Articles | Volume 27, issue 10
https://doi.org/10.5194/hess-27-1961-2023
https://doi.org/10.5194/hess-27-1961-2023
Research article
 | 
23 May 2023
Research article |  | 23 May 2023

Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions

Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde

Related authors

Improvement of the KarstMod modelling platform for a better assessment of karst groundwater resources
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025,https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023,https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Karst spring discharge modeling based on deep learning using spatially distributed input data
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022,https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary

Cited articles

Aalto, J., Riihimäki, H., Meineri, E., Hylander, K., and Luoto, M.: Revealing topoclimatic heterogeneity using meteorological station data, Int. J. Climatol., 37, 544–556, https://doi.org/10.1002/joc.5020, 2017. 
Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019. 
Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., and Iannone, R.: Rmarkdown: Dynamic documents for r, CRAN [code], https://cran.r-project.org/package=rmarkdown (last access: 17 May 2023), R package version 2.21, 2021. 
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., and FAO (Eds.): Crop evapotranspiration: Guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, 1998. 
Download
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Share