Articles | Volume 23, issue 12
Hydrol. Earth Syst. Sci., 23, 5089–5110, 2019
https://doi.org/10.5194/hess-23-5089-2019
Hydrol. Earth Syst. Sci., 23, 5089–5110, 2019
https://doi.org/10.5194/hess-23-5089-2019

Research article 17 Dec 2019

Research article | 17 Dec 2019

Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets

Frederik Kratzert et al.

Related authors

Deep learning rainfall-runoff predictions of extreme events
Jonathan Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shelev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-423,https://doi.org/10.5194/hess-2021-423, 2021
Preprint under review for HESS
Short summary
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021,https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Nearing, Jimmy Lin, and Sepp Hochreiter
Hydrol. Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021,https://doi.org/10.5194/hess-25-2045-2021, 2021
Short summary
Uncertainty Estimation with Deep Learning for Rainfall–Runoff Modelling
Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-154,https://doi.org/10.5194/hess-2021-154, 2021
Revised manuscript under review for HESS
Short summary
Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks
Frederik Kratzert, Daniel Klotz, Claire Brenner, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018,https://doi.org/10.5194/hess-22-6005-2018, 2018
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021,https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021,https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Bright and blind spots of water research in Latin America and the Caribbean
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021,https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021,https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021,https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017a. a, b
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment attributes for large-sample studies, UCAR/NCAR, Boulder, CO, USA, https://doi.org/10.5065/D6G73C3Q, 2017b. a, b, c, d
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A ranking of hydrological signatures based on their predictability in space, Water Resources Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018.a, b
Anderson, E. A.: National Weather Service river forecast system: Snow accumulation and ablation model, NOAA Tech. Memo. NWS HYDRO-17, 87 pp., 1973. a
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of hydrologic model parameters, Water Resour. Res., 52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016. a
Download
Short summary
A new approach for regional rainfall–runoff modeling using long short-term memory (LSTM)-based models is presented and benchmarked against a range of well-known hydrological models. The approach significantly outperforms regionally calibrated hydrological models but also basin-wise calibrated models. Furthermore, we propose an adaption of the LSTM that allows us to extract the learned catchment understanding of the model and show that it matches our hydrology expert knowledge.