Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Tim R. McVicar
CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia
Australian Research Council Centre of Excellence for Climate
Extremes, The Australian National University, Canberra, Australia
Dawen Yang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Yongqiang Zhang
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing, China
Shilong Piao
Sino-French Institute for Earth System Science, College of Urban
and Environmental Sciences, Peking University, Beijing 100871, China
Shushi Peng
Sino-French Institute for Earth System Science, College of Urban
and Environmental Sciences, Peking University, Beijing 100871, China
Hylke E. Beck
Department of Civil and Environmental Engineering, Princeton
University, Princeton, New Jersey, USA
Related authors
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Nicolas Pucino, Tim McVicar, Shaun Levick, and Albert van Dijk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1223–1227, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1223-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1223-2025, 2025
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci., 29, 3257–3275, https://doi.org/10.5194/hess-29-3257-2025, https://doi.org/10.5194/hess-29-3257-2025, 2025
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. This gives insights into comprehensive changes in flood events and aids in flood prediction and control.
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025, https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the Global Inundation Extent from Multi-Satellites-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25° × 0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Mingwei Li, Shouzhi Chen, Fanghua Hao, Nan Wang, Zhaofei Wu, Yue Xu, Jing Zhang, Yongqiang Zhang, and Yongshuo H. Fu
Hydrol. Earth Syst. Sci., 29, 2081–2095, https://doi.org/10.5194/hess-29-2081-2025, https://doi.org/10.5194/hess-29-2081-2025, 2025
Short summary
Short summary
Climate-driven shifts in vegetation phenology have a significant impact on hydrological processes. In this study, we integrated a process-based phenology module into the SWAT-Carbon model, which led to a substantial improvement in the simulation of vegetation dynamics and hydrological processes in the Jinsha River watershed. Our findings highlight the critical need to incorporate vegetation phenology into hydrological models to achieve a more accurate representation of ecohydrological processes.
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025, https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Short summary
Despite their importance, uncertainties remain in the evaluation of the drivers of temporal variability of methane emissions from wetlands on a global scale. Here, a simplified global model is developed, taking advantage of advances in remote-sensing data and in situ observations. The model reproduces the large spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights into sensitivity analyses.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Yi Y. Liu, Albert I. J. M. van Dijk, Patrick Meir, and Tim R. McVicar
Biogeosciences, 21, 2273–2295, https://doi.org/10.5194/bg-21-2273-2024, https://doi.org/10.5194/bg-21-2273-2024, 2024
Short summary
Short summary
Greenness of the Amazon forest fluctuated during the 2015–2016 drought, but no satisfactory explanation has been found. Based on water storage, temperature, and atmospheric moisture demand, we developed a method to delineate the regions where forests were under stress. These drought-affected regions were mainly identified at the beginning and end of the drought, resulting in below-average greenness. For the months in between, without stress, greenness responded positively to intense sunlight.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Sen Cao, Muyi Li, Zaichun Zhu, Zhe Wang, Junjun Zha, Weiqing Zhao, Zeyu Duanmu, Jiana Chen, Yaoyao Zheng, Yue Chen, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023, https://doi.org/10.5194/essd-15-4877-2023, 2023
Short summary
Short summary
The long-term global leaf area index (LAI) products are critical for characterizing vegetation dynamics under environmental changes. This study presents an updated GIMMS LAI product (GIMMS LAI4g; 1982−2020) based on PKU GIMMS NDVI and massive Landsat LAI samples. With higher accuracy than other LAI products, GIMMS LAI4g removes the effects of orbital drift and sensor degradation in AVHRR data. It has better temporal consistency before and after 2000 and a more reasonable global vegetation trend.
Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, https://doi.org/10.5194/essd-15-4181-2023, 2023
Short summary
Short summary
Long-term global Normalized Difference Vegetation Index (NDVI) products support the understanding of changes in vegetation under environmental changes. This study generates a consistent global NDVI product (PKU GIMMS NDVI) from 1982–2022 that eliminates the issue of orbital drift and sensor degradation in Advanced Very High Resolution Radiometer (AVHRR) data. More accurate than its predecessor (GIMMS NDVI3g), it shows high temporal consistency with MODIS NDVI in describing vegetation trends.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Shaoyang He, Yongqiang Zhang, Ning Ma, Jing Tian, Dongdong Kong, and Changming Liu
Earth Syst. Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-5463-2022, https://doi.org/10.5194/essd-14-5463-2022, 2022
Short summary
Short summary
This study developed a daily, 500 m evapotranspiration and gross primary production product (PML-V2(China)) using a locally calibrated water–carbon coupled model, PML-V2, which was well calibrated against observations at 26 flux sites across nine land cover types. PML-V2 (China) performs satisfactorily in the plot- and basin-scale evaluations compared with other mainstream products. It improved intra-annual ET and GPP dynamics, particularly in the cropland ecosystem.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong
Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, https://doi.org/10.5194/essd-14-2613-2022, 2022
Short summary
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, and Shilong Piao
Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, https://doi.org/10.5194/essd-13-4263-2021, 2021
Short summary
Short summary
Roots play a key role in our Earth system. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (~ 1 km) root biomass dataset. In total, 142 ± 25 (95 % CI) Pg of live dry-matter biomass is stored belowground, representing a global average root : shoot biomass ratio of 0.25 ± 0.10.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Short summary
CH4 is a potent greenhouse gas, and China’s anthropogenic CH4 emissions account for a large proportion of global total emissions. However, the existing estimates either focus on a specific sector or lag behind real time by several years. We collected and analyzed 12 datasets and compared them to reveal the spatiotemporal changes and their uncertainties. We further estimated the emissions from 1990–2019, and the estimates showed a robust trend in recent years when compared to top-down results.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Cited articles
Ainsworth, A. E. and Rogers, A.: The response of photosynthesis and
stomatal conductance to rising [CO2]: mechanisms and environmental
interactions, Plant Cell Environ., 30, 258–270,
https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1∘ precipitation: methodology and quantitative assessment, B. Am. Meteorol. Soc., 3, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of paired catchment studies for determining changes in water yield
resulting from alterations in vegetation, J. Hydrol., 310,
28–61, https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Budyko, M. I.: Climate and life, Academic, New York, USA, 1974.
Caldwell, M. M.: in Exploitation of Environmental Heterogeneity by Plants, Academic, San Diego, USA, 325–347, 1994.
Campbell, G. S. and Norman, J. M.: An Introduction to Environmental
Biophysics, Springer, New York, USA, 1998.
Cheng, L., Zhang, L., Wang, Y. P., Yu, Q., Eamus, D., and O'Grady, A.:
Impacts of elevated CO2, climate change and their interactions on water
budgets in four different catchments in Australia, J. Hydrol., 519,
1350–1361, https://doi.org/10.1016/j.jhydrol.2014.09.020, 2014.
Choudhury, B.: Evaluation of an empirical equation for annual evaporation
using field observations and results from a biophysical model, J. Hydrol.,
216, 99–110, https://doi.org/10.1016/S0022-1694(98)00293-5, 1999.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil
pores: Incorporating key ecohydrological processes into Budyko's
hydrological model, J. Hydrol., 436, 35–50, https://doi.org/10.1016/j.jhydrol.2012.02.033, 2012.
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact
of CO2 fertilization on maximum foliage cover across the globe's warm,
arid environments, Geophys. Res. Lett., 40, 3031–3035, https://doi.org/10.1002/grl.50563, 2013.
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Yang, Y.: A simple
hypothesis of how leaf and canopy-level transpiration and assimilation
respond to elevated CO2 reveals distinct response patterns between
disturbed and undisturbed vegetation, J. Geophys. Res.-Biogeo., 122,
168–184, https://doi.org/10.1002/2016JG003505, 2017.
Eissenstat, D. M.: in Ecology in Agriculture, edited by: Jackson, L. E., Academic, New York, USA, 173–199, 1997.
Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P., Hubick, K. T., Wong, S. C., and Ehleringer, J. R.: Vegetation effects on the isotope composition of
oxygen in atmospheric CO2, Nature, 363, 439–443, 1993.
Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough,
A. D., and Hovenden, M. K.: Partitioning direct and indirect effects reveals
the response of water-limited ecosystems to elevated
CO2, P. Natl. Acad. Sci. USA, 113, 12757–12762, https://doi.org/10.1073/pnas.1605036113, 2016.
Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal responses to
increased CO2: implications from the plant to the global
scale, Plant Cell Environ., 18, 1214–1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x, 1995.
Fitter, A. H. and Hay, R. K. M.: Environmental Physiology of Plants,
Academic, London, UK, 2002.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlstore, A., and Ciais, P.: Water-use efficiency and transpiration across European
forests during the Anthropocene, Nat. Clim. Change, 5, 579–583, https://doi.org/10.1038/nclimate2614, 2015.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ.,
114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Friedlingstein, P., Joel, G., Field, C. B., and Fung, I. Y.: Toward an
allocation scheme for global terrestrial carbon models, Global Change Biol.,
5, 755–770, https://doi.org/10.1046/j.1365-2486.1999.00269.x,
1999.
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and
Stott, P. A.: Detection of a direct carbon dioxide effect in continental
river runoff records, Nature, 439, 835–838, https://doi.org/10.1038/nature04504, 2006.
Guswa, A. J.: The influence of climate on root depth: A carbon cost-benefit
analysis, Water Resour. Res., 44, W02427, https://doi.org/10.1029/2007WR006384, 2008.
Guswa, A. J.: Effect of plant uptake strategy on the water-optimal root
depth, Water Resour. Res., 46, W09601, https://doi.org/10.1029/2010WR009122, 2010.
Han, J. T., Yang, Y., Roderick, M. L., McVicar, T. R., Yang, D. W., Zhang,
S. L., and Beck, H. E.: Assessing the steady-state assumption in water
balance calculation across global catchments, Water Resour. Res., 56,
e2020WR027392, https://doi.org/10.1029/2020WR027392, 2020.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest
Cover Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Heinsch, F. A., Reeves, M., Votava, P., Kang, S., Cristina, M., Zhao, M., Glassy, J., Jolly, W. M., Loehman, R., Bowker, C. F., Kimball, J. S., and Nemani, R.: User's Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm, available at:
https:////modis-land.gsfc.nasa.gov/pdf/MOD17UsersGuideV4.2June2019.pdf (last access: 15 June 2018),
2003.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Huntington, T. G.: CO2-induced suppression of transpiration cannot
explain increasing runoff, Hydrol. Process., 22, 311–314, https://doi.org/10.1002/hyp.6925, 2008.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
Ito, A.: Changing ecophysiological processes and carbon budget in East Asian
ecosystems under near-future changes in climate: implications for long-term
monitoring from a process-based model, J. Plant Res., 123, 577–588,
https://doi.org/10.1007/s10265-009-0305-x, 2010.
Jain, A. K., Kheshgi, H. S., and Wuebbles, D. J.: A globally aggregated
reconstruction of cycles of carbon and its isotopes, Tellus B, 48,
583–600, https://doi.org/10.1034/j.1600-0889.1996.t01-1-00012.x, 1996.
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., and Meijer, H. A.: Exchanges of atmospheric CO2 and 13CO2
with the terrestrial biosphere and oceans from 1978 to 2000, I. Global
aspects, SIO Reference Series No. 01–06, Scripps Institution of
Oceanography, San Diego, USA, 88 pp., 2001.
Körner, C. and Arnone, J. A.: Responses to Elevated Carbon Dioxide in
Artificial Tropical Ecosystems, Science, 257, 1672–1675, https://doi.org/10.1126/science.257.5077.1672, 1992.
Krinner, G., Viovy, N., Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, C. I.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Kuczera, G.: Prediction of water yield reductions following a bushfire in
ash-mixed species eucalypt forest, J. Hydrol., 94, 215–236, https://doi.org/10.1016/0022-1694(87)90054-0, 1987.
Lehner, B., Reidy, C., Revenga, L. C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams
for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502,
https://doi.org/10.1890/100125, 2011.
Li, H., Huang, M., Wigmosta, M. S., Ke, Y., Coleman, A. M., Leung, L. R., Wang, A., and Ricciuto, D. M.: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed, J. Geophys. Res.-Atmos., 116, D24120, https://doi.org/10.1029/2011JD016276, 2011.
Lian, X., Piao, S. L., Chen, A. P., Huntingford, C., Fu, B. J., Li, Z. X., Huang, J. P., Sheffield, J., Berg, A. M., Keenan, T. F., McVicar, T. R., Wada, Y., Wang, X. H., Wang, T., Yang, Y. T., and Roderick, M. L.: Multifaceted characteristics of dryland aridity changes in a warming world, Nat. Rev. Earth Environ., 2, 232–250, https://doi.org/10.1038/s43017-021-00144-0, 2021.
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824, 1994.
Mao, J., Thornton, P. E., Shi, X., Zhao, M., and Post, W. M.: Remote Sensing
Evaluation of CLM4 GPP for the Period 2000–2009, J. Climate, 25,
5327–5342, https://doi.org/10.1175/JCLI-D-11-00401.1, 2012.
Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and
continental drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016.
Mu, Q., Zhao, M., and Running, S.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115,
1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2007.
Nachtergaele, F., van Velthuizen, H., and Verelst, L.: Harmonized World Soil
Database, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2009.
Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases
in Global Terrestrial Net Primary Production from 1982 to 1999, Science,
300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Nie, M., Lu, M., Bell, J., Raut, S., and Pendall, E.: Altered root traits due
to elevated CO2: a meta-analysis, Global Ecol. Biogeogr., 22, 1095–1105, https://doi.org/10.1111/geb.12062, 2013.
Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO2
Enrichment (FACE) Experiments, Annu. Rev. Ecol. Evol. S., 42, 181–203,
https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie,
R. E.: CO2 enhancement of forest productivity constrained by limited
nitrogen availability, P. Natl. Acad. Sci. USA, 107, 19368–19373, https://doi.org/10.1073/pnas.1006463107, 2010.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water
Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Peng, C., Liu, J., Dang, Q., Apps, M. J., and Jiang, H.: TRIPLEX: a generic
hybrid model for predicting forest growth and carbon and nitrogen dynamics,
Ecol. Model., 153, 109–130, https://doi.org/10.1016/S0304-3800(01)00505-1, 2002.
Piao, S., Friedlingstein, P., Ciais, P., Noblet-Ducoudre, N., Labat, D., and
Zaehle, S.: Changes in climate and land use have a larger direct impact than
rising CO2 on global river runoff trends, P. Natl. Acad. Sci. USA, 104,
15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W.,
Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.:
Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020.
Pinzon, J. and Tucker, C. A.: Non-Stationary 1981–2012 AVHRR NDVI3g Time
Series, Remote Sens.-Basel, 6, 6929–6960, https://doi.org/10.3390/rs6086929, 2014.
Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil Water Balance and
Ecosystem Response to Climate Change, Am. Nat., 164, 625–632,
https://doi.org/10.1086/424970, 2004.
Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., and Hendrick, R. L.: Fine Root Architecture of Nine North American Trees, Ecol. Monogr., 72, 293–309, https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2, 2002.
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating
variations in runoff to variations in climatic conditions and catchment
properties, Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826, 2011.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Ryan, M. G.: The effects of climate change on plant
respiration, Ecol. Appl., 1, 157–167, https://doi.org/10.2307/1941808, 1991.
Sánchez, J. M., Kustas, W. P., Caselles, V., and Anderson, M. C.: Modeling surface energy fluxes over maize using a two-source patch model and
radiometric soil and canopy temperature observations, Remote Sens. Environ.,
112, 1130–1143, https://doi.org/10.1016/j.rse.2007.07.018, 2008.
Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by
Texture and Organic Matter for Hydrologic Solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006.
Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J.,
Prihodko, L., Suits, N., and Philpott, A.: Combined Simple
Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model,
J. Geophys. Res.-Biogeo., 113, G03034, https://doi.org/10.1029/2007JG000603, 2008.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops – an
energy combination theory, Q. J. Roy. Meteor. Soc., 111, 839–855, https://doi.org/10.1002/qj.49711146910, 1985.
Siebert, S., Döll, P., Hoogeveen, J., Faures, J.-M., Frenken, K., and Feick, S.: Development and validation of the global map of irrigation areas, Hydrol. Earth Syst. Sci., 9, 535–547, https://doi.org/10.5194/hess-9-535-2005, 2005.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Global Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101–2111,
https://doi.org/10.1002/hyp.1425, 2003.
Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: ISLSCP II C4
Vegetation Percentage, in: ISLSCP Initiative II Collection [Data set], edited by: Hall, F. G., Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., and Landis, D., National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/932, 2009.
Swann, A. L. S., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant
responses to increasing CO2 reduce estimates of climate impacts on
drought severity, P. Natl. Acad. Sci. USA, 113, 10019–10024, https://doi.org/10.1073/pnas.1604581113, 2016.
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R., and McAlpine, C. A.:
CO2-vegetation feedbacks and other climate changes implicated in
reducing base flow, Geophys. Res. Lett., 44, 2310–2318, https://doi.org/10.1002/2017GL072759, 2017.
Ukkola, A. M., Prentice, I. C., Keenan, T. F., van Dijk, A. I. J. M., Viney,
N. R., Myneni, R. B., and Bi, J.: Reduced streamflow in water-stressed
climates consistent with CO2 effects on vegetation, Nat. Clim. Change, 6, 75–78, https://doi.org/10.1038/nclimate2831, 2016a.
Ukkola, A. M., Keenan, T. F., Kelley, D. I., and Prentice, I. C.: Vegetation
plays an important role in mediating future water resources, Environ. Res. Lett., 11, 094022, https://doi.org/10.1088/1748-9326/11/9/094022, 2016b.
Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., and Shi, X.: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data, Geosci. Model Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-2014, 2014.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in
annual maximum daily precipitation, J. Climate, 26, 3904–3918,
https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Wong, S. C., Cowan, I. R., and Farquhar, G. D.: Stomatal conductance
correlates with photosynthetic capacity, Nature, 282, 424–426, https://doi.org/10.1038/282424a0, 1979.
Yang, Y. and Shang, S.: A hybrid dual-source scheme and trapezoid
framework-based evapotranspiration model (HTEM) using satellite images:
Algorithm and model test, J. Geophys. Res.-Atmos., 118, 2284–2300, https://doi.org/10.1002/jgrd.50259, 2013.
Yang, Y., Randall, R. J., McVicar, T. R., and Roderick, M. L.: An analytical
model for relating global terrestrial carbon assimilation with climate and
surface conditions using a rate limitation framework, Geophys. Res. Lett.,
42, 9825–9835, https://doi.org/10.1002/2015GL066835, 2015.
Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L., and Beck, H. E.:
Long-term CO2 fertilization increases vegetation productivity and has
little effect on hydrological partitioning in tropical rainforests, J. Geophys. Res.-Biogeo., 121, 2125–2140, https://doi.org/10.1002/2016JG003475, 2016a.
Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective
plant rooting depth: Implications for hydrological modeling, Water Resour. Res., 52, 8260–8276, https://doi.org/10.1002/2016WR019392, 2016b.
Yang, Y., Zhang, S., McVicar, T. R., Beck, H. E., Zhang, Y. Q., and Liu, B.:
Disconnection Between Trends of Atmospheric Drying and Continental
Runoff, Water Resour. Res., 54, 4700–4713, https://doi.org/10.1029/2018WR022593, 2018.
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in
climate projections, Nat. Clim. Change, 9, 44–48, https://doi.org/10.1038/s41558-018-0361-0, 2019.
Zhang, C., Yang, Y., Yang, D., Wang, Z. R., Wu, X., Zhang, S. L., and Zhang,
W. J.: Vegetation response to elevated CO2 slows down the eastward
movement of the 100th meridian, Geophys. Res. Lett., 47, e2020GL089681,
https://doi.org/10.1029/2020GL089681, 2020a.
Zhang, C., Yang, Y., Yang, D., and Wu, X.: Multidimensional assessment of
global dryland changes under future warming in climate projections, J. Hydrol., 592, 125618, https://doi.org/10.1016/j.jhydrol.2020.125618, 2020b.
Zhang, S., Yang, Y., McVicar, T. R., and Yang, D.: An Analytical Solution for
the Impact of Vegetation Changes on Hydrological Partitioning Within the
Budyko Framework, Water Resour. Res., 54, 519–537, https://doi.org/10.1002/2017WR022028, 2018.
Zhao, M. S., Running, S., Heinsch, F. A., and Nemani, R.: MODIS-Derived
Terrestrial Primary Production, in: Land Remote Sensing and Global
Environmental Change: NASA's Earth Observing System and the Science of ASTER
and MODIS, Remote Sensing and Digital Image Processing, edited by:
Ramachandran, B., Justice, B., Abrams, C. O., and Michael, J., Springer, 635–660, available at: https://www.fs.usda.gov/treesearch/pubs/39324 (last access: 15 June 2019), 2011.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R., and Myneni, R. B.: Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011, Remote Sens.-Basel, 5, 927–948, https://doi.org/10.3390/rs5020927, 2013.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T., Stocker, B. D., Viovy,
N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
This study developed an analytical ecohydrological model that considers three aspects of...