Articles | Volume 26, issue 21
Hydrol. Earth Syst. Sci., 26, 5605–5625, 2022
https://doi.org/10.5194/hess-26-5605-2022
Hydrol. Earth Syst. Sci., 26, 5605–5625, 2022
https://doi.org/10.5194/hess-26-5605-2022
Research article
09 Nov 2022
Research article | 09 Nov 2022

Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies

Eva Sebok et al.

Related authors

The effect of sediment thermal conductivity on vertical groundwater flux estimates
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019,https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream: combining hydraulic and tracer methods
J. R. Poulsen, E. Sebok, C. Duque, D. Tetzlaff, and P. K. Engesgaard
Hydrol. Earth Syst. Sci., 19, 1871–1886, https://doi.org/10.5194/hess-19-1871-2015,https://doi.org/10.5194/hess-19-1871-2015, 2015

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022,https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022,https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022,https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022,https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary

Cited articles

Aguilar, C. and Polo, M. J.: Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale, Hydrol. Earth Syst. Sci., 15, 2495–2508, https://doi.org/10.5194/hess-15-2495-2011, 2011. 
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, SHE. 2 Structure of a physically-based distributed modelling system, J. Hydrol., 87, 61–77, 1986. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large-area hydrologic modeling and assessment: Part I. Model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998. 
Ayyub, B. M.: Elicitation of Expert Opinion for Uncertainty and Risks, CRC Press, LLC, FL, ISBN 9780849310874, 2001. 
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nature Clim. Change, 3, 424–427, 2013. 
Download
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.