Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Mikael Gillefalk
CORRESPONDING AUTHOR
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
Dörthe Tetzlaff
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
Department of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Reinhard Hinkelmann
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
Lena-Marie Kuhlemann
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
Department of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Aaron Smith
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
Fred Meier
Chair of Climatology, Technische Universität Berlin, Rothenburgstraße 12, 12165 Berlin, Germany
Marco P. Maneta
Regional Hydrology Lab, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
Chris Soulsby
Northern Rivers Institute, University of Aberdeen, St. Mary's Building, King's College, Old Aberdeen, AB24 3UE, Scotland
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
Related authors
No articles found.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierikko, and Michael T. Monaghan
Hydrol. Earth Syst. Sci., 29, 2707–2725, https://doi.org/10.5194/hess-29-2707-2025, https://doi.org/10.5194/hess-29-2707-2025, 2025
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions (aquaNBSs) affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach of stable water isotopes, hydrochemistry, and microbial and macrophyte diversity to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBSs regarding water quality and biodiversity in response to hydroclimate and urban water sources.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Hanwu Zheng, Doerthe Tetzlaff, Christian Birkel, Songjun Wu, Tobias Sauter, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2166, https://doi.org/10.5194/egusphere-2025-2166, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Ecohydrological processes in heavily managed catchments are often incorrectly represented in models. We applied a tracer-aided model STARR in an ET-dominated region (the Middle Spree, NE Germany) with major management impacts. Water isotopes were useful in identifying runoff contributions and partitioning ET even at sparse resolution. Trade-offs between discharge- and isotope-based calibrations could be partially mitigated by integrating more process-based conceptualizations into the model.
Ann-Marie Ring, Dörthe Tetzlaff, Christian Birkel, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-1444, https://doi.org/10.5194/egusphere-2025-1444, 2025
Short summary
Short summary
During summer drought, a clear sub-daily cycling of atmospheric water vapour isotopes (δv) and plant xylem water isotopes (δxyl) was observed. δv daytime depletion was driven by evaporation and local atmospheric factors (entrainment). δxyl daytime enrichment was consistent with limited sap flow and stomatal regulation of transpiration. Water limitations during drought in urban trees are visible in δxyl and ecohydrological data. This sub-daily dataset can help constrain ecohydrological models.
Franziska Tügel, Katrin M. Nissen, Lennart Steffen, Yangwei Zhang, Uwe Ulbrich, and Reinhard Hinkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-445, https://doi.org/10.5194/egusphere-2025-445, 2025
Short summary
Short summary
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming and how that could worsen flooding in a selected part of the city. We assess the role of the drainage system, infiltration from unsealed surfaces, and a potential adaptation scenario with all roofs as retention roofs in reducing flooding under extreme rainfall. Combining climate and hydrodynamic simulations, we provide insights into future challenges and possible solutions for urban flood management.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Preprint archived
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Cited articles
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017.
Amt für Statistik Berlin Brandenburg: Katasterflächen nach Art der tatsächlichen Nutzung am 31.12.2019, online, available at: https://www.statistik-berlin-brandenburg.de/statistiken/inhalt-statistiken.asp (last access: 22 October 2020), 2020.
Bach, P. M., Kuller, M., McCarthy, D. T., and Deletic, A.: A spatial planning-support system for generating decentralised urban stormwater management schemes, Sci. Total Environ., 726, 138282, https://doi.org/10.1016/j.scitotenv.2020.138282, 2020.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L., and Hopton, M. E.: The role of trees in urban stormwater management, Landscape Urban Plan., 162, 167–177, https://doi.org/10.1016/j.landurbplan.2017.02.017, 2017.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall – runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Bonneau, J., Fletcher, T. D., Costelloe, J. F., and Burns, M. J.: Stormwater infiltration and the `urban karst' – A review, J. Hydrol., 552, 141–150, https://doi.org/10.1016/j.jhydrol.2017.06.043, 2017.
Bonneau, J., Fletcher, T. D., Costelloe, J. F., Poelsma, P. J., James, R. B., and Burns, M. J.: Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features, J. Hydrol., 567, 121–132, https://doi.org/10.1016/j.jhydrol.2018.10.006, 2018.
Bornkamm, R. and Köhler, M.: Ein Naturgarten für Lehre und Forschung. Der Garten des Instituts für Ökologie der Technischen Universität Berlin, Landschaftsentwicklung und Umweltforschung, Band 45, Schriftenreihe des Fachberiechs Landschaftsentwicklung an der TU Berlin, Berlin, 1987 (in German).
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban greening to cool towns and cities: A systematic review of the empirical evidence, Landscape Urban Plan., 97, 147–155, https://doi.org/10.1016/j.landurbplan.2010.05.006, 2010.
Brewer, S. K., Worthington, T. A., Mollenhauer, R., Stewart, D. R., McManamay, R. A., Guertault, L., and Moore, D.: Synthesizing models useful for ecohydrology and ecohydraulic approaches: An emphasis on integrating models to address complex research questions, Ecohydrology, 11, e1966, https://doi.org/10.1002/eco.1966, 2018.
Coutts, M. P., Nielsen, C. C. N., and Nicoll, B. C.: The development of symmetry, rigidity and anchorage in the structural root system of conifers, Plant Soil, 217, 1–15, https://doi.org/10.1023/A:1004578032481, 1999.
Destatis (Statistisches Bundesamt): Statistisches Jahrbuch, Chapter 19: Land- und Forstwirtschaft, available at: https://www.destatis.de/DE/Themen/Querschnitt/Jahrbuch/jb-land-forstwirtschaft.pdf?__blob=publicationFile (last access: 3 May 2021), 2019.
Deutscher Wetterdienst (DWD): Vieljährige Mittelwerte, online, available at: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (last access: 11 November 2020), 2020.
Douinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte-Bisping, H., and Soulsby, C.: Ecohydrological modelling with EcH2O-iso to quantify forest and grassland effects on water partitioning and flux ages, Hydrol. Process., 33, 2174–2191, https://doi.org/10.1002/hyp.13480, 2019.
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces, New Phytol., 221, 1754–1763, https://doi.org/10.1111/nph.15547, 2019.
Ehleringer, J. R., Barnette, J. E., Jameel, Y., Tipple, B. J., and Bowen, G. J.: Urban water – a new frontier in isotope hydrology, Isot. Environ. Healt. S., 52, 477–486, https://doi.org/10.1080/10256016.2016.1171217, 2016.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Noordwijk, M. van, Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world, Global Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017.
Fatichi, S., Pappas, C., and Ivanov, V. Y.: Modeling plant – water interactions: an ecohydrological overview from the cell to the global scale, WIREs Water, 3, 327–368, https://doi.org/10.1002/wat2.1125, 2016.
Fenner, D., Holtmann, A., Krug, A., and Scherer, D.: Heat waves in Berlin and Potsdam, Germany – Long-term trends and comparison of heat wave definitions from 1893 to 2017, Int. J. Climatol., 39, 2422–2437, https://doi.org/10.1002/joc.5962, 2019a.
Fenner, D., Holtmann, A., Meier, F., Langer, I., and Scherer, D.: Contrasting changes of urban heat island intensity during hot weather episodes, Environ. Res. Lett., 14, 124013, https://doi.org/10.1088/1748-9326/ab506b, 2019b.
Geris, J., Tetzlaff, D., McDonnell, J., Anderson, J., Paton, G., and Soulsby, C.: Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques, Hydrol. Process., 29, 5139–5152, https://doi.org/10.1002/hyp.10603, 2015.
Gessner, M. O., Hinkelmann, R., Nützmann, G., Jekel, M., Singer, G., Lewandowski, J., Nehls, T., and Barjenbruch, M.: Urban water interfaces, J. Hydrol., 514, 226–232, https://doi.org/10.1016/j.jhydrol.2014.04.021, 2014.
Golden, H. E. and Hoghooghi, N.: Green infrastructure and its catchment-scale effects: an emerging science, WIREs Water, 5, e1254, https://doi.org/10.1002/wat2.1254, 2018.
Gómez-Navarro, C., Pataki, D. E., Pardyjak, E. R., and Bowling, D. R.: Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley, Agr. Forest Meteorol., 296, 108211, https://doi.org/10.1016/j.agrformet.2020.108211, 2021.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hagishima, A., Narita, K., and Tanimoto, J.: Field experiment on transpiration from isolated urban plants, Hydrol. Process., 21, 1217–1222, https://doi.org/10.1002/hyp.6681, 2007.
Harris, C., Oom, B., and Diamond, R.: A preliminary investigation of the oxygen and hydrogen isotope hydrology of the greater Cape Town area and an assessment of the potential of using stable isotopes as tracers, Water SA, 25, 15–24, 1999.
IAEA/WMO: The GNIP Database, online, available at: https://nucleus.iaea.org/wiser, last access: 7 March 2020.
Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P., and Ten Veldhuis, M.-C.: Scale effect challenges in urban hydrology highlighted with a distributed hydrological model, Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, 2018.
IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries: Ech2o Tracer ech2o_iso, available at: http://bitbucket.igb-berlin.de:7990/users/ech2o/repos/ech2o_iso/browse, last access: 18 December 2020.
Jamali, B., Bach, P. M., and Deletic, A.: Rainwater harvesting for urban flood management – An integrated modelling framework, Water Res., 171, 115372, https://doi.org/10.1016/j.watres.2019.115372, 2020.
Johnson, D. M., Domec, J.-C., Berry, Z. C., Schwantes, A. M., McCulloh, K. A., Woodruff, D. R., Polley, H. W., Wortemann, R., Swenson, J. J., Mackay, D. S., McDowell, N. G., and Jackson, R. B.: Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought, Plant Cell Environ., 41, 576–588, https://doi.org/10.1111/pce.13121, 2018.
Kendall, C. and McDonnel, J. J. (Eds.): Isotope Tracers in Catchment Hydrology, Elsevier, Amsterdam, 1998.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Knighton, J., Kuppel, S., Smith, A., Soulsby, C., Sprenger, M., and Tetzlaff, D.: Using isotopes to incorporate tree water storage and mixing dynamics into a distributed ecohydrologic modelling framework, Ecohydrology, 13, e2201, https://doi.org/10.1002/eco.2201, 2020.
Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H., and Thorsson, S.: Transpiration of urban trees and its cooling effect in a high latitude city, Int. J. Biometeorol., 60, 159–172, https://doi.org/10.1007/s00484-015-1014-x, 2016.
Kuhlemann, L.-M., Tetzlaff, D., and Soulsby, C.: Urban water systems under climate stress: An isotopic perspective from Berlin, Germany, Hydrol. Process., 34, 3758–3776, https://doi.org/10.1002/hyp.13850, 2020.
Kuhlemann, L.-M., Tetzlaff, D., Smith, A., Kleinschmit, B., and Soulsby, C.: Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning, Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, 2021.
Kuller, M., Bach, P. M., Ramirez-Lovering, D., and Deletic, A.: Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice, Environ. Modell. Softw., 96, 265–282, https://doi.org/10.1016/j.envsoft.2017.07.003, 2017.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: EcH2O−iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model, Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, 2018a.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: What can we learn from multi-data calibration of a process-based ecohydrological model?, Environ. Modell. Softw., 101, 301–316, https://doi.org/10.1016/j.envsoft.2018.01.001, 2018b.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: Critical Zone Storage Controls on the Water Ages of Ecohydrological Outputs, Geophys. Res. Lett., 47, e2020GL088897, https://doi.org/10.1029/2020GL088897, 2020.
Langendijk, G. S., Rechid, D., and Jacob, D.: Urban Areas and Urban–Rural Contrasts under Climate Change: What Does the EURO-CORDEX Ensemble Tell Us? – Investigating near Surface Humidity in Berlin and Its Surroundings, Atmosphere, 10, 730, https://doi.org/10.3390/atmos10120730, 2019.
Lim, T. C. and Welty, C.: Assessing Variability and Uncertainty in Green Infrastructure Planning Using a High-Resolution Surface-Subsurface Hydrological Model and Site-Monitored Flow Data, Frontiers in Built Environment, 4, 71, https://doi.org/10.3389/fbuil.2018.00071, 2018.
Litvak, E. and Pataki, D. E.: Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations, J. Arid. Environ., 134, 87–96, https://doi.org/10.1016/j.jaridenv.2016.06.016, 2016.
Maneta, M. P. and Silverman, N. L.: A Spatially Distributed Model to Simulate Water, Energy, and Vegetation Dynamics Using Information from Regional Climate Models, Earth Interact., 17, 1–44, https://doi.org/10.1175/2012EI000472.1, 2013.
Mao, Q., Huang, G., Buyantuev, A., Wu, J., Luo, S., and Ma, K.: Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region, China, Ecol. Process., 3, 23, https://doi.org/10.1186/s13717-014-0023-8, 2014.
Marchionni, V., Guyot, A., Tapper, N., Walker, J. P., and Daly, E.: Water balance and tree water use dynamics in remnant urban reserves, J. Hydrol., 575, 343–353, https://doi.org/10.1016/j.jhydrol.2019.05.022, 2019.
McCarthy, H. R. and Pataki, D. E.: Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area, Urban Ecosyst., 13, 393–414, https://doi.org/10.1007/s11252-010-0127-6, 2010.
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21, 239–245, https://doi.org/10.2307/1268522, 1979.
Meili, N., Manoli, G., Burlando, P., Bou-Zeid, E., Chow, W. T. L., Coutts, A. M., Daly, E., Nice, K. A., Roth, M., Tapper, N. J., Velasco, E., Vivoni, E. R., and Fatichi, S.: An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0), Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, 2020.
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, 33, 161–174, https://doi.org/10.2307/1269043, 1991.
Muffler, L., Weigel, R., Hacket-Pain, A. J., Klisz, M., Maaten, E. van der, Wilmking, M., Kreyling, J. and, van der Maaten-Theunissen, M.: Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech, J. Biogeogr., 47, 1910–1921, https://doi.org/10.1111/jbi.13884, 2020.
Muñoz-Villers, L. E., Geris, J., Alvarado-Barrientos, M. S., Holwerda, F., and Dawson, T.: Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem, Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, 2020.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nouri, H., Chavoshi Borujeni, S., and Hoekstra, A. Y.: The blue water footprint of urban green spaces: An example for Adelaide, Australia, Landscape Urban Plan., 190, 103613, https://doi.org/10.1016/j.landurbplan.2019.103613, 2019.
Nowak, D. J., Crane, D. E., and Stevens, J. C.: Air pollution removal by urban trees and shrubs in the United States, Urban For. Urban Gree., 4, 115–123, https://doi.org/10.1016/j.ufug.2006.01.007, 2006.
Oerter, E. J., Siebert, G., Bowling, D. R., and Bowen, G.: Soil water vapour isotopes identify missing water source for streamside trees, Ecohydrology, 12, e2083, https://doi.org/10.1002/eco.2083, 2019.
Oke, T. R.: Advectively-assisted evapotranspiration from irrigated urban vegetation, Bound.-Lay. Meteorol., 17, 167–173, https://doi.org/10.1007/BF00117976, 1979.
Pataki, D. E., McCarthy, H. R., Litvak, E., and Pincetl, S.: Transpiration of urban forests in the Los Angeles metropolitan area, Ecol. Appl., 21, 661–677, https://doi.org/10.1890/09-1717.1, 2011.
Paul, M. J. and Meyer, J. L.: Streams in the Urban Landscape, Annu. Rev. Ecol. Syst., 32, 333–365, https://doi.org/10.1146/annurev.ecolsys.32.081501.114040, 2001.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, L., and Myneni, R. B.: Surface Urban Heat Island Across 419 Global Big Cities, Environ. Sci. Technol., 46, 696–703, https://doi.org/10.1021/es2030438, 2012.
Prodanovic, V., Wang, A., and Deletic, A.: Assessing water retention and correlation to climate conditions of five plant species in greywater treating green walls, Water Res., 167, 115092, https://doi.org/10.1016/j.watres.2019.115092, 2019.
Revelli, R. and Porporato, A.: Ecohydrological model for the quantification of ecosystem services provided by urban street trees, Urban Ecosyst., 21, 489–504, https://doi.org/10.1007/s11252-018-0741-2, 2018.
Roseen, R. M., Ballestero, T. P., Houle, J. J., Avelleneda, P., Wildey, R., and Briggs, J.: Storm Water Low-Impact Development, Conventional Structural, and Manufactured Treatment Strategies for Parking Lot Runoff: Performance Evaluations Under Varied Mass Loading Conditions, Transp. Res. Record, 1984, 135–147, https://doi.org/10.1177/0361198106198400113, 2006.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems, J. Ecol., 90, 480–494, https://doi.org/10.1046/j.1365-2745.2002.00682.x, 2002.
Scherer, D., Ament, F., Emeis, S., Fehrenbach, U., Leitl, B., Scherber, K., Schneider, C., and Vogt, U.: Three-Dimensional Observation of Atmospheric Processes in Cities, Meteorol. Z., 28, 121–138, https://doi.org/10.1127/metz/2019/0911, 2019.
Shields, C. and Tague, C.: Ecohydrology in semiarid urban ecosystems: Modeling the relationship between connected impervious area and ecosystem productivity, Water Resour. Res., 51, 302–319, https://doi.org/10.1002/2014WR016108, 2015.
Schubert, J. E., Sanders, B. F., Smith, M. J., and Wright, N. G.: Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding, Adv. Water Resour., 31, 1603–1621, https://doi.org/10.1016/j.advwatres.2008.07.012, 2008.
Senate Department for Urban Development (SenStadt): Umweltatlas Berlin/Flurabstand des Grundwassers 2009 differenziert, online, available at: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=zoomStart&mapId=wmsk_02_07flurab2009@senstadt (last access: 16 November 2020), 2010.
Senate Department for Urban Development (SenStadt): Umweltatlas Berlin/Reale Nutzung der bebauten Flächen, online, available at: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=realnutz2015@senstadt (last access: 16 November 2020), 2015.
Senate Department for Urban Development (SenStadt): Digitale farbige Orthophotos 2018 (DOP20RGB), online, available at: https://fbinter.stadt-berlin.de/fb/berlin/service_intern.jsp?id=a_luftbild2018_rgb@senstadt&type=FEED (last access: 16 November 2020), 2018.
Senate Department for Urban Development (SenStadt): Berlin Environmental Atlas, Map 02.13: Surface Runoff, Percolation, Total Runoff and Evaporation from Precipitation. Accompanying text, online, available at: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/e_text/ekd213.pdf (last access: 16 November 2020), 2019.
Smith, A., Tetzlaff, D., Laudon, H., Maneta, M., and Soulsby, C.: Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model, Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, 2019.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. P., and Soulsby, C.: Isotope-aided modelling of ecohydrologic fluxes and water ages under mixed land use in Central Europe: The 2018 drought and its recovery, Hydrol. Process., 34, 3406–3425, https://doi.org/10.1002/hyp.13838, 2020.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M., and Soulsby, C.: Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models, Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, 2021.
Sohier, H., Farges, J.-L., and Piet-Lahanier, H.: Improvement of the Representativity of the Morris Method for Air-Launch-to-Orbit Separation, IFAC Proceedings Volumes, 47, 7954–7959, https://doi.org/10.3182/20140824-6-ZA-1003.01968, 2014.
TU Berlin: Bestandsplan Rothenburgstraße, unpublished, 2018.
United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), New York, USA, 2019.
Voter, C. B. and Loheide, S. P.: Urban Residential Surface and Subsurface Hydrology: Synergistic Effects of Low-Impact Features at the Parcel Scale, Water Resour. Res., 54, 8216–8233, https://doi.org/10.1029/2018WR022534, 2018.
Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., and Morgan, R. P.: The urban stream syndrome: current knowledge and the search for a cure, Freshw. Sci., 24, 706–723, https://doi.org/10.1899/04-028.1, 2005.
Wilcox, W. M., Solo-Gabriele, H. M., and Sternberg, L. O.: Use of stable isotopes to quantify flows between the Everglades and urban areas in Miami-Dade County Florida, J. Hydrol., 293, 1–19, https://doi.org/10.1016/j.jhydrol.2003.12.041, 2004.
Zölch, T., Maderspacher, J., Wamsler, C., and Pauleit, S.: Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale, Urban For. Urban Gree., 20, 305–316, https://doi.org/10.1016/j.ufug.2016.09.011, 2016.
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for...