Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5605-2022
https://doi.org/10.5194/hess-26-5605-2022
Research article
 | 
09 Nov 2022
Research article |  | 09 Nov 2022

Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies

Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard

Related authors

The effect of sediment thermal conductivity on vertical groundwater flux estimates
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019,https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream: combining hydraulic and tracer methods
J. R. Poulsen, E. Sebok, C. Duque, D. Tetzlaff, and P. K. Engesgaard
Hydrol. Earth Syst. Sci., 19, 1871–1886, https://doi.org/10.5194/hess-19-1871-2015,https://doi.org/10.5194/hess-19-1871-2015, 2015

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-64,https://doi.org/10.5194/hess-2024-64, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Why do our rainfall–runoff models keep underestimating the peak flows?
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023,https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary

Cited articles

Aguilar, C. and Polo, M. J.: Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale, Hydrol. Earth Syst. Sci., 15, 2495–2508, https://doi.org/10.5194/hess-15-2495-2011, 2011. 
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, SHE. 2 Structure of a physically-based distributed modelling system, J. Hydrol., 87, 61–77, 1986. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large-area hydrologic modeling and assessment: Part I. Model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998. 
Ayyub, B. M.: Elicitation of Expert Opinion for Uncertainty and Risks, CRC Press, LLC, FL, ISBN 9780849310874, 2001. 
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nature Clim. Change, 3, 424–427, 2013. 
Download
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.