Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-5971-2022
https://doi.org/10.5194/hess-26-5971-2022
Research article
 | 
02 Dec 2022
Research article |  | 02 Dec 2022

Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff

Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut

Related authors

Can streamflow observations constrain snow mass reconstructions? Lessons from two synthetic numerical experiments
Pau Wiersma, Jan Magnusson, Nadav Peleg, Bettina Schaefli, and Grégoire Mariéthoz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3610,https://doi.org/10.5194/egusphere-2025-3610, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Aerts, J. P. M., Uhlemann-Elmer, S., Eilander, D., and Ward, P. J.: Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study, Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, 2020. a
Ayala, A., Pellicciotti, F., MacDonell, S., McPhee, J., and Burlando, P.: Patterns of glacier ablation across north-central chile: identifying the limits of empirical melt models under sublimation-favorable conditions: Glacier Ablation in the Semiarid Andes, Water Resour. Res., 53, 5601–5625, https://doi.org/10.1002/2016WR020126, 2017. a
BAFU: Hydrologische Daten und Vorhersagen, BAFU [data set], https://www.hydrodaten.admin.ch/de (last access: 21 September 2020), 2020. a, b
Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M. F. P., Huijbregts, M. A. J., and Schipper, A. M.: Threats of global warming to the world's freshwater fishes, Nat. Commun., 12, 1701, https://doi.org/10.1038/s41467-021-21655-w, 2021. a
Beek, L. P. H. V., Wada, Y., and Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water availability, Water Resour. Res., 47, W07517, https://doi.org/10.1029/2010wr009791, 2011. a, b, c
Download
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Share