Articles | Volume 27, issue 10
https://doi.org/10.5194/hess-27-1961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
Guillaume Cinkus
CORRESPONDING AUTHOR
HydroSciences Montpellier (HSM), Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Andreas Wunsch
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences, Kaiserstr. 12, 76131 Karlsruhe, Germany
Naomi Mazzilli
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon, France
Tanja Liesch
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences, Kaiserstr. 12, 76131 Karlsruhe, Germany
Zhao Chen
Institute of Groundwater Management, Technical University of Dresden, 01062 Dresden, Germany
Nataša Ravbar
ZRC SAZU, Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
Joanna Doummar
Department of Geology, American University of Beirut, P.O. Box 11 – 0236/26, Beirut, Lebanon
Jaime Fernández-Ortega
Department of Geology and Centre of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain
Juan Antonio Barberá
Department of Geology and Centre of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain
Bartolomé Andreo
Department of Geology and Centre of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain
Nico Goldscheider
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences, Kaiserstr. 12, 76131 Karlsruhe, Germany
Hervé Jourde
HydroSciences Montpellier (HSM), Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Related authors
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025, https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary
Short summary
KarstMod provides a platform for global modelling of the rain level–flow relationship in karstic basins. The platform provides a set of tools to assess the dynamics of the compartments considered in the model and to detect possible flaws in structure and parameterization. This platform is developed as part of the French observatory network on karst hydrology (SNO KARST), which aims to strengthen the sharing of knowledge and promote interdisciplinary research on karst systems at a national level.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Fabienne Doll, Tanja Liesch, Maria Wetzel, Stefan Kunz, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2025-3539, https://doi.org/10.5194/egusphere-2025-3539, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With the growing use of machine learning for groundwater level (GWL) prediction, proper performance estimation is crucial. This study compares three validation strategies—blocked cross-validation (bl-CV), repeated out-of-sample (repOOS), and out-of-sample (OOS)—for 1D-CNN models using meteorological inputs. Results show that bl-CV offers the most reliable performance estimates, while OOS is the most uncertain, highlighting the need for careful method selection.
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025, https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary
Short summary
KarstMod provides a platform for global modelling of the rain level–flow relationship in karstic basins. The platform provides a set of tools to assess the dynamics of the compartments considered in the model and to detect possible flaws in structure and parameterization. This platform is developed as part of the French observatory network on karst hydrology (SNO KARST), which aims to strengthen the sharing of knowledge and promote interdisciplinary research on karst systems at a national level.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022, https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Markus Merk, Nadine Goeppert, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 25, 3519–3538, https://doi.org/10.5194/hess-25-3519-2021, https://doi.org/10.5194/hess-25-3519-2021, 2021
Short summary
Short summary
Soil moisture levels have decreased significantly over the past 2 decades. This decrease is not uniformly distributed over the observation period. The largest changes occur at tipping points during years of extreme drought, after which soil moisture levels reach significantly different alternate stable states. Not only the overall trend in soil moisture is affected, but also the seasonal dynamics.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Cited articles
Aalto, J., Riihimäki, H., Meineri, E., Hylander, K., and Luoto, M.:
Revealing topoclimatic heterogeneity using meteorological station data, Int. J. Climatol., 37, 544–556, https://doi.org/10.1002/joc.5020, 2017.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.:
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [cs], arXiv:1603.04467, 2016.
Addor, N. and Melsen, L. A.:
Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019.
Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., and Iannone, R.: Rmarkdown: Dynamic documents for r, CRAN [code], https://cran.r-project.org/package=rmarkdown (last access: 17 May 2023), R package version 2.21, 2021.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., and FAO (Eds.):
Crop evapotranspiration: Guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, 1998.
Andreo, B., Vadillo, I., Carrasco, F., Neukum, C., Jiménez, P., Goldscheider, N., Hötzl, H., Vías, J., Pérez, I., and Göppert, N.:
Precisiones sobre el funcionamiento hidrodinámico y la vulnerabilidad a la contaminación del acuífero kárstico de la sierra de líbar (provincias de málaga y cádiz, sur de españa) a partir de un ensayo de trazadores, Rev. Soc. Geol. Esp., 17, 187–198, 2004.
Andreo, B., Goldscheider, N., Vadillo, I., Vías, J., Neukum, C., Sinreich, M., Gavilán, P., Brechenmacher, J., Carrasco, F., Hötzl, H., Perles, M., and Zwahlen, F.:
Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain), Sci. Total Environ., 357, 54–73, https://doi.org/10.1016/j.scitotenv.2005.05.019, 2006.
ARSO: Archive of hydrological data, ARSO [data set], Ministry of the Environment and Spatial Planning, Slovenian Environment Agency, http://vode.arso.gov.si/hidarhiv/ (last access: 12 October 2022), 2021a.
ARSO: Archive of meteorological data, ARSO [data set], Ministry of the Environment and Spatial Planning, Slovenian Environment Agency, http://www.meteo.si/ (last access: 12 October 2022), 2021b.
Bakalowicz, M.:
Karst groundwater: A challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Bergström, S.: The HBV model – its structure and applications, SMHI Reports Hydrology, Norrköping, Sweden, RH 4, ISSN 0283-1104, 1992.
Bittner, D., Parente, M. T., Mattis, S., Wohlmuth, B., and Chiogna, G.:
Identifying relevant hydrological and catchment properties in active subspaces: An inference study of a lumped karst aquifer model, Adv. Water. Resour., 135, 103472, https://doi.org/10.1016/j.advwatres.2019.103472, 2020.
Bittner, D., Richieri, B., and Chiogna, G.:
Unraveling the time-dependent relevance of input model uncertainties for a lumped hydrologic model of a pre-alpine karst system, Hydrogeol. J., 29, 2363–2379, https://doi.org/10.1007/s10040-021-02377-1, 2021.
Çallı, S. S., Çallı, K. Ö., Tuğrul Yılmaz, M., and Çelik, M.:
Contribution of the satellite-data driven snow routine to a karst hydrological model, J. Hydrol., 607, 127511, https://doi.org/10.1016/j.jhydrol.2022.127511, 2022.
Chen, Z. and Goldscheider, N.:
Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen, Alps, J. Hydrol., 514, 41–52, 2014.
Chen, Z., Hartmann, A., Wagener, T., and Goldscheider, N.:
Dynamics of water fluxes and storages in an Alpine karst catchment under current and potential future climate conditions, Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, 2018.
Cheng, S., Qiao, X., Shi, Y., and Wang, D.:
Comparison of Machine Learning Methods for Predicting Karst Spring Discharge in North China, arXiv [physics], arXiv:2007.12951, 2020.
Chollet, F.: Keras, https://github.com/keras-team/keras (last access: 12 October 2022), 2015.
Cinkus, G., Wunsch, A., Mazzilli, N., Liesch, T., Chen, Z., Ravbar, N., Doummar, J., Fernández-Ortega, J., Barberá, J. A., Andreo, B., Goldscheider, N., and Jourde, H.: busemorose/ANN-Reservoir_model-code: Model code release, Zenodo [code], https://doi.org/10.5281/zenodo.7242077, 2022.
Conradt, T., Wechsung, F., and Bronstert, A.:
Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances, Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, 2013.
Consejería de Agricultura, Pesa, Agua y Desarrollo rural: Archive of meteorological data [data set],
http://www.redhidrosurmedioambiente.es/saih/presentacion (last access: 12 October 2022), 2022.
Cuenca Mediterránea Andaluza: Archive of hydrological data [data set], https://hispagua.cedex.es/instituciones/confederaciones/andalucia (last access: 12 October 2022), 2022.
Dausse, A., Leonardi, V., and Jourde, H.:
Hydraulic characterization and identification of flow-bearing structures based on multi-scale investigations applied to the Lez karst aquifer, J. Hydrol. Reg. Stud., 26, 100627, https://doi.org/10.1016/j.ejrh.2019.100627, 2019.
Di Baldassarre, G. and Montanari, A.:
Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Doummar, J. and Aoun, M.:
Occurrence of selected domestic and hospital emerging micropollutants on a rural surface water basin linked to a groundwater karst catchment, Environ. Earth Sci., 77, 351, https://doi.org/10.1007/s12665-018-7536-x, 2018.
Doummar, J., Hassan Kassem, A., and Gurdak, J. J.:
Impact of historic and future climate on spring recharge and discharge based on an integrated numerical modelling approach: Application on a snow-governed semi-arid karst catchment area, J. Hydrol., 565, 636–649, https://doi.org/10.1016/j.jhydrol.2018.08.062, 2018.
Dubois, E.:
Analysis of high resolution spring hydrographs and climatic data: Application on the Qachqouch spring (Lebanon), PhD thesis, American University of Beirut, 2017.
Dubois, E., Doummar, J., Pistre, S., and Larocque, M.:
Calibration of a lumped karst system model and application to the Qachqouch karst spring (Lebanon) under climate change conditions, Hydrol. Earth Syst. Sci., 24, 4275–4290, https://doi.org/10.5194/hess-24-4275-2020, 2020.
DWD: DWD Opendata, DWD [data set], https://opendata.dwd.de/ (last access: 12 October 2022), 2022.
Fleury, P., Plagnes, V., and Bakalowicz, M.:
Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France), J. Hydrol., 345, 38–49, https://doi.org/10.1016/j.jhydrol.2007.07.014, 2007.
Fleury, P., Ladouche, B., Conroux, Y., Jourde, H., and Dörfliger, N.:
Modelling the hydrologic functions of a karst aquifer under active water management The Lez spring, J. Hydrol., 365, 235–243, https://doi.org/10.1016/j.jhydrol.2008.11.037, 2009.
Ford, D. and Williams, P.:
Karst Hydrogeology, in: Karst Hydrogeology and Geomorphology, John Wiley & Sons, Ltd, Wiley, Chichester, UK, https://doi.org/10.1002/9781118684986.ch5, 103–144, 2007.
Gabrovšek, F., Kogovšek, J., Kovačič, G., Petrič, M., Ravbar, N., and Turk, J.:
Recent Results of Tracer Tests in the Catchment of the Unica River (SW Slovenia), Acta Carsologica, 39, 27–37, https://doi.org/10.3986/ac.v39i1.110, 2010.
Gohel, D.: Flextable: Functions for tabular reporting, Manual, CRAN [code], https://cran.r-project.org/web/packages/flextable/index.html (last access: 17 May 2023), R package version 0.9.1, 2021.
Goldscheider, N.:
Fold structure and underground drainage pattern in the alpine karst system Hochifen–Gottesacker, Eclogae Geol. Helv., 98, 1–17, https://doi.org/10.1007/s00015-005-1143-z, 2005.
Goldscheider, N.:
Overview of Methods Applied in Karst Hydrogeology, in: Karst Aquifers and Engineering, edited by: Stevanović, Z., Springer International Publishing, Cham, 127–145, https://doi.org/10.1007/978-3-319-12850-4_4, 2015.
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., and Veni, G.:
Global distribution of carbonate rocks and karst water resources, Hydrogeol. J., 28, 1661–1677, https://doi.org/10.1007/s10040-020-02139-5, 2020.
Gondwe, B. R. N., Merediz-Alonso, G., and Bauer-Gottwein, P.:
The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst, J. Hydrol., 400, 24–40, https://doi.org/10.1016/j.jhydrol.2011.01.023, 2011.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hargreaves, G. H. and Samani, Z. A.:
Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hartmann, A., Lange, J., Aguado, A. V., Mizyed, N., Smiatek, G., and Kunstmann, H.:
A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring, J. Hydrol., 9, 468–469, https://doi.org/10.1016/j.jhydrol.2012.08.024, 2012.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.:
Karst water resources in a changing world: Review of hydrological modeling approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.:
Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017.
Hock, R.:
A distributed temperature-index ice- and snowmelt model including potential direct solar radiation, J. Glaciol., 45, 101–111, https://doi.org/10.3189/S0022143000003087, 1999.
Hohmann, C., Kirchengast, G., O, S., Rieger, W., and Foelsche, U.:
Small Catchment Runoff Sensitivity to Station Density and Spatial Interpolation: Hydrological Modeling of Heavy Rainfall Using a Dense Rain Gauge Network, Water, 13, 1381, https://doi.org/10.3390/w13101381, 2021.
Hu, C., Hao, Y., Yeh, T.-C. J., Pang, B., and Wu, Z.:
Simulation of spring flows from a karst aquifer with an artificial neural network, Hydrol. Process., 22, 596–604, https://doi.org/10.1002/hyp.6625, 2008.
Huang, Y., Bárdossy, A., and Zhang, K.:
Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data, Hydrol. Earth Syst. Sci., 23, 2647–2663, https://doi.org/10.5194/hess-23-2647-2019, 2019.
Hunter, J. D.:
Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Ioffe, S. and Szegedy, C.:
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv [cs], arXiv:1502.03167, 2015.
Jeannin, P.-Y., Artigue, G., Butscher, C., Chang, Y., Charlier, J.-B., Duran, L., Gill, L., Hartmann, A., Johannet, A., Jourde, H., Kavousi, A., Liesch, T., Liu, Y., Lüthi, M., Malard, A., Mazzilli, N., Pardo-Igúzquiza, E., Thiéry, D., Reimann, T., Schuler, P., Wöhling, T., and Wunsch, A.:
Karst modelling challenge 1: Results of hydrological modelling, J. Hydrol., 600, 126508, https://doi.org/10.1016/j.jhydrol.2021.126508, 2021.
Jukić, D. and Denić-Jukić, V.:
Groundwater balance estimation in karst by using a conceptual rainfallrunoff model, J. Hydrol., 373, 302–315, https://doi.org/10.1016/j.jhydrol.2009.04.035, 2009.
Katz, B. G., Sepulveda, A. A., and Verdi, R. J.:
Estimating Nitrogen Loading to Ground Water and Assessing Vulnerability to Nitrate Contamination in a Large Karstic Springs Basin, Florida1, J. Am. Water Resour. As., 45, 607–627, https://doi.org/10.1111/j.1752-1688.2009.00309.x, 2009.
Kling, H., Fuchs, M., and Paulin, M.:
Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.:
Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Kogovšek, J., Knez, M., Mihevc, A., Petrič, M., Slabe, T., and Šebela, S.:
Military training area in Kras (Slovenia), Environ. Geol., 38, 69–76, https://doi.org/10.1007/s002540050402, 1999.
Kong-A-Siou, L., Johannet, A., Borrell, V., and Pistre, S.:
Complexity selection of a neural network model for karst flood forecasting: The case of the Lez Basin (southern France), J. Hydrol., 403, 367–380, https://doi.org/10.1016/j.jhydrol.2011.04.015, 2011.
Kong-A-Siou, L., Fleury, P., Johannet, A., Borrell Estupina, V., Pistre, S., and Dörfliger, N.:
Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer, J. Hydrol., 519, 3178–3192, https://doi.org/10.1016/j.jhydrol.2014.10.041, 2014.
Kong-A-Siou, L., Johannet, A., Borrell Estupina, V., and Pistre, S.:
Neural networks for karst groundwater management: Case of the Lez spring (Southern France), Environ. Earth Sci., 74, 7617–7632, https://doi.org/10.1007/s12665-015-4708-9, 2015.
Kovačević, M., Ivanišević, N., Dašić, T., and Marković, L.:
Application of artificial neural networks for hydrological modelling in Karst, Graevinar, 70, 1–10, https://doi.org/10.14256/JCE.1594.2016, 2018.
Kovačič, G.:
Hydrogeological study of the Malenščica karst spring (SW Slovenia) by means of a time series analysis, Acta Carsologica, 39, 201–215, https://doi.org/10.3986/ac.v39i2.93, 2010.
Kovács, A. and Sauter, M.:
Modelling karst hydrodynamics, in: Methods in Karst Hydrogeology, edited by: Goldscheider, N. and Drew, D., Taylor & Francis, London, 201–222, ISBN 978-0-415-42873-6, 2007.
Kurtulus, B. and Razack, M.:
Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: The La Rochefoucauld aquifer (Charente, France), Hydrogeol. J., 15, 241–254, https://doi.org/10.1007/s10040-006-0077-5, 2007.
Kurtulus, B. and Razack, M.:
Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy, J. Hydrol., 381, 101–111, https://doi.org/10.1016/j.jhydrol.2009.11.029, 2010.
LeCun, Y., Bengio, Y., and Hinton, G.:
Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015.
Lehmann, P., Stauffer, F., Hinz, C., Dury, O., and Flühler, H.:
Effect of hysteresis on water flow in a sand column with a fluctuating capillary fringe, J. Contam. Hydrol., 33, 81–100, https://doi.org/10.1016/S0169-7722(98)00066-7, 1998.
Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.:
When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.
Makropoulos, C., Koutsoyiannis, D., Stanić, M., Djordjević, S., Prodanović, D., Dašić, T., Prohaska, S., Maksimović, Č., and Wheater, H.:
A multi-model approach to the simulation of large scale karst flows, J. Hydrol., 348, 412–424, https://doi.org/10.1016/j.jhydrol.2007.10.011, 2008.
Martín-Algarra, A.:
Evolucion geologica alpina del contacto entre las zonas internas y las zonas externas de la cordillera Bética (sector centro-occidental), PhD thesis, Universidad de Granada, 1987.
Mayaud, C., Gabrovšek, F., Blatnik, M., Kogovšek, B., Petrič, M., and Ravbar, N.:
Understanding flooding in poljes: A modelling perspective, J. Hydrol., 575, 874–889, https://doi.org/10.1016/j.jhydrol.2019.04.092, 2019.
Mayaud, C., Kogovšek, B., Gabrovšek, F., Blatnik, M., Petrič, M., and Ravbar, N.:
Deciphering the water balance of poljes: example of Planinsko Polje (Slovenia), Acta Carsologica, 51, 155–177, https://doi.org/10.3986/ac.v51i2.11029, 2022.
Mazzilli, N. and Bertin, D.:
KarstMod User Guide – version 2.2, https://hal.science/hal-01832693 (last access: 16 May 2023), 103927, HAL (online), 2019.
Mazzilli, N., Guinot, V., and Jourde, H.:
Sensitivity analysis of conceptual model calibration to initialisation bias. Application to karst spring discharge models, Adv. Water Resour., 42, 1–16, https://doi.org/10.1016/j.advwatres.2012.03.020, 2012.
Mazzilli, N., Guinot, V., Jourde, H., Lecoq, N., Labat, D., Arfib, B., Baudement, C., Danquigny, C., Soglio, L. D., and Bertin, D.:
KarstMod: A modelling platform for rainfall - discharge analysis and modelling dedicated to karst systems, Environ. Model. Softw., 122, 103927, https://doi.org/10.1016/j.envsoft.2017.03.015, 2019.
McKinney, W.:
Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, Austin, Texas, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a, 2010.
McMillan, H. K., Westerberg, I. K., and Krueger, T.:
Hydrological data uncertainty and its implications, WIREs Water, 5, e1319, https://doi.org/10.1002/wat2.1319, 2018.
Meng, X., Yin, M., Ning, L., Liu, D., and Xue, X.:
A threshold artificial neural network model for improving runoff prediction in a karst watershed, Environ. Earth Sci., 74, 5039–5048, https://doi.org/10.1007/s12665-015-4562-9, 2015.
Moges, E., Demissie, Y., Larsen, L., and Yassin, F.:
Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis, Water, 13, 28, https://doi.org/10.3390/w13010028, 2021.
Nash, J. E. and Sutcliffe, J.:
River flow forecasting through conceptual models: Part 1. A discussion of principles., J. Hydrol., 10, 282–290, 1970.
Nogueira, F.: Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, GitHub [code], https://github.com/fmfn/BayesianOptimization (last access: 16 May 2023), 2014.
Ollivier, C., Mazzilli, N., Olioso, A., Chalikakis, K., Carrière, S. D., Danquigny, C., and Emblanch, C.:
Karst recharge-discharge semi distributed model to assess spatial variability of flows, Sci. Total Environ., 703, 134368, https://doi.org/10.1016/j.scitotenv.2019.134368, 2020.
Onyutha, C.:
Hydrological Model Supported by a Step-Wise Calibration against Sub-Flows and Validation of Extreme Flow Events, Water, 11, 244, https://doi.org/10.3390/w11020244, 2019.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.:
Which potential evapotranspiration input for a lumped rainfallrunoff model?: Part 2 A simple and efficient potential evapotranspiration model for rainfallrunoff modelling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: Machine Learning in Python, arXiv [cs], arXiv:1201.0490, 2018.
Pelletier, P. M.:
Uncertainties in the single determination of river discharge: A literature review, Can. J. Civil. Eng., 15, 834–850, https://doi.org/10.1139/l88-109, 1988.
Pereira, D. dos R., Martinez, M. A., Almeida, A. Q. de, Pruski, F. F., Silva, D. D., and Zonta, J. H.:
Hydrological simulation using SWAT model in headwater basin in Southeast Brazil, Eng. Agric., 34, 789–799, https://doi.org/10.1590/S0100-69162014000400018, 2014.
Perrin, J., Jeannin, P.-Y., and Zwahlen, F.:
Epikarst storage in a karst aquifer: A conceptual model based on isotopic data, Milandre test site, Switzerland, J. Hydrol., 279, 106–124, https://doi.org/10.1016/S0022-1694(03)00171-9, 2003.
Petric, M.:
Chapter 10.3 – Case Study: Characterization, exploitation, and protection of the Malenščica karst spring, Slovenia, in: Groundwater Hydrology of Springs, edited by: Kresic, N. and Stevanovic, Z., Butterworth-Heinemann, Boston, 428–441, https://doi.org/10.1016/B978-1-85617-502-9.00021-9, 2010.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 12 October 2022), 2021.
Ravbar, N., Barberá, J. A., Petrič, M., Kogovšek, J., and Andreo, B.:
The study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (the catchment of the Unica River, SW Slovenia), Environ. Earth Sci., 65, 2259–2272, https://doi.org/10.1007/s12665-012-1523-4, 2012.
Reback, J., jbrockmendel, McKinney, W., Bossche, J. V. den, Augspurger, T., Cloud, P., Hawkins, S., Roeschke, M., gfyoung, Sinhrks, Klein, A., Petersen, T., Hoefler, P., Tratner, J., She, C., Ayd, W., Naveh, S., Garcia, M., Darbyshire, J. H. M., Schendel, J., Hayden, A., Shadrach, R., Saxton, D., Gorelli, M. E., Li, F., Zeitlin, M., Jancauskas, V., McMaster, A., Battiston, P., and Seabold, S.:
Pandas-dev/pandas: Pandas 1.3.5, Zenodo [code], https://doi.org/10.5281/zenodo.5774815, 2021.
Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem, P. A.:
Uncertainty in the environmental modelling process A framework and guidance, Environ. Model. Softw., 22, 1543–1556, https://doi.org/10.1016/j.envsoft.2007.02.004, 2007.
Santos, L., Thirel, G., and Perrin, C.:
Technical note: Pitfalls in using log-transformed flows within the KGE criterion, Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, 2018.
Schwemmle, R., Demand, D., and Weiler, M.:
Technical note: Diagnostic efficiency – specific evaluation of model performance, Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, 2021.
Seibert, J.:
Reliability of Model Predictions Outside Calibration Conditions, Paper presented at the Nordic Hydrological Conference (Røros, Norway, 4-7 August 2002), Hydrol. Res., 34, 477–492, https://doi.org/10.2166/nh.2003.0019, 2003.
Sezen, C., Bezak, N., Bai, Y., and Šraj, M.:
Hydrological modelling of karst catchment using lumped conceptual and data mining models, J. Hydrol., 576, 98–110, https://doi.org/10.1016/j.jhydrol.2019.06.036, 2019.
Sidle, R. C.:
Field observations and process understanding in hydrology: Essential components in scaling, Hydrol. Process., 20, 1439–1445, https://doi.org/10.1002/hyp.6191, 2006.
Sidle, R. C.:
Strategies for smarter catchment hydrology models: Incorporating scaling and better process representation, Geosci. Lett., 8, 24, https://doi.org/10.1186/s40562-021-00193-9, 2021.
Singh, S. K. and Bárdossy, A.:
Calibration of hydrological models on hydrologically unusual events, Adv. Water Resour., 38, 81–91, https://doi.org/10.1016/j.advwatres.2011.12.006, 2012.
SNO KARST: Time series of type hydrology-hydrogeology in Le Lez (Méditerranée) basin – MEDYCYSS observatory - KARST observatory network – OZCAR Critical Zone network Research Infrastructure, SNO KARST [data set], https://doi.org/10.15148/CFD01A5BB7FD-41AA-8884-84DBDDAC767E, 2019.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014.
Stevanović, Z.:
Karst waters in potable water supply: A global scale overview, Environ. Earth Sci., 78, 662, https://doi.org/10.1007/s12665-019-8670-9, 2019.
Thoen, E.: Padr: Quickly get datetime data ready for analysis, Manual, CRAN [code], https://CRAN.R-project.org/package=padr (last access: 12 October 2022), R package version 0.6.2, 2021.
Tritz, S., Guinot, V., and Jourde, H.:
Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model, J. Hydrol., 397, 250–262, https://doi.org/10.1016/j.jhydrol.2010.12.001, 2011.
Van, S. P., Le, H. M., Thanh, D. V., Dang, T. D., Loc, H. H., and Anh, D. T.:
Deep learning convolutional neural network in rainfallrunoff modelling, J. Hydroinform., 22, 541–561, https://doi.org/10.2166/hydro.2020.095, 2020.
van der Walt, S., Colbert, S. C., and Varoquaux, G.:
The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011.
van Rossum, G.:
Python Tutorial, CWI, Amsterdam, 1995.
Wendling, U. and Müller, J.:
Entwicklung eines Verfahrens zur rechnerischen Abschätzung der Verdunstung im Winter, Z. Meteorol., 34, 82–85, 1984.
Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A., Montanari, A., and Freer, J.:
Uncertainty in hydrological signatures for gauged and ungauged catchments, Water Resour. Res., 52, 1847–1865, https://doi.org/10.1002/2015WR017635, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.:
Welcome to the tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wilke, C. O.: Cowplot: Streamlined plot theme and plot annotations for Ggplot2, Manual, CRAN [code], https://cran.r-project.org/web/packages/cowplot/index.html (last access: 17 May 2023), R package version 1.1.1, 2020.
Wilks, D. S. (Ed.):
Statistical Forecasting, in: International Geophysics, vol. 100, Elsevier, 215–300, https://doi.org/10.1016/B978-0-12-385022-5.00007-5, 2011.
Willmott, C. J., Robeson, S. M., and Matsuura, K.:
A refined index of model performance, Int. J. Climatol., 32, 2088–2094, https://doi.org/10.1002/joc.2419, 2012.
Wu, Q., Xu, H., and Pang, W.:
GIS and ANN coupling model: An innovative approach to evaluate vulnerability of karst water inrush in coalmines of north China, Environ. Geol., 54, 937–943, https://doi.org/10.1007/s00254-007-0887-3, 2008.
Wunsch, A., Liesch, T., and Broda, S.:
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, 2021.
Wunsch, A., Liesch, T., Cinkus, G., Ravbar, N., Chen, Z., Mazzilli, N., Jourde, H., and Goldscheider, N.:
Karst spring discharge modeling based on deep learning using spatially distributed input data, Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, 2022.
Xie, Y., Allaire, J. J., and Grolemund, G.:
R markdown: The definitive guide, Chapman and Hall/CRC, Boca Raton, Florida, ISBN 978-1-138-35933-8, 2018.
Xie, Y., Dervieux, C., and Riederer, E.:
R markdown cookbook, Chapman and Hall/CRC, Boca Raton, Florida, ISBN 978-0-367-56383-7, 2020.
Yin, D., Shu, L., Chen, X., Wang, Z., and Mohammed, M. E.:
Assessment of Sustainable Yield of Karst Water in Huaibei, China, Water Resour. Manag., 25, 287–300, https://doi.org/10.1007/s11269-010-9699-4, 2011.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, Manual, https://doi.org/10.5281/zenodo.839854, 2020.
Zhang, J. L., Li, Y. P., Huang, G. H., Wang, C. X., and Cheng, G. H.:
Evaluation of Uncertainties in Input Data and Parameters of a Hydrological Model Using a Bayesian Framework: A Case Study of a Snowmelt–Precipitation-Driven Watershed, J. Hydrometeorol., 17, 2333–2350, https://doi.org/10.1175/JHM-D-15-0236.1, 2016.
Zhou, B.-Q., Yang, Z., Hu, R., Zhao, X.-J., and Chen, Y.-F.:
Assessing the impact of tunnelling on karst groundwater balance by using lumped parameter models, J. Hydrol., 599, 126375, https://doi.org/10.1016/j.jhydrol.2021.126375, 2021.
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Numerous modelling approaches can be used for studying karst water resources, which can make it...