Articles | Volume 19, issue 1
Hydrol. Earth Syst. Sci., 19, 33–61, 2015
https://doi.org/10.5194/hess-19-33-2015
Hydrol. Earth Syst. Sci., 19, 33–61, 2015
https://doi.org/10.5194/hess-19-33-2015
Review article
07 Jan 2015
Review article | 07 Jan 2015

On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand

A. Nazemi and H. S. Wheater

Related authors

On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling
A. Nazemi and H. S. Wheater
Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015,https://doi.org/10.5194/hess-19-63-2015, 2015
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022,https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Globally widespread and increasing violations of environmental flow envelopes
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022,https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022,https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022,https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-155,https://doi.org/10.5194/hess-2022-155, 2022
Revised manuscript accepted for HESS
Short summary

Cited articles

Abdullah, K. B.: Use of water and land for food security and environmental sustainability, Irrig. Drain., 55, 219–222, https://doi.org/10.1002/ird.254, 2006.
Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003.
Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' rivers, J. Geophys. Res.-Atmos., 112, D24114, https://doi.org/10.1029/2007JD008525, 2007.
Adegoke, J. O., Pielke Sr., R. A., Eastman, J., Mahmood, R., and Hubbard, K. G.: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the US High Plains, Mon. Weather Rev., 131, 556–564, 2003.
AghaKouchak, A., Norouzi, H.-R., Madani, K., Mirchi, A., Azarderakhsh, M., Nazemi, A., Nasrollahi, N., Farahmand, A.-R., Mehran, A., and Hasanzadeh, E.: Aral Sea syndrome desiccates Lake Urmia: Call for action, Journal of Great Lakes Research, https://doi.org/10.1016/j.jglr.2014.12.007, in press, 2014.
Download
Short summary
Activities related to water resource management perturb terrestrial water cycle with hydrologic and land-atmospheric implications. By defining water resource management as the integration of water demand with water supply and allocation, this paper critically reviews current schemes for representing human water demands in models relevant to Earth system modelling. We conclude that current representations are limited due to uncertainties in data support, demand algorithms and large-scale models.