Articles | Volume 29, issue 5
https://doi.org/10.5194/hess-29-1359-2025
https://doi.org/10.5194/hess-29-1359-2025
Research article
 | 
12 Mar 2025
Research article |  | 12 Mar 2025

Laboratory heat transport experiments reveal grain-size- and flow-velocity-dependent local thermal non-equilibrium effects

Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau

Related authors

City-scale heating and cooling with Aquifer Thermal Energy Storage (ATES)
Ruben Stemmle, Haegyeong Lee, Philipp Blum, and Kathrin Menberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-62,https://doi.org/10.5194/hess-2023-62, 2023
Revised manuscript not accepted
Short summary

Cited articles

Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C. N., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS project version 1.5, Archive of Numerical Software, 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553, 2015. a
Amiri, A. and Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media, Int. J. Heat Mass Tran., 37, 939–954, https://doi.org/10.1016/0017-9310(94)90219-4, 1994. a, b, c, d, e, f
Baek, J.-Y., Park, B.-H., Rau, G. C., and Lee, K.-K.: Experimental evidence for local thermal non-equilibrium during heat transport in sand representative of natural conditions, J. Hydrol., 608, 127589, https://doi.org/10.1016/j.jhydrol.2022.127589, 2022. a, b, c, d, e
Bandai, T., Hamamoto, S., Rau, G. C., Komatsu, T., and Nishimura, T.: The effect of particle size on thermal and solute dispersion in saturated porous media, Int. J. Therm. Sci., 122, 74–84, https://doi.org/10.1016/j.ijthermalsci.2017.08.003, 2017. a
Bandai, T., Hamamoto, S., Rau, G. C., Komatsu, T., and Nishimura, T.: Effects of thermal properties of porous media on local thermal (non-)equilibrium heat transport, Journal of Groundwater Hydrology, 65, 125–139, https://doi.org/10.5917/jagh.65.125, 2023. a, b, c, d, e, f, g, h, i, j, k
Download
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Share