Articles | Volume 27, issue 16
https://doi.org/10.5194/hess-27-3021-2023
https://doi.org/10.5194/hess-27-3021-2023
Research article
 | 
22 Aug 2023
Research article |  | 22 Aug 2023

Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California

Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein

Related authors

A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling
S. R. Lopez, T. S. Hogue, and E. D. Stein
Hydrol. Earth Syst. Sci., 17, 3077–3094, https://doi.org/10.5194/hess-17-3077-2013,https://doi.org/10.5194/hess-17-3077-2013, 2013

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024,https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Machine learning and global vegetation: random forests for downscaling and gap filling
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024,https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024,https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Technical note: Seamless extraction and analysis of river networks in R
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023,https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary

Cited articles

Abdulla, F. A. and Lettenmaier, D. P.: Development of regional parameter esimtaiton equations for a macroscale hydrologic model, J. Hydrol., 197, 230–257, https://doi.org/10.1016/S0022-1694(96)03262-3, 1997. 
Arizona Department of Transportation (ADOT): Highway Drainage Design Manual, Volume 2: Hydrology, Phoenix, AZ, 182 pp., https://azdot.gov/sites/default/files/2019/07/2014_adot_hydrology_manual.pdf (last access: 21 March 2021), 2014. 
Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G., and Romero-Lopez, R.: Streamflow prediction in ungauged basins: analysis of regionaliztaion methods in a hydrologically heterogeneous region of Mexico, Hydrolog. Sci. J., 64, 1297–1311, https://doi.org/10.1080/02626667.2019.1639716, 2019. 
Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J.: The Challenge of Providing Environmental Flow Rules to Sustain River Ecosystems, Ecol. Appl., 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2, 2006. 
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A New Flashiness Index: Characteristics and Applications to Midwestern Reivers and Streams, J. Am. Water Resour. As., 40, 503–522, https://doi.org/10.1111/j.1752-1688.2004.tb01046.x, 2004. 
Download
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.