, 2016a.
Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D.,
Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J.,
Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and
Tarboton, D.: An overview of current applications, challenges, and future
trends in distributed process-based models in hydrology, J. Hydrol., 537,
45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016b.
Fennell, J., Geris, J., Wilkinson, M. E., Daalmans, R., and Soulsby, C.:
Lessons from the 2018 drought for management of local water supplies in
upland areas: A tracer-based assessment, Hydrol. Process., 34,
4190–4210, https://doi.org/10.1002/hyp.13867, 2020.
Filoso, S., Bezerra, M. O., Weiss, K. C. B., and Palmer, M. A.: Impacts of forest
restoration on water yield: A systematic review, PLOS One, 12, e0183210,
https://doi.org/10.1371/journal.pone.0183210, 2017.
Forestry Commission Scotland: The right tree in the right place: Planning for forestry and woodlands, available at: https://forestry.gov.scot/publications/96-the-right-tree-in-the-right-place-planning-for-forestry-and-woodlands (last access: 8 March 2021), 2010.
Gash, J. H. C. and Stewart, J. B.: The evaporation from Thetford Forest during
1975, J. Hydrol., 35, 385–396, 1977.
Gillefalk, M., Tetzlaff, D., Hinkelmann, R., Kuhlemann, L.-M., Smith, A., Meier, F., Maneta, M. P., and Soulsby, C.: Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model, Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, 2021.
Glover, R., Soulsby, C., Fryer, R., Birkel, C., and Malcolm, I. A.:
Quantifying the relative importance of stock level, river temperature and
discharge on the abundance of juvenile Atlantic salmon (Salmo salar), Ecohydrology, 13,
e2231, https://doi.org/10.1002/eco.2231, 2020.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Holmes, T., Stadnyk, T., Kim, S. J., and Asadzadeh, M.: Regional calibration
with isotope tracers using a spatially distributed model: A comparison of
methods, Water Resour. Res., 56, e2020WR027447,
https://doi.org/10.1029/2020WR027447, 2020.
Iacob, O., Brown, I., and Rowan, J.: Natural flood management, land use and
climate change trade-offs: the case of Tarland catchment, Scotland,
Hydrolog. Sci. J., 62, 1931–1948,
https://doi.org/10.1080/02626667.2017.1366657, 2017.
Johnson, R. C.: The interception, throughfall and stemflow in a forest in
Highland Scotland and the comparison with other upland forests in the UK, J.
Hydrol., 118, 281–287, https://doi.org/10.1016/0022-1694(90)90263-W, 1990.
Kleine, L., Tetzlaff, D., Smith, A., Wang, H., and Soulsby, C.: Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018, Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, 2020.
Knighton, J., Kuppel, S., Smith, A., Soulsby, C., Sprenger, M., and Tetzlaff,
D.: Using isotopes to incorporate tree water storage and mixing dynamics
into a distributed ecohydrological modelling framework, Ecohydrology, 13,
e2201, https://doi.org/10.1002/eco.2201, 2020.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model, Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, 2018a.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: What can we learn
from multi-data calibration of a process-based ecohydrological model?,
Environ. Modell. Softw., 101, 301–316,
https://doi.org/10.1016/j.envsoft.2018.01.001, 2018b.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: EcH2O-iso, Bitbucket [code], available at: https://bitbucket.org/sylka/ech2o_iso/src/master_2.0/ (last access: 2 June 2020), 2018c.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: Critical Zone
Storage Controls on the Water Ages of Ecohydrological Outputs, Geophys. Res.
Lett., 47, e2020GL088897, https://doi.org/10.1029/2020GL088897, 2020.
Langan, S. J., Wade, A. J., Smart, R. P., Edwards, A. C., Soulsby, C., Billett,
M. F., Jarvie, H. P., Cresser, M. S., Owen, R., and Ferrier, R. C.: The
prediction and management of water quality in a relatively unpolluted major
Scottish catchment: current issues and experimental approaches. Sci. Total
Environ., 194–195, 419–435, https://doi.org/10.1016/S0048-9697(96)05380-6,
1997.
Laitakari, E.: Männyn juuristo. Morfologinen tutkimus. Summary: The root
system of pine (Pinus sylvestris). A morphological investigation, Acta Forestalia Fennica, 33, 379 pp., 1927.
Makkonen, K. and Helmisaari, H.-S.: Fine root biomass and production in Scots
pine stands in relation to stand age, Tree Physiol., 21, 193–198,
https://doi.org/10.1093/treephys/21.2-3.193, 2001.
Maneta, M. P. and Silverman, N. L.: A spatially distributed model to simulate
water, energy, and vegetation dynamics using information from regional
climate models, Earth Interact., 17, 1–44,
https://doi.org/10.1175/2012EI000472.1, 2013.
Manoli, G., Meijide, A., Huth, N., Knohl, A., Kosugi, Y., Burlando, P.,
Ghazoul, J., and Fatichi, S.: Ecohydrological changes after tropical forest
conversion to oil palm, Environ. Res. Lett., 13, 064035, https://doi.org/10.1088/1748-9326/aac54e, 2018.
Marc, V. and Robinson, M.: The long-term water balance (1972–2004) of upland forestry and grassland at Plynlimon, mid-Wales, Hydrol. Earth Syst. Sci., 11, 44–60, https://doi.org/10.5194/hess-11-44-2007, 2007.
Mason, W. L., Hampson, A., and Edwards, C.: Managing the Pinewoods of
Scotland, Forestry Commission, Edinburgh, 234 pp., 2004.
McDonnell, J. J. and Beven, K.: Debates – the future of hydrological
sciences: a (common) path forward? A call to action aimed at understanding
velocities, celerities and residence time distributions of the headwater
hydrograph, Water Resour. Res., 50, 5342–5350,
https://doi.org/10.1002/2013WR015141, 2014.
McHaffie, H., Legg, C. J., Worrell, R., Cowie, N., and Amphlett, A.: Scots
pine growing on forested mires in Abernethy Forest, Strathspey, Scotland,
Botanical Journal of Scotland, 54, 209–219,
https://doi.org/10.1080/03746600208685038, 2002.
Mein, R. G. and Larson, C. L.: Modeling infiltration during a steady rain,
Water Resour. Res., 9, 384–394, https://doi.org/10.1029/WR009i002p00384,
1973.
Moir, H. J., Soulsby, C., and Youngson, A.: Hydraulic and sedimentary
characteristics of habitat utilized by Atlantic salmon for spawning in the
Girnock Burn, Scotland, Fisheries Manag. Ecol., 5, 241–254,
https://doi.org/10.1046/j.1365-2400.1998.00105.x, 1998.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991.
Navarro, L. M. and Pereira, H. M.: Rewilding abandoned landscapes in Europe, in: Rewilding European Landscapes, edited by: Pereira, H. M. and Navarro, L. M., Springer, Berlin, https://doi.org/10.1007/978-3-319-12039-3, 2015.
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., and Soulsby, C.: To what extent
does hydrological connectivity control dynamics of faecal indicator
organisms in streams? Initial hypothesis testing using a tracer-aided model,
J. Hydrol., 570, 423–435, https://doi.org/10.1016/j.jhydrol.2018.12.066,
2019.
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., Hough, R. L., Avery, L. M.,
Maneta, M. P., and Soulsby, C.: An agent-based model that simulates the
spatio-temporal dynamics of sources and transfer mechanisms contributing
faecal indicator organisms to streams. Part 2: Application to a small
agricultural catchment, J. Environ. Manage., 270, 110905,
https://doi.org/10.1016/j.jenvman.2020.110905, 2020.
Neill, A. J., Birkel, C., Maneta, M. P., Tetzlaff, D., and Soulsby, C.: Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling (Files and Python Scripts), University of Aberdeen PURE repository [data set], https://doi.org/10.20392/045cd572-ecc8-4dfd-b003-c0d0c621510e, 2021.
Nippgen, F., McGlynn, B. L., and Emanuel, R. E.: The spatial and temporal
evolution of contributing areas, Water Resour. Res., 51, 4550–4573,
https://doi.org/10.1002/2014WR016719, 2015.
Parlane, S., Summers, R. W., Cowie, N. R., and van Gardingen, P. R.: Management
proposals for bilberry in Scots Pine woodland, Forest Ecol. Manag., 222,
272–278, https://doi.org/10.1016/j.foreco.2005.10.032, 2006.
Peterson, T. J. and Western, A. W.: Multiple hydrological attractors under
stochastic daily forcing: 1. Can multiple attractors exist?, Water Resour.
Res., 50, 2993–3009, https://doi.org/10.1002/2012WR013003, 2014.
Peterson, T. J., Argent, R. M., Western, A. W., and Chiew, F. H. S.: Multiple
stable states in hydrological models: An ecohydrological investigation,
Water Resour. Res., 45, W03406, https://doi.org/10.1029/2008WR006886, 2009.
Peng, H., Tague, C., and Jia, Y.: Evaluating the eco-hydrologic impacts of
reforestation in the Loess Plateau, China, using an eco-hydrological model,
Ecohydrology, 9, 498–513, https://doi.org/10.1002/eco.1652, 2016.
Perino, A., Pereira, H. M., Navarro, L. M., Fernández, N., Bullock, J. M.,
Ceaușu, S., Cortés-Avizanda, A., van Klink, R., Kuemmerle, T., Lomba, A.,
and Pe'er, G., Plieninger, T., Benayas, J. M. R., Sandom, C. J., Svenning, J.,
and Wheeler, H. C.: Rewilding complex ecosystems, Science, 364, eaav5570,
https://doi.org/10.1126/science.aav5570, 2019.
Perry, T. D. and Jones, J. A.: Summer streamflow deficits from regenerating
Douglas-fir forest in the Pacific Northwest, USA, Ecohydrology, 10, e1790,
https://doi.org/10.1002/eco.1790, 2017.
Rands, M. R., Adams, W. M., Bennun, L., Butchart, S. H., Clements, A., Coomes,
D., Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J. P., Sutherland, W. J., and Vira, B.: Biodiversity conservation: challenges beyond 2010, Science,
329, 1298–1303, https://doi.org/10.1126/science.1189138, 2010.
Robinson, M.: 30 years of forest hydrology changes at Coalburn: water balance and extreme flows, Hydrol. Earth Syst. Sci., 2, 233–238, https://doi.org/10.5194/hess-2-233-1998, 1998.
Rodriguez-Iturbe, I.: Ecohydrology: A hydrological perspective of
climate-soil-vegetation dynamics, Water Resour. Res., 36, 3–9,
https://doi.org/10.1029/1999WR900210, 2000.
Rudel, T. K., Meyfroidt, P., Chazdon, R., Bongers, F., Sloan, S., Grau, H. R.,
Van Holt, T., and Schneider, L.: Whither the forest transition? Climate
change, policy responses, and redistributed forests in the twenty-first
century, Ambio, 49, 74–84, https://doi.org/10.1007/s13280-018-01143-0, 2020.
Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol. Process.,
21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Scott, D. F. and Prinsloo, F. W.: Longer-term effects of pine and eucalypt
plantations on streamflow, Water Resour. Res., 44, W00A08,
https://doi.org/10.1029/2007WR006781, 2008.
Segura, C., Bladon, K. D., Hatten, J. A., Jones, J. A., Cody Hale, V., and Ice,
G. G.: Long-term effects of forest harvesting on summer low flow deficits in
the Coast Range of Oregon, J. Hydrol., 585, 124749, https://doi.org/10.1016/j.jhydrol.2020.124749, 2020.
Seibert, J. and van Meerveld, H. J. I.: Hydrological change modeling:
Challenges and opportunities, Hydrol. Process., 30, 4966–4971,
https://doi.org/10.1002/hyp.10999, 2016.
Simeone, C., Maneta, M. P., Holden, Z. A., Sapes, G., Sala, A., and Dobrowski,
S. Z.: Coupled ecohydrology and plant hydraulics modeling predicts ponderosa
pine seedling mortality and lower treeline in the US Northern Rocky
Mountains, New Phytol., 221, 1814–1830, https://doi.org/10.1111/nph.15499,
2018.
Smith, A., Tetzlaff, D., Laudon, H., Maneta, M., and Soulsby, C.: Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model, Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, 2019.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. P., and Soulsby, C.:
Isotope-aided modelling of ecohydrologic fluxes and water ages under mixed
land use in Central Europe: The 2018 drought and its recovery, Hydrol.
Process., 34, 3406–3425, https://doi.org/10.1002/hyp.13838, 2020.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M., and Soulsby, C.: Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models, Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, 2021.
SNH: Deer Management in Scotland: Report to the Scottish Government from Scottish Natural Heritage 2016, available at: https://www.nature.scot/deer-management-scotland-report-scottish-government-naturescot-2016 (last access: 14 September 2017), 2016.
Sohier, H., Farges, J.-L., and Piet-Lahanier, H.: Improvement of the
representativity of the Morris Method for air-launch-to-orbit separation,
IFAC P. Ser., 47, 7954–7959,
https://doi.org/10.3182/20140824-6-ZA-1003.01968, 2014.
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley,, C., and Tetzlaff, D.:
Stream water age distributions controlled by storage dynamics and non-linear
hydrologic connectivity: modelling with high resolution isotope data, Water
Resour. Res., 51, 7759–7776, https://doi.org/10.1002/2015WR017888, 2015.
Soulsby, C., Bradford, J., Dick, J., McNamara, J. P., Geris, J., Lessels, J.,
Blumstock, M., and Tetzlaff, D.: Using geophysical surveys to test
tracer-based storage estimates in headwater catchments, Hydrol. Process.,
30, 4434–4445, https://doi.org/10.1002/hyp.10889, 2016.
Soulsby, C., Dick, J., Scheliga, B., and Tetzlaff, D.: Taming the flood –
How far can we go with trees?, Hydrol. Process., 31, 3122–3126,
https://doi.org/10.1002/hyp.11226, 2017.
Sprenger, M., Tetzlaff, D., Tunaley, C., Dick, J., and Soulsby, C.:
Evaporative fractionation in a peatland drainage network affects stream
water isotope composition, Water Resour. Res., 53, 851–866,
https://doi.org/10.1002/2016WR019258, 2017.
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin,
P., Dubbert, M., Hartmann, A., Hrachowitz, M., Kirchner, J. W., McDonnell,
J. J., Orlowski, N., Penna, D., Pfahl, S., Rinderer, M., Rodriquez, N.,
Schmidt, M., and Werner, C.: The demographics of water: A review of water
ages in the critical zone, Rev. Geophys., 57, 800–834,
https://doi.org/10.1029/2018RG000633, 2019.
Steven, H. M. and Carlisle, A.: The Native Pinewoods of Scotland, Oliver and
Boyd, Edinburgh, 1959.
Stewart, J. B.: Evaporation from the wet canopy of a pine forest, Water
Resour. Res., 13, 915–921, https://doi.org/10.1029/WR013i006p00915, 1977.
Stewart, M. K., Morgenstern, U., and McDonnell, J. J.: Truncation of stream
residence time: How the use of stable isotopes has skewed our concept of
streamwater age and origin, Hydrol. Process., 24, 1646–1659,
https://doi.org/10.1002/hyp.7576, 2010.
Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, D., Weiler,
M., and Vereecken, H.: Seasonal soil moisture patterns: Controlling transit
time distributions in a forested headwater catchment, Water Resour. Res.,
50, 5270–5289, https://doi.org/10.1002/2013WR014815, 2014.
Summers, R. W.: Abernethy Forest: The History and Ecology of an Old Scottish
Pinewood, RSPB, Inverness, ISBN 9781999988203, 2018.
Summers, R. W., Proctor, R., Raistrick, P., and Taylor, S.: The structure of
Abernethy Forest, Strathspey, Scotland, Botanical Journal of Scotland, 49,
39–55, https://doi.org/10.1080/03746609708684851, 1997.
Summers, R. W., Wilkinson, N. I., and Wilson, E. R.: Age structure and history
of stand types of Pinus sylvestris in Abernethy Forest, Scotland, Scand, J. Forest Res., 23,
28–37, https://doi.org/10.1080/02827580701646513, 2008.
Taylor, K., Rowland, A. P., and Jones, H. E.: Molinia caerulea (L.) Moench, J. Ecol., 89,
126–144, https://doi.org/10.1046/j.1365-2745.2001.00534.x, 2001.
Tetzlaff, D., Soulsby, C., Waldron, S., Malcolm, I. A., Bacon, P. J., Dunn,
S. M., Lilly, A., and Youngson, A. F.: Conceptualization of runoff processes
using a geographical information system and tracers in a nested mesoscale
catchment, Hydrol. Process., 21, 1289–1307,
https://doi.org/10.1002/hyp.6309, 2007.
Tetzlaff, D., Birkel., C., Dick, J., Geris, J., and Soulsby, C.: Storage
dynamics in hydropedological units control hillslope connectivity, runoff
generation, and the evolution of catchment transit time distributions, Water
Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014.
Thomas, H. J. D., Paterson, J. S., Metzger, M. J., and Sing, L.: Towards a
research agenda for woodland expansion in Scotland, Forest Ecol. Manag.,
349, 149–161, https://doi.org/10.1016/j.foreco.2015.04.003, 2015.
Turnbull, L. and Wainwright, J.: From structure to function: Understanding
shrub encroachment in drylands using hydrological and sediment connectivity,
Ecol. Indic., 98, 608–618, https://doi.org/10.1016/j.ecolind.2018.11.039,
2019.
Wang, H., Tetzlaff, D., and Soulsby, C.: Modelling the effects of land cover
and climate change on soil water partitioning in a boreal headwater
catchment, J. Hydrol., 558, 520–531,
https://doi.org/10.1016/j.jhydrol.2018.02.002, 2018.
Werritty, A. and Sugden, D.: Climate change and Scotland: Recent trends and
impacts, Earth Env. Sci. T. R. So., 103, 133–147,
https://doi.org/10.1017/S1755691013000030, 2012.
White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial
Ecosystem Model: Net Primary Production Controls, Earth Interact., 4, Paper
No. 3, https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2, 2000.
Wilson, S., McG.: The Native Woodlands of Scotland: Ecology, Conservation
and Management, Edinburgh University Press, Edinburgh, ISBN 9780748692859, 2015.
zu Ermgassen, S. O. S. E., McKenna, T., Gordon, J., and Willcock, S.: Ecosystem
service responses to rewilding: first-order estimates from 27 years of
rewilding in the Scottish Highlands, International Journal of Biodiversity
Science, Ecosystem Services and Management, 14, 165–178,
https://doi.org/10.1080/21513732.2018.1502209, 2018.
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests...