
Hydrol. Earth Syst. Sci., 27, 3021–3039, 2023
https://doi.org/10.5194/hess-27-3021-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Advancing stream classification and hydrologic modeling of
ungaged basins for environmental flow management in
coastal southern California
Stephen K. Adams1, Brian P. Bledsoe2, and Eric D. Stein3

1Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
2Institute for Resilient Infrastructure Systems, College of Engineering, University of Georgia, Athens, GA 30602, USA
3Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA

Correspondence: Stephen K. Adams (skadams89@gmail.com)

Received: 4 November 2021 – Discussion started: 10 January 2022
Revised: 10 November 2022 – Accepted: 28 November 2022 – Published: 22 August 2023

Abstract. Environmental streamflow management can im-
prove the ecological health of streams by returning modi-
fied flows to more natural conditions. The Ecological Lim-
its of Hydrologic Alteration (ELOHA) framework for devel-
oping regional environmental flow criteria has been imple-
mented to reverse hydromodification across the heterogenous
region of coastal southern California (So. CA) by focusing
on two elements of the flow regime: streamflow permanence
and flashiness. Within ELOHA, classification groups streams
by hydrologic and geomorphic similarity to stratify flow–
ecology relationships. Analogous grouping techniques are
used by hydrologic modelers to facilitate streamflow predic-
tion in ungaged basins (PUB) through regionalization. Most
watersheds, including those needed for stream classification
and environmental flow development, are ungaged. Further-
more, So. CA is a highly heterogeneous region spanning gra-
dients of urbanization and flow permanence, which presents
a challenge for regionalizing ungaged basins. In this study,
we develop a novel classification technique for PUB model-
ing that uses an inductive approach to group perennial, inter-
mittent, and ephemeral regional streams by modeled hydro-
logic similarity followed by deductively determining class
membership with hydrologic model errors and watershed
metrics. As a new type of classification, this hydrologic-
model-based classification (HMC) prioritizes modeling ac-
curacy, which in turn provides a means to improve model
predictions in ungaged basins while complementing tradi-
tional classifications and improving environmental flow man-
agement. HMC is developed by calibrating a regional cata-
log of process-based rainfall–runoff models, quantifying the

hydrologic reciprocity of calibrated parameters that would
be unknown in ungaged basins and grouping sites accord-
ing to hydrologic and physical similarity. HMC was applied
to 25 USGS streamflow gages in the “South Coast” region
of California and was compared to other hybrid PUB ap-
proaches combining inductive and deductive classification.
Using an average cluster error metric, results show that HMC
provided the most hydrologically similar groups according
to calibrated parameter reciprocity. Hydrologic-model-based
classification is relatively complex and time-consuming to
implement, but it shows potential for simplifying ungaged
basin management. This study demonstrates the benefits of
thorough stream classification using multiple approaches and
suggests that hydrologic-model-based classification has ad-
vantages for PUB and building the hydrologic foundation for
environmental flow management.

1 Introduction

The natural variability of streamflow regimes, including flow
magnitude, duration, frequency, timing, and rate of change
(Poff et al., 1997), is crucial for maintaining the ecological
integrity of streams (Bunn and Arthington, 2002). Mainte-
nance of aquatic and riparian ecosystem functions is a ma-
jor priority for water managers; however, streamflow regimes
have been altered globally as population growth and develop-
ment lead to urbanization, dams, flow extraction, and other
land use changes (Naiman et al., 1995; Richter et al., 1997).
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Issues of ecological integrity are particularly pronounced
in intermittent and ephemeral streams located in arid and
semiarid regions, where the spatial variation of flow regimes
and ecological functions is less understood than more hu-
mid environments (Skoulikidis et al., 2017; Stubbington et
al., 2018). Historically, non-perennial streams have been
thought of as biologically inactive with poor biodiversity, re-
sulting in devalued ecosystems. These incorrect assumptions
have deemphasized research of intermittent and ephemeral
streams in favor of perennial streams (Datry et al., 2014).
As the importance of healthy non-perennial stream ecosys-
tems has come into focus, a better understanding of requisite
hydrologic processes has been established. Generally, non-
perennial streams are characterized by sparse and variable
precipitation with minimal groundwater influence (Tooth,
2000). These climactic conditions result in streams that are
often dry but highly flashy (Gannon et al., 2022). As such,
most studies on physical processes were carried out when
these typically dry channels are wet (Tooth, 2000). A large
study spanning 540 watersheds of non-perennial streams
across the US identified three flow metrics that regionally
separate non-perennial streams: no-flow fraction, first day
with no flow, and days between peak and no flow (Hammond
et al., 2020).

Environmental flow criterion frameworks, such as the
Ecological Limits of Flow Alteration (ELOHA) (Poff et
al., 2010), are methods for protecting the ecological health
of streams from hydrologic alteration by reestablishing es-
sential elements of streamflow and sediment regimes. The
ELOHA framework is robust because it synthesizes many
flow–ecology relationships from a study area to provide a
foundation for developing environmental flow recommenda-
tions within an entire municipality or management region
(Poff et al., 2010). Such a regional approach has been recom-
mended for the widespread implementation of environmental
flows because it allows for effective and comprehensive esti-
mation of environmental streamflow regimes at a wide vari-
ety of streams in a large and diverse study area (Arthington et
al., 2006). The coastal area of southern California (So. CA) is
a semiarid region experiencing substantial hydrologic alter-
ation (Hawley and Bledsoe, 2011) and an associated ecolog-
ical decline (Stein et al., 2012), which has prompted applica-
tion of ELOHA (Mazor et al., 2018; Parker et al., 2019; Pyne
et al., 2017; Sengupta et al., 2018; Stein et al., 2017). The re-
gion is highly heterogenous, spanning an extensive range of
geology, stream types, and land uses, which presents unique
challenges for implementing ELOHA.

Stream classification is one of four major steps within the
scientific process of ELOHA used to group hydrologically, or
otherwise similar, streams (Poff et al., 2010). Its primary role
towards developing environmental flows is to stratify flow–
ecology relationships by regional stream type and to help
determine where new bioassessment sites should be placed
to strengthen the variety of sites within a region. Olden et
al. (2012) outlined two overarching approaches to hydrologic

classification – those utilizing inductive reasoning (observed
or modeled flows) and those utilizing deductive reasoning
(watershed data characterizing flow). While the inductive ap-
proach benefits from actual measures of discharge, it is often
plagued by insufficient gaging networks (Olden et al., 2012)
and uncertainty in modeling ungaged basins (Blöschl et al.,
2013). These challenges are particularly prevalent in arid and
semiarid regions, where gage records are limited (Merritt et
al., 2021) and modeling methods have not been developed
(Costigan et al., 2017). Despite these obstacles, Merritt et
al. (2021) used inductive hydrologic classification to group
287 stream reaches in the arid and semiarid western US. Met-
rics describing zero-flow conditions were the strongest class
predictors.

Two mirroring state-wide stream classification studies uti-
lizing both inductive and deductive approaches were recently
performed across California (CA). Pyne et al. (2017) first
clustered all stream reaches based on similarity of watershed
characteristics and then used hydrologic metrics to determine
cluster membership and separate reference reaches. Con-
versely, Lane et al. (2017) grouped unimpaired gages based
on their natural streamflow regime before using watershed
characteristics to predict the flow type of ungaged reaches. A
third state-wide classification study was performed by Lane
et al. (2018), which unified the classifications of Pyne et
al. (2017) and Lane et al. (2017) by using daily-scale hy-
drologic baseline archetypes based on dimensionless refer-
ence hydrographs. These three stream classification studies
focused on characterizing natural flow regimes across Cal-
ifornia, which is a challenge in the heavily hydrologically
modified and heterogeneous “South Coast” hydrologic re-
gion of the state (Waananen and Crippen, 1977). Sites from
this region did not show strong separation from the rest of CA
in previous classifications. While most South Coast streams
were classified as “rain and seasonal groundwater” (Lane et
al., 2017) or “rain and seasonal groundwater” and “flashy,
ephemeral rain” (Lane et al., 2018), not 1 of the 91 reference
gages used to drive the Lane et al. (2017) classification fell in
the South Coast region. Furthermore, streams in the Mohave
Desert and Central Valley shared the same “rain and seasonal
groundwater” classification and South Coast streams (Lane
et al., 2017). Central Valley streams remained grouped with
South Coast streams in the unified classification (Lane et al.,
2018). Finally, none of the seven classes produced by Pyne
et al. (2017) was dominated by South Coast streams. The re-
sults of these three state-wide classifications indicate that de-
veloping environmental streamflow criteria for South Coast
streams could benefit from a more targeted classification fo-
cused on the diverse regional landscape.

Regionalization is a common framework for predicting
streamflow in ungaged basins (PUB) that is performed
by transferring hydrologic information from gaged sys-
tems to ungaged ones (Blöschl et al., 2013; Razavi and
Coulibaly, 2013). While regionalization often employs re-
gression equations to compute a single streamflow metric,
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such as peak flow, conceptual hydrologic models offer con-
tinuous process-based analyses with full hydrograph outputs
that can be used to analyze past and future climate, land use,
and management scenarios. The application of hydrologic
models to these alternative scenarios makes them important
for developing the hydrologic foundation within ELOHA
(Poff et al., 2010). Additionally, a hydrologic foundation of-
ten necessitates modeling of ungaged basins because crucial
bioassessment sites used to develop flow–ecology relation-
ships often occur on small streams without available repre-
sentative streamflow data (Poff and Ward, 1989). While mod-
eling ungaged basins for general hydrologic analyses may fo-
cus on different flow characteristics and processes than mod-
eling for developing environmental flow standards, the im-
portance of PUB to ELOHA and other stream management
efforts is clear, and yet no superior method for regionalizing
hydrologic models has emerged (Blöschl et al., 2013).

In a typical flow regionalization effort with hydrologic
models, many models are created and calibrated at gaged
sites across a study area. For ungaged sites within the study
area, model parameters that cannot be calculated directly are
estimated and/or transferred from the catalog of calibrated
models, typically using a measure of spatial proximity, phys-
ical/hydrologic similarity, or parameter regression (Oudin et
al., 2008; Razavi and Coulibaly, 2013; Samuel et al., 2011).
While spatial proximity is generally the preferred regional-
ization approach (Razavi and Coulibaly, 2013), it is not al-
ways superior and is less applicable in highly heterogeneous
regions, such as So. CA, where neighboring watersheds may
have substantially different geology, land use, and/or climate.
Regionalization can also utilize regression equations to di-
rectly estimate calibrated parameters (Abdulla and Letten-
maier, 1997; Seibert, 1999; Yokoo et al., 2001); however, this
approach handles each parameter individually and does not
account for interactions between them (Oudin et al., 2008).
These challenges in applying a traditional regionalization
approach in a highly heterogenous region provide oppor-
tunities for PUB innovations, such as recent developments
with random forest models (Prieto et al., 2019) and region-
ally trained long short-term memory (LSTM)-type models
(Kratzert et al., 2018), which are a type of neural network.
Furthermore, the technique of grouping similar streams is
shared by ELOHA and PUB, which provides an excellent op-
portunity to explore new approaches for classifying streams
with the intention of modeling ungaged basins while devel-
oping environmental flow criteria in a highly heterogeneous
region.

This study was motivated by a desire to improve the sci-
ence supporting environmental streamflows in So. CA, where
flow criteria are under development (Mazor et al., 2018;
Parker et al., 2019; Sengupta et al., 2018; Stein et al., 2017)
and management of ephemeral streams is challenging (Chiu
et al., 2017). In this study, we develop a new method of
stream classification that quantifies hydrologic similarity for
regionalizing ungaged basins in a heterogeneous region. We

compare this new approach to traditional methods of stream
classification using hydrologic and watershed characteristics.
Towards this end, this study has three specific objectives.

1. Classify streams in coastal southern California using the
existing approaches.

2. Develop and implement a new approach for stream clas-
sification that prioritizes the accuracy of regional hydro-
logic models.

3. Compare the accuracy of traditional classifications ver-
sus the new approach for estimating streamflow and
flow–ecology relationships in heterogeneous ungaged
basins.

We hypothesize that directly incorporating regional model
accuracy into a stream classification scheme will provide in-
formation complementary to existing deductive and induc-
tive schemes and demonstrate greater ability to accurately
model ungaged basins through regionalization compared to
the traditional classifications.

2 Methods

2.1 Study area

This study was focused within the large coastal region of
southern California, which is roughly bounded by the trans-
verse mountain ranges to the north, Mexico to the south, the
peninsular mountain ranges to the east, and the Pacific Ocean
to the west. Study watersheds lie within the coastal regions
of San Diego, Riverside, Orange, San Bernardino, Los Ange-
les, Ventura, and Santa Barbara counties and are considered
within the South Coast hydrologic region of CA according to
the U.S. Geological Survey (USGS) (Waananen and Crippen,
1977). The climate is characterized as semiarid and Mediter-
ranean with hot, dry summers and mild, wet winters. Diverse
regional topography, geology, and precipitation patterns al-
low for the natural existence of many stream types, spanning
perennial, intermittent, and ephemeral. Land use varies dra-
matically across the region, ranging from heavily urban and
suburban sprawl to significantly agricultural and rural coastal
and mountainous. These diverse land uses profoundly influ-
ence streamflows, with particular deviation from natural flow
regimes occurring due to the urban centers of Los Angeles
and San Diego concurrently with the California State Water
Project.

As a first step towards developing environmental flow cri-
teria, only USGS stream gage sites were considered with
neighboring bioassessment sites from the California Water
Board’s Perennial Streams Assessment (PSA) within the Sur-
face Water Ambient Monitoring Program (SWAMP). This
provided gaged flow estimates at bioassessment sites. Hydro-
logic surrogacy between gage and bioassessment sites was
assumed by ensuring a difference in watershed area of less
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Figure 1. Locations of USGS streamflow gages used for classifica-
tion.

than 15 % with no intervening dams, diversions, reservoirs,
or interbasin transfers. Gages from the region were selected
to contain high-resolution hourly streamflow data for water
years (WYs) 2005–2007, which typify relatively wet, aver-
age, and dry years consecutively in So. CA (WRCC, 2015).
Finally, watersheds of selected gages required sufficient me-
teorological and landscape data to build minimally calibrated
rainfall–runoff models (Sect. 2.3.1). An exhaustive search for
suitable streamflow records yielded 25 USGS gage sites for
classification (Fig. 1; Table A1).

2.2 Traditional classification

Three types of traditional classification were used in this
study: an inductive approach with gaged flow data, a deduc-
tive approach utilizing watershed characteristics, and a com-
bined inductive and deductive approach applying both types
of data.

2.2.1 Inductive approach

Research in So. CA has shown that streamflow flashiness and
drying have an important influence on shaping local benthic
macroinvertebrate assemblages and ecosystem health (Gasith
and Resh, 1999). While flood and average flow conditions
play roles in shaping ecological health in arid regions (Mer-
ritt et al., 2017; Yarnell et al., 2020), preceding ELOHA stud-
ies in So. CA have found stronger relationships with flashi-
ness and stream drying (Mazor et al., 2018; Parker et al.,
2019). To this end, flashiness and drying have been exten-

sively studied as management endpoints for developing re-
gional environmental flow criteria (Mazor et al., 2018; Parker
et al., 2019; Pyne et al., 2017; Sengupta et al., 2018; Stein et
al., 2017). This study builds upon this foundation by analyz-
ing the Richards–Baker flashiness index (RBI) (Baker et al.,
2004), and a metric quantifying the frequency of extremely
low flows indicative of drying was computed from the 25
hourly time series of discharge. The RBI was calculated ac-
cording to Eq. (1), wherein Qt is the discharge at time t ,
Qt+1 is the discharge at a time step after t , and T is the final
time step.

RBI=
∑T

t=1 |Qt+1−Qt |∑T
t=1Qt

(1)

To quantify the frequency of extremely low flows indica-
tive of drying, the fraction of the flow record with flow less
than 1 cfs (0.028 cms) was calculated according to Eq. (2),
wherein NQ<1 cfs is the number of time steps containing
streamflow of less than 1 cfs and N is the total number of
time steps containing flow data. This metric is essentially the
same as the no-flow fraction from Hammond et al. (2020).

< 1cfs=
NQ<1cfs

N
(2)

Although flows of less than 1 cfs are recorded by the USGS,
this threshold was chosen instead of 0 cfs to indicate stream
drying given the inherent measurement error associated with
stream gage data at extreme low flows. Due to So. CA’s het-
erogeneous landscape, large variations in land use, topogra-
phy, and precipitation shape flow permanence and flashiness
across the region (Table A1). To better discern the effects of
these heterogeneities on streamflow and to more accurately
capture time-sensitive environmental flow metrics on a scale
relevant to benthic macroinvertebrates, hourly data were cho-
sen over daily data. Additionally, high-resolution hourly data
across So. CA provide an opportunity to complement the
previous state-wide classifications (Lane et al., 2017, 2018;
Pyne et al., 2017), which used daily average streamflow data,
at finer temporal and spatial scales.

Inductive classification was performed to group sites based
on the similarity of streamflow flashiness (RBI) and perma-
nence (<1 cfs). To achieve this, a variety of exploratory ordi-
nation analyses were conducted to develop an initial under-
standing of how gages might be classified. Principal com-
ponent analysis (PCA) was first used to assess linear re-
lationships between flow metrics at the 25 sites (R Core
Team, 2019), while weighted classical (metric) multidimen-
sional scaling analyzed nonlinear relationships (Oksanen et
al., 2019). Classification was ultimately determined using K-
means clustering (Charrad et al., 2014) with Euclidean dis-
tance. Indices that measure distances between and among
clusters (C-Index, Dunn, McClain, and Silhouette) were con-
sidered in conjunction with exploratory analyses to deter-
mine the number of clusters. K-means clustering with Eu-
clidean distance is a robust approach that does not depend
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on the statistical distribution of data (Hartigan and Wong,
1979). It is one of the most common and well-established
self-learning clustering algorithms.

2.2.2 Deductive approach

For traditional deductive classification, watershed data de-
scribing USGS streamflow gages were retrieved from the
USGS’s GAGES-II database (Falcone, 2011) and the U.S.
Environmental Protection Agency’s (EPA) NHDPlusV2
database (McKay et al., 2012). Correlation was performed
(R Core Team, 2019) to reduce the large pool of watershed
metrics. If two metrics contained a correlation coefficient
of greater than 0.5, then they were considered highly cor-
related, and one was removed. Judgement was applied to in-
clude more general metrics in favor of metrics with greater
specificity (i.e., remove “Mean Jan Precip” and do not re-
move “Mean Annual Precip”). Finally, the same exploratory
ordination analyses and clustering process as the inductive
approach provided results for traditional deductive classifi-
cation.

2.2.3 Combined inductive and deductive approaches

Inductive and deductive methods of stream classification
were combined in multiple ways. First, a single K-means
clustering analysis was performed using the hydrologic met-
rics (RBI and <1 cfs) and the best-performing watershed
variables from the deductive classification. Next, multino-
mial logistic regression (Venables and Ripley, 2002) was
used to determine whether flow metrics could predict de-
ductively produced clusters and likewise used to see whether
landscape metrics could predict inductively produced clus-
ters. Finally, the USGS categorized streamflow gages con-
taining minimally disturbed watersheds without significant
flow alteration as a “reference” gage within the GAGES-
II database (Falcone, 2011). Multinomial logistic regression
with flow and watershed metrics was again used to predict
whether a gage was reference or non-reference.

2.3 Hydrologic-model-based classification

Hydrologic-model-based classification (HMC) first requires
the accurate creation and calibration of rainfall–runoff mod-
els across a region, exactly like regionalization for estimating
streamflow in ungaged basins. Parsimonious and minimally
calibrated models are important to HMC so that physical re-
lationships between regional watershed variables and highly
uncertain model parameters might be established. Rather
than using traditional inductive measures of streamflow to as-
sess hydrologic similarity for classification, HMC quantifies
the hydrologic similarity between two sites as the reciprocat-
ing model accuracy or the accuracy of each model when cali-
brated parameters from the other model are donated to it and
vice versa. Representing hydrologic similarity with model er-
rors produced by a regional range of parameters is a new idea

in regionalization that can be used to quantify and reduce
parameter uncertainty. Calibrated parameters typically have
greater uncertainty than directly calculated parameters. Cali-
brated parameters are often difficult to define physically and
frequently lack data needed for their direct calculation. HMC
uses jackknife resampling of complete calibrated parameter
sets for all models across the region to generate a model-error
matrix of hydrologic similarity spanning the region. The re-
gional error matrix can be interpreted as quantitatively de-
scribing parameter uncertainty for the most uncertain param-
eters across a region. In HMC, the error matrix is used as an
inductive basis of hydrologic similarity and is combined with
a deductive approach to produce a new combined classifica-
tion that directly incorporates regionalization and reduces pa-
rameter uncertainty in models of ungaged basins. Ultimately,
classifying models with reciprocally low errors provides a
subset of parameters from a calibrated regional catalog with
reduced uncertainty. Figure 2 provides an example overview
of the process for HMC with four models.

2.3.1 Hydrologic models

Hydrological models were created in the US Army Corps
of Engineers Hydrologic Engineering Center’s Hydrologic
Modeling System (HEC-HMS) 4.1 at the 25 gages. Continu-
ous simulations were performed on an hourly time step over
WYs 2005–2007 to capture a period spanning a wide range
of typical hydrologic conditions (WRCC, 2015). Hourly pre-
cipitation data were input from the California Irrigation Man-
agement Information System (CIMIS), California Data Ex-
change Center (CDEC), Climate Data Online from the Na-
tional Oceanic and Atmospheric Administration (NOAA),
San Diego County Flood Control District (SDCFCD), and
Ventura County Watershed Protection District (VCWPD).
CIMIS gages also provided monthly average evapotranspi-
ration data. Independent watershed delineations in ArcMap
10.1 using a 30 m digital elevation model from the National
Map (USGS, 2019), NHDPlusV2 (McKay et al., 2012), and
National Land Cover Database (NLCD) (Fry et al., 2011)
were verified by USGS StreamStats data (USGS, 2019). In-
verse distance was used to weight precipitation gages from
each watershed’s centroid. Simple canopy (interception and
transpiration) and surface (infiltration) parameters were es-
timated from delineated data. HEC-HMS model parameters
associated with the deficit and constant loss element (infiltra-
tion) were calculated directly using soil and imperviousness
data available from USGS GAGES-II (Falcone, 2011). Simi-
larly, the time of concentration and the Clark unit hydrograph
storage coefficient used within the Clark unit hydrograph
transform element were calculated directly using the Kirpich
method (Kirpich, 1940) and standard approaches utilized by
the Arizona Department of Transportation (ADOT, 2014). To
produce minimally calibrated models, methods were selected
to balance simplicity and parameter parsimony with reliable
and process-based hydrology. The Kirpich method, for exam-
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Figure 2. Flowchart overview of novel hydrologic-model-based classification (HMC) using an example with four models.

ple, contains only two parameters, which facilitates straight-
forward calculations in data-scarce areas. It is a long-trusted
method for estimating time of concentration (USDA NRCS,
2007) that is highly effective across a wide range of condi-
tions in a similar region (Roussel et al., 2005).

After directly estimating and calculating parameters as-
sociated with precipitation losses and hydrograph transfor-
mation, only two linear reservoir baseflow parameters were
calibrated for the 25 modeled watersheds. Initial flow values
were known using streamflow gage data, and a single lin-
ear reservoir was used for each of the two groundwater lay-
ers. These two layers were connected in parallel, with both
groundwater layers combining to produce a total baseflow
(USACE, 2000). As such, only the groundwater storage co-
efficient for each layer was altered during calibration.

Flashy floods and periods of little precipitation have
strongly influenced the evolution of healthy freshwater
aquatic ecosystems in So. CA (Gasith and Resh, 1999). In

continuing with this study’s focus on streamflow flashiness
and permanence as ecologically relevant management met-
rics, models were calibrated to optimize the RBI and <1 cfs.
While the accuracy of a singular measure of the overall
fit is typically used for hydrologic-model calibration (Bar-
dossy, 2007; Beven, 2012), environmental flow studies have
shown that it is not ideal for modeling ecological flow met-
rics (Cassin et al., 2005; Murphy et al., 2013; Parker et al.,
2019; Vis et al., 2015). As a result, the calibration accuracy
of flashiness and flow permanence were equally considered
and combined into one ecologically focused combined cali-
bration (EFCC), which has been used to calibrate hydrologic
models for ecological applications in So. CA (Parker et al.,
2019). An EFCC (Eq. 4) equally weights the percent error
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(Eq. 3) of the RBI (Eq. 1) and <1 cfs (Eq. 2).

Percent error (%)=(
|gageflowmetric−modeledflowmetric|

gageflowmetric

)
· 100 (3)

EFCC (%)=



(
|gage RBI−modeled RBI|

|gage RBI|

)
· 100

+

(
|gage<1 cfs−modeled<1 cfs|

|gage<1 cfs|

)
· 100

2


(4)

2.3.2 Jackknife resampling error matrix

To compute hydrologic similarity among the regional net-
work of minimally calibrated hydrologic models, storage
coefficients and initial discharges of both groundwater lay-
ers were donated from 1 model to all 24 remaining mod-
els. This was done for every model in the region in a pro-
cess known as jackknife resampling (Efron, 1982; Friedl and
Stampfer, 2014). Model parameters directly calculated or es-
timated from available landscape data were not jackknifed.
Initial baseflow discharges were included in the jackknife
analysis and are treated as calibrated parameters because
they would be unknown in a PUB analysis. For each indi-
vidual model’s calibrated parameters, jackknife resampling
generated 24 time series characterizing streamflow across the
region. The accuracy of each simulated hydrograph result-
ing from jackknifed parameters was assessed by comparing
to the 24 observed USGS streamflow gages. The true gage
streamflow data do not affect the jackknifing process because
they are only used to determine the accuracy of the output
flow data resulting from the jackknifed parameters. The ac-
curacy of each jackknifed parameterization was calculated
for the entire 25× 24 matrix of time series data using the
EFCC (Eq. 4) scaled by minimum and maximum errors, re-
sulting in a normalized 25× 24 matrix quantifying the accu-
racy of each calibrated model when its calibrated parameters
were directly input into all other models. Each site’s original
calibration error was added to the matrix such that a normal-
ized 25×25 matrix was produced with very small calibration
errors spanning the diagonal.

2.3.3 Combined inductive and deductive approach

Combining inductive and deductive approaches for
hydrologic-model-based classification was very similar
to the combined approach under traditional classification
that implemented multinomial logistic regression. Using the
jackknife error matrix of hydrologic similarity, weighted
classical (metric) multidimensional scaling, PCA, and a
scree plot provided a sense of how sites might cluster.
K-means clustering with the C-Index, Dunn, McClain, and
Silhouette indices was used to split sites into reciprocating
low model-error clusters. This inductive approach produced

groups of hydrologically similar gages, as measured by
a site’s ability to accurately model all other sites within
its group. A deductive approach was added to HMC
by using multinomial logistic regression to determine
whether watershed variables could predict low-error cluster
membership.

2.4 Classification assessment

To better understand the utility of each classification in esti-
mating flow in ungaged basins, a performance metric dubbed
the average cluster error (ACE) was developed for this study.
ACE characterizes the errors produced by donated parame-
ters within a classification method and its classes. Low-error
classifications and classes indicate greater certainty in do-
nated calibrated parameters, which inherently contain high
uncertainty in models of ungaged basins. Classifications and
classes with low ACE values may provide the foundation
for accurately modeling ungaged basins with regionalization.
ACE was modeled after the cross-validation standard error
(CVSE) statistic presented by Wortman (2005) and is dis-
played in Eq. (5), wherein C is the total number of clusters
produced by a specific classification, c represents each clus-
ter, S is the total number of sites within the given cluster,
s is each site from the cluster, normalized errors are taken
directly from the jackknife error matrix, and P is the total
number of sites (25 in this study).

Average cluster error=∑C
c=1
∑S

s=1(normalized errorss)

P
(5)

The following example helps explain how Eq. (5) was used.
Say a specific classification divided the 25 sites into five
equal groups split chronologically (Sites 1–5, 6–10, 11–15,
etc.). The total error for the first group would be computed
by summing all within-cluster errors (when Site 1 parame-
ters were applied to Sites 2, 3, 4, and 5, when Site 2 param-
eters were applied to Sites 1, 3, 4, and 5, etc., for Site 3,
4, and 5 parameters). This same process would be repeated
for the four remaining groups and summed to produce a fi-
nal total error. The total error would be divided by 25 sites
to yield a single metric quantifying the average model er-
ror across all the sites, exclusive to a specific classification.
Following this procedure, ACE values can also be computed
for individual clusters unique to one classification, wherein
the number of sites assigned to the specific group of inter-
est would take the place of P (P = 5 when only considering
one cluster from the example above), and the

∑C
c=1() term

would not be used because only one cluster from the classifi-
cation is considered. Because all sites receiving each model’s
parameters were treated as ungaged basins during jackknife
resampling, the ACE statistic provides insight regarding how
well different classifications, or different groups within one
classification, might be incorporated into regionalization.
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Additionally, the adjusted Rand index (ARI) was com-
puted between each traditional classification technique and
hydrologic-model-based classification to compare the simi-
larity of any two unique classifications. The ARI typically
ranges from 0 to 1, wherein a value of 0 indicates no simi-
larities between clusters and a value of 1 represents identical
clusters; however, negative values can occur if class similar-
ity is less than what would be expected during random clus-
tering (Hubert and Arabie, 1985). Essentially, ARI values
near 0 indicate that a classification scheme provides unique
groups that do not overlap. Specifically, the “clues” package
in R (Chang et al., 2010) was implemented to compute an
ARI between all suitable classifications.

Between the two measures for assessing classifications in
this study, the ARI provides an understanding of each classi-
fication’s ability to separate its data, while ACE reflects the
ability of a classification, or cluster within a classification, to
estimate streamflow in ungaged basins. The ARI is a more
general metric for insight into data clustering, while ACE is
a specific metric focused on cluster performance in ungaged
basins. More generally, the ARI quantifies between-cluster
variability, while ACE quantifies within-cluster variability.

3 Results

3.1 Traditional classification

3.1.1 Inductive approach

Classification of hourly flashiness and flow permanence met-
rics in coastal southern CA resulted in three classes (Fig. 3).
Sites were essentially split according to flow permanence
with intermittent streams containing below-average flashi-
ness (Class 1 with 6 sites), perennial streams spanning the
full range of flashiness (Class 2 with 10 sites), and ephemeral
streams spanning the full range of flashiness (Class 3 with
9 sites). The intermittent class contained the smallest av-
erage cluster error with the least within-cluster variability
(0.2; Fig. 3), indicating calibrated parameters from mod-
els of these streams possessing the least uncertainty. Like-
wise, the perennial class had the least utility towards ungaged
basins because it contained the most within-cluster variabil-
ity (ACE= 0.9; Fig. 3). When considering all three clusters
produced by traditional inductive classification, the ACE was
0.6 (Fig. 3).

3.1.2 Deductive approach

Classification of watershed characteristics yielded five
classes with drainage area and soil content, specifically the
percentage of Hydrologic Soil Group C (HGC), providing
a parsimonious classification (Fig. 4). These two watershed
variables were log-transformed within the K-means algo-
rithm to address the right-skewed nature of the drainage area
caused by a few large basins. Sites were primarily divided by

drainage area and secondarily by HGC to generate classes
of small basins with a low HGC (Class 3 with three sites),
small basins with a high HGC (Class 5 with seven sites),
medium-sized basins with a low HGC (Class 1 with five
sites), medium-sized basins with a high HGC (Class 2 with
seven sites), and large basins with a high HGC (Class 4 with
three sites). The large basin with a high HGC class contained
the smallest ACE (0.2; Fig. 4), while the medium-sized basin
with a low HGC provided the largest one (0.6; Fig. 4). An
ACE of 0.4 was computed after considering all five clusters
produced by traditional deductive classification (Fig. 4).

3.1.3 Combined inductive and deductive approaches

Neither an expanded cluster analysis nor prediction of in-
ductively and deductively produced clusters with the selected
watershed characteristics and flow metrics, respectively, im-
proved classification over the individual inductive and deduc-
tive approaches. New multinomial regression models were
developed to accurately predict traditional inductive clusters
with drainage area, percentage clay soil, minimum elevation,
and annual minimum precipitation and to predict gage refer-
ence status with drainage area, percentage silt soil, baseflow
index, and relative humidity.

3.2 Hydrologic-model-based classification

3.2.1 Models

Calibration of the 25 HEC-HMS models at USGS gages pro-
duced models with extremely accurate flashiness and flow
permanence. Average percent errors of both the RBI and
<1 cfs were well under 1 %.

3.2.2 Combined inductive and deductive approach

Hydrologic-model-based classification combined inductive
and deductive classification to produce a multinomial logis-
tic regression model (deductive classification) that uses land-
scape variables to predict the membership of five hydrologi-
cally similar groups of models (inductive classification) (Ta-
ble 1). The inductive approach used in HMC does not group
sites by the similarity of measured or modeled metrics, as
is done traditionally, but instead groups sites to maximize
model accuracy when calibrated models’ parameters are do-
nated to all other sites within a group. Despite this impor-
tant distinction, streamflow flashiness and permanence were
well distributed across the five hydrologic-model-based clus-
ters (Table 1). A multinomial logistic regression model was
able to predict low-error class membership with 4 % error
(24 sites matched correctly) using drainage area, sandy soil
content, mean annual precipitation, and mean annual mini-
mum precipitation. The number of sites was distributed less
evenly across classes for hydrologic-model-based classifica-
tion than traditional methods, with the first two clusters con-
taining 2 sites each, the third cluster containing 3, the fourth
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Figure 3. Results of the inductive approach to traditional classification, specifically, (a) mean predictor metric values and ACE for the
different classes and overall classification and (b) an ordination plot illustrating metric values across clusters.

Figure 4. Results of the deductive approach to traditional classification, specifically, (a) mean predictor metric values and ACE for the
different classes and overall classification and (b) an ordination plot illustrating metric values across clusters.

containing 5, and the final cluster containing over half the
sites with 13. As such, it is no surprise that Class 5 con-
tained the largest within-cluster variability (ACE= 0.5; Ta-
ble 1) and is subsequently its worst-performing group in un-
gaged basins. However, no other class within HMC produced
an ACE greater than 0.1, which contributes to HMC having
the lowest within-cluster variability across all classifications
(ACE= 0.3; Table 1).

Stream classes produced by HMC include medium-sized
basins with flashiness on both the high (Class-1) and low
(Class-4) ends. Flashy Class-1 streams receive the least pre-
cipitation and are located in southern San Diego County.
Non-flashy Class-4 streams comprise the two easternmost
sites. Medium–small basins (Class 3) receive relatively lit-
tle precipitation and are located near the coast, while large–
medium basins (Class 5) receive the most precipitation and
are spread throughout the study area. The largest basins
(Class 2) are slightly flashier and drier than the large–
medium basins (Class 5). These Class-2 streams are concen-
trated in the northern part of the study area.

3.3 ARI

The geographical distribution of four unique classifications
is displayed in the Appendix (Fig. A1), including tradi-
tional inductive (flow metrics), traditional deductive (water-

shed characteristics), hybrid inductive–deductive (GAGES-
II reference sites), and hydrologic-model-based as hybrid
inductive–deductive (model accuracy and watershed charac-
teristics). Results of the ARI analysis show no major simi-
larities and large variability between classifications, with the
strongest relationship between GAGES-II reference sites and
inductive classification (ARI= 0.12; Table 2). Inductive and
hydrologic-model-based classifications were most different,
with an ARI of −0.04 (Table 2).

4 Discussion

Hydrologic-model-based classification introduces a new way
of thinking about stream similarity, which can improve the
accuracy of hydrologic modeling and environmental flow
management in ungaged basins. For hydrologic modeling,
HMC can be incorporated into iterative development of a hy-
drologic foundation, and it supplies the foundation for an im-
proved approach to regionalization of ungaged basins. As a
management tool, HMC streamlines priority environmental
flow metrics in ungaged basins.
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Table 1. Results of hydrologic-model-based classification (HMC).

Class Drainage Sand Annual avg Annual min RBI <1 cfs Avg cluster
area (km2) % precip. (cm) precip. (cm) error

1 146.4 41 35 1.9 0.16 0.44 0.1
2 463.8 38 51 1.0 0.10 0.33 0.1
3 93.4 33 39 0.6 0.12 0.40 0.0
4 151.9 59 40 1.6 0.05 0.58 0.1
5 222.5 52 55 1.8 0.08 0.28 0.5

All 0.3

Logistic regression Definition Source
landscape variable

DRAIN_SQKM Total upstream drainage area (km2) NHDPlusV2 (McKay et al., 2012)
SANDAVE Percentage of sandy soil (%) GAGES-II (Falcone, 2011)
PPTAVG_CAT Mean annual precipitation of the NHD catchment (cm) GAGES-II (Falcone, 2011)
CAT_AnnMinPrecip Mean annual minimum precipitation of the NHD catchment (cm) GAGES-II (Falcone, 2011)

Table 2. Adjusted Rand index (ARI) among four unique classifi-
cations. The strongest relationship between classifications is under-
lined.

Inductive Deductive Reference Hydrologic-
model-based

Inductive – −0.01 0.12 −0.04

Deductive −0.01 – 0.004 0.09

Reference 0.12 0.004 – 0.013

Hydrologic- −0.04 0.09 0.013 –
model-based

4.1 Hydrologic-model-based classification and
environmental flow management

Using hydrologic-model-based classification to incorporate
regionalization for modeling ungaged basins into stream
classification provides an opportunity to improve envi-
ronmental streamflow studies that require ungaged data.
ELOHA is an iterative process with significant feedback
loops; however, stream classification is recommended to oc-
cur second, after developing a hydrologic foundation, and no
guidance is provided on how classification might inform the
hydrologic foundation or vice versa (Poff et al., 2010). Be-
cause the hydrologic foundation generates baseline and cur-
rent hydrographs at sites with bioassessment data, many of
which are ungaged, reciprocal low-error classes produced by
HMC could be utilized in a modeling framework to increase
the hydrologic foundation’s accuracy. Switching the order of
the first two steps in ELOHA and first classifying sites us-
ing HMC could improve streamflow estimation in ungaged
basins as a part of the hydrologic foundation. At the very
least, developing the hydrologic foundation could be itera-
tive with classification as key characteristics of the sites be-

come better understood, especially if ungaged basins must be
modeled.

The primary role of stream classification, as one of the
four major steps of ELOHA, is to strengthen and standard-
ize regional flow–ecology relationships so that they may
be better implemented for water management (Poff et al.,
2010); however, it is the one step of ELOHA that some stud-
ies have determined to be unnecessary and have bypassed
(Kendy et al., 2012). On this point, large-scale classifications
in the Chesapeake Bay watershed (Buchanan et al., 2011)
and western US, including a separate classification in Cali-
fornia (Hawkins and Vinson, 2000), did not improve benthic
macroinvertebrate explanatory power. While this study has
demonstrated how the primary application of stream classifi-
cation is useful in coastal southern California, it has also in-
troduced HMC to extend classification beyond its traditional
role in modeling ungaged basins for developing a hydrologic
foundation in any region. Not only would a more accurate
hydrologic foundation create more accurate flow–ecology re-
lationships and stronger environmental flow criteria, but it
would also improve the utility of stream classification within
ELOHA.

Modeled streamflow data do not always classify streams
the same as gage data for the same sites. Peñas et al. (2016)
showed that daily and monthly gage data clustered better
than monthly modeled data in Spain. Similarly, modeled data
provided different classes than gaged data in North Carolina
(Eddy et al., 2017). While model accuracy is always a high
priority in hydrologic applications, stream classification is
very sensitive to this accuracy, which underscores the impor-
tance of accurate models within ELOHA. Poor model accu-
racy not only directly diminishes the utility of flow–ecology
relationships and subsequent environmental flow recommen-
dations, but it can also indirectly hamper management ef-
forts by providing inconsistent stream classes. When un-
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gaged basins are considered in ELOHA, model accuracy
must be highly prioritized, or else lingering and compound-
ing errors might spoil otherwise legitimate efforts.

From an operational perspective, hydrologic-model-based
classification is more time-consuming than traditional clas-
sifications and might become unwieldy when applied across
an expansive geographic region with many sites to classify.
This is because not only must hydrologic models be created
and calibrated for every classified site, but each model must
also be analyzed with every other model’s calibrated param-
eters to produce the critical jackknife resampling error ma-
trix. If ungaged basins are to be included, however, some
extra time spent building models is recouped as they would
have been built anyway under traditional classifications. This
study has demonstrated that HMC is feasible for 25 sites
spanning a fairly large and highly heterogeneous region on
the South Coast of California. If a significantly larger region
or denser network were the focus of this study, HMC would
likely provide even more precise classes and accurate stream-
flow estimates but with a substantially greater time invest-
ment. Realistically, HMC becomes less feasible at a state-
wide scale or for a large network (∼ 50 sites). HMC uses
conceptual hydrologic models with process-based methods,
which can be created and calibrated relatively quickly but
with uncertainty (Knoben et al., 2019). These issues make
HMC most effective for moderate-scale environmental flow
development, which might range from basin level to span-
ning multiple counties, or with expeditious hydrologic mod-
els. While HMC is more time-consuming than traditional
classifications, it was developed with simple, lumped hydro-
logic models and time-invariant parameters. Other sophisti-
cated modeling approaches have been developed with more
complicated model structures, such as adaptive clustering
with distributed models (Ehret et al., 2020) and diagnos-
tic evaluations with time-variable parameters (de Vos et al.,
2010).

4.2 Stream classification for regionalizing ungaged
basins

Hydrologic-model-based classification not only provides
new information characterizing regional streams comple-
mentary to traditional classifications, but it can also be used
to accurately model ungaged basins across a heterogenous
area through regionalization, as evidenced through the aver-
age cluster error metric describing within-cluster variability.
ACE unpacks important information buried inside the jack-
knife resampling matrix describing how accurately a set of
calibrated parameters can be donated from its original model
to all other models in the region, as if the other models were
ungaged. Error values from the matrix can be assessed for
each model in the region or, when performing stream classi-
fication, can be aggregated to quantify ACE for every class
within a given classification. Further aggregation can pro-
vide an overall measure of ungaged modeling accuracy for

an entire classification approach to compare to other classi-
fication schemes. A comparison of these overall ACE val-
ues shows hydrologic-model-based classification containing
the least within-cluster variability, which provides the most
certainty regarding parameters in models of ungaged basins
(ACE 0.3; Table 1). HMC was followed by deductive clas-
sification with drainage area and HGC (ACE 0.4; Fig. 4),
inductive classification with <1 cfs and the RBI (ACE 0.6;
Fig. 3), and lastly GAGES-II reference status (ACE 1.4).

By providing a method for reducing parameter uncertainty
in models of ungaged basins, HMC has demonstrated util-
ity beyond complementary classification. Modeling ungaged
basins is fundamental to ELOHA (Poff et al., 2010) and
many other hydrology applications, but different approaches
vary significantly, contain uncertainty, and do not perform
particularly well across a geologically and hydroclimatically
diverse area (Arsenault et al., 2019; Blöschl et al., 2013).
This study provides a foundation for directly incorporating
the regional accuracy of a catalog of hydrologic models into
a framework for improving ungaged modeling within a het-
erogeneous region.

The five traditional classes with low measures of ACE
(≤ 0.5) (Figs. 3 and 4) provide additional information to re-
duce ungaged model uncertainty in So. CA. This study has
shown that flow permanence and flashiness were more con-
sistently modeled in ungaged basins containing intermittent
streams than ephemeral or perennial streams. Extreme sen-
sitivity to precipitation explains why ephemeral streams did
not produce a low ACE, and, while initially it may be surpris-
ing to see baseflow parameters more accurately interchanged
between models of intermittent streams than perennial ones,
the effluent nature of perennial streams, especially in a region
as rapidly urbanizing as So. CA, inconsistently augments the
natural flow regime (Ponce and Lindquist, 1990) and likely
prevented accurate modeling in this study. Similarly, flows
were modeled with more certainty at GAGES-II reference
sites (ACE 0.4) than non-reference ones (ACE 1.9), wherein
flow alteration restricts the ability to transform precipitation
into streamflow. Based on the results of this study, intermit-
tent reference streams are likely most accurately regionalized
in the South Coast region.

While no combined classification in coastal southern CA
was able to predict the class membership of all 25 sites with
100 % accuracy, HMC came the closest. This finding under-
scores the potential for using a measure of model accuracy
across a region to define hydrologic similarity within stream
classification. Olden et al. (2012) split deductive classifica-
tion into three sub-approaches: “environmental regionaliza-
tion” to provide a spatial representation of stream similarity,
“hydrologic regionalization” using models to estimate flow
in ungaged basins, and “environmental classification” for ge-
ographically independent classification. However, only one
inductive approach, ideal for geographic independence, is
described: “streamflow classification”. The new hydrologic-
model-based classification developed in this study is based
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on inductive reasoning but is not streamflow classification.
Instead, HMC is a type of “streamflow regionalization”,
wherein each region is a reciprocal low-error class. Instead
of defining geographic areas of assumed flow similarity us-
ing watershed characteristics, streamflow regionalization di-
rectly groups sites based on modeled flow similarity. This
new approach essentially hybridizes hydrologic regionaliza-
tion and streamflow classification.

Deductive classification produced relatively low uncer-
tainty of model parameters, with all five classes containing
ACE values between 0.2 and 0.6 (Fig. 4). The relatively tight
spread coupled with a low overall ACE (0.4; Fig. 4) im-
plicates deductive classification as a worthy alternative to
HMC for regionalization of ungaged basins. These results
are consistent with the most common implementation of re-
gionalization, wherein models are typically grouped by spa-
tial proximity, physical similarity, or parameter regression
(Oudin et al., 2008; Razavi and Coulibaly, 2013; Samuel et
al., 2011). This study has shown how a new type of stream-
flow regionalization, akin to hydrologic-model-based classi-
fication, might edge out traditional hydrologic regionaliza-
tion from deductive classification at estimating streamflow
in ungaged basins. Hydrologic regionalization and stream-
flow regionalization both implement watershed characteris-
tics to separate sites for high utility in modeling ungaged
basins; however, streamflow regionalization improves mod-
eling by directly incorporating a quantifiable measure of un-
gaged model accuracy. This important addition to streamflow
regionalization directly captures regional model uncertainty
and strengthens the science supporting modeling of ungaged
basins.

4.3 Stream classification in coastal southern California

Each of the different classifications described in this study
provides unique information on how coastal southern CA
streams might be stratified for environmental flow man-
agement. Previous state-wide classifications by Lane et
al. (2017), Pyne et al. (2017), and Lane et al. (2018) are too
broad to provide the resolution needed for subdaily hydro-
logic modeling in the South Coast subregion, which is char-
acterized by heterogeneous land use and geologic settings.
While this study was limited to 25 sites in So. CA, flow per-
manence is clearly an important metric for grouping streams,
as demonstrated in the inductive approach, while drainage
area and the percentage of relatively low-infiltration, high-
runoff soils proved most important for deductively classi-
fying streams. The slightly negative ARI between inductive
and deductive classifications (−0.01; Table 2) indicates no
similarity between the classes produced by the different ap-
proaches (Hubert and Arabie, 1985). These highly differ-
ent classifications provide complementary information on the
South Coast and suggest a relationship exists between flow
permanence, drainage area, and HGC. This weak relationship
was identified as, at best, just under half (12 of 25) of induc-

tively and deductively produced clusters being correctly pre-
dicted using multinomial logistic regression. While this level
of accuracy is not acceptable for practical stream classifica-
tion, it does establish a nonrandom relationship between flow
permanence, drainage area, and HGC in the study region.

As measured by the ARI, traditional inductive classifica-
tion and reference status classification were the two most
similar but still contained high variability (0.12; Table 2).
This finding is consistent with how GAGES-II primarily uses
flow alteration to classify reference streams (Falcone, 2011)
and with how ELOHA recommends classifying by hydro-
logic similarity to develop flow–ecology relationships (Poff
et al., 2010). Furthermore, the reference status classification
established a relationship, predominately with drainage area,
but also silt content, baseflow index, and relative humidity,
which could help water managers identify streams facing po-
tential flow alteration.

The two most different classifications in this study
were traditional inductive and hydrologic-model-based (ARI
−0.04; Table 2). Hydrologic-model-based classification is
primarily based on an inductive approach; however, it quan-
tifies hydrologic similarity completely differently than tra-
ditional inductive classification. The negative nonrandom
relationship between these classifications is explained as
the traditional approach considers gage data similarity and
hydrologic-model-based considers model data similarity of
the same metrics. The differences in these two inductively
based classifications underscore the complexity in modeling
streamflow permanence and flashiness in So. CA and sug-
gest that great effort must be taken when modeling ungaged
basins in the South Coast region.

Using the ARI, this study has demonstrated how four
unique stream classifications can each provide important,
complementary information regarding how streams across
a region may be grouped for management. While the two
inductively based classifications appear the most useful for
separating gaged and ungaged sites, respectively, important
relationships and management opportunities can be revealed
through a robust regional stream classification using multiple
approaches.

5 Conclusions

Accurately modeling ungaged basins is often necessary for
quantification and management of environmental stream-
flows (Poff et al., 2010), but it is a difficult undertaking
with no consensus approach in the hydrology community,
especially in heterogenous regions (Arsenault et al., 2019;
Blöschl et al., 2013). Furthermore, stream classification is
one of the four major steps used to develop environmental
flow criteria within ELOHA (Poff et al., 2010), but it is not al-
ways used in the framework (Kendy et al., 2012). This study
sought to increase the utility of classification within ELOHA
while simultaneously strengthening the science supporting
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modeling and management of ungaged basins in heteroge-
neous regions. To this end, hydrologic-model-based classi-
fication was developed to provide complementary classifi-
cation information, improved ungaged model accuracy, and
new opportunities for stream management. Iterating between
the first two steps of ELOHA (hydrologic foundation and
classification) within HMC improves both steps and pro-
duces stronger environmental flow criteria.

While this study focused on streamflow permanence and
flashiness due to their known ecological importance in the
study region (Gasith and Resh, 1999; Mazor et al., 2018;
Parker et al., 2019), additional flow metrics corresponding to
other elements of the flow regime are ecologically relevant in
So. CA (Yarnell et al., 2020) and could be incorporated. To
develop a better understanding of HMC in general, it could
be extended to new regions and compared to the results of
this study. This could produce general relationships between
different classifications and provide insight into which classi-
fication approach might be most appropriate for specific ap-
plications and regions. Likewise, a type of nested classifica-
tion similarly implemented across many regions would help
different stakeholders understand how management actions
at multiple geographic scales might affect streams and would
foster coordinated management relationships. As HMC is ex-
panded to additional regions, a better understanding of the
similarity of within-class management plans will be devel-
oped. These findings will be highly dependent on the man-
agement metrics and regions, but a general sense for manage-
ment plan transferability within low-error classes will offer a
clearer understanding of how hydrologic-model-based clas-
sification might assist in ungaged stream management with-
out ever modeling the basin.

For coastal southern California, HMC results from this
study should be further developed into a full framework for
modeling time series of discharge in new ungaged basin(s)
from the heterogenous region. This would foster a better un-
derstanding of the modeling complexities within hydrologic-
model-based classification and its associated new regional-
ization framework and would provide the basis for a hy-
drologic foundation prioritizing ungaged basins, which is
needed to develop robust regional environmental flow criteria
in So. CA.
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Figure A1. Geographical distribution of classes, specifically for (a) the traditional inductive approach, (b) the traditional deductive approach,
(c) the GAGES-II reference sites, and (d) the new hydrologic-model-based method.
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