Articles | Volume 19, issue 1
https://doi.org/10.5194/hess-19-33-2015
https://doi.org/10.5194/hess-19-33-2015
Review article
 | 
07 Jan 2015
Review article |  | 07 Jan 2015

On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand

A. Nazemi and H. S. Wheater

Related authors

On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling
A. Nazemi and H. S. Wheater
Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015,https://doi.org/10.5194/hess-19-63-2015, 2015
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023,https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023,https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023,https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary

Cited articles

Abdullah, K. B.: Use of water and land for food security and environmental sustainability, Irrig. Drain., 55, 219–222, https://doi.org/10.1002/ird.254, 2006.
Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003.
Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' rivers, J. Geophys. Res.-Atmos., 112, D24114, https://doi.org/10.1029/2007JD008525, 2007.
Adegoke, J. O., Pielke Sr., R. A., Eastman, J., Mahmood, R., and Hubbard, K. G.: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the US High Plains, Mon. Weather Rev., 131, 556–564, 2003.
AghaKouchak, A., Norouzi, H.-R., Madani, K., Mirchi, A., Azarderakhsh, M., Nazemi, A., Nasrollahi, N., Farahmand, A.-R., Mehran, A., and Hasanzadeh, E.: Aral Sea syndrome desiccates Lake Urmia: Call for action, Journal of Great Lakes Research, https://doi.org/10.1016/j.jglr.2014.12.007, in press, 2014.
Download
Short summary
Activities related to water resource management perturb terrestrial water cycle with hydrologic and land-atmospheric implications. By defining water resource management as the integration of water demand with water supply and allocation, this paper critically reviews current schemes for representing human water demands in models relevant to Earth system modelling. We conclude that current representations are limited due to uncertainties in data support, demand algorithms and large-scale models.