Articles | Volume 26, issue 8
Hydrol. Earth Syst. Sci., 26, 2277–2299, 2022
https://doi.org/10.5194/hess-26-2277-2022
Hydrol. Earth Syst. Sci., 26, 2277–2299, 2022
https://doi.org/10.5194/hess-26-2277-2022
Research article
02 May 2022
Research article | 02 May 2022

Coupled modelling of hydrological processes and grassland production in two contrasting climates

Nicholas Jarvis et al.

Related authors

Soil and crop management practices and the water regulation functions of soils: a synthesis of meta-analyses relevant to European agriculture
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2022-270,https://doi.org/10.5194/egusphere-2022-270, 2022
Short summary
Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020,https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Relations between macropore network characteristics and the degree of preferential solute transport
M. Larsbo, J. Koestel, and N. Jarvis
Hydrol. Earth Syst. Sci., 18, 5255–5269, https://doi.org/10.5194/hess-18-5255-2014,https://doi.org/10.5194/hess-18-5255-2014, 2014
Short summary
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
K. Steffens, M. Larsbo, J. Moeys, E. Kjellström, N. Jarvis, and E. Lewan
Hydrol. Earth Syst. Sci., 18, 479–491, https://doi.org/10.5194/hess-18-479-2014,https://doi.org/10.5194/hess-18-479-2014, 2014
Influence of soil, land use and climatic factors on the hydraulic conductivity of soil
N. Jarvis, J. Koestel, I. Messing, J. Moeys, and A. Lindahl
Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013,https://doi.org/10.5194/hess-17-5185-2013, 2013

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022,https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021,https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021,https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021,https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary

Cited articles

Akmal, M. and Janssens, M.: Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies, Field Crop. Res., 88, 143–155, 2004. 
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO Food and Agricultural Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998. 
Arora, V. and Boer, G.: A representation of variable root distribution in dynamic vegetation models, Earth Int., 7, 1–19, 2003. 
Ataroff, M. and Naranjo, M.: Interception of water by pastures of Pennisetum clandestinum Hochst. ex Chiov. and Melinis minutiflora Beauv, Agr. Forest Meteorol., 149, 1616–1620, 2009. 
Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B., Körner, C., de Boeck, H., Hesselbjerg Christensen, J., Leuzinger, S., Janssens, I., and Hansen, K.: Precipitation manipulation experiments – challenges and recommendations for the future, Ecol. Lett., 15, 899–911, 2012. 
Download
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.