Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5241-2022
https://doi.org/10.5194/hess-26-5241-2022
Research article
 | 
20 Oct 2022
Research article |  | 20 Oct 2022

A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance

Yuan Liu and Daniel B. Wright

Related authors

A process-informed framework linking temperature-rainfall projections and urban flood modeling
Wenyue Zou, Ruidong Li, Daniel B. Wright, Jovan Blagojevic, Peter Molnar, Mohammad A. Hussain, Yue Zhu, Yongkun Li, Guangheng Ni, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4099,https://doi.org/10.5194/egusphere-2025-4099, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717, https://doi.org/10.5194/hess-25-4701-2021,https://doi.org/10.5194/hess-25-4701-2021, 2021
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insurance: Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 
Abdi, H.: The Kendall rank correlation coefficient, in: Encyclopedia of Measurement and Statistics, Sage Publications, Inc., 508–510, ISBN 9781412916110, 2007. 
Alaya, M. A. B., Zwiers, F., and Zhang, X.: Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis, J. Hydrometeorol., 19, 679–694, 2018. 
Alaya, M. A. B., Zwiers, F. W., and Zhang, X.: A bivariate approach to estimating the probability of very extreme precipitation events, Weather Clim. Extrem., 30, 100290, https://doi.org/10.1016/j.wace.2020.100290, 2020. 
Alexander, G. N.: Using the probability of storm transposition for estimating the frequency of rare floods, J. Hydrol., 1, 46–57, https://doi.org/10.1016/0022-1694(63)90032-5, 1963. 
Download
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
Share