Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5241-2022
https://doi.org/10.5194/hess-26-5241-2022
Research article
 | 
20 Oct 2022
Research article |  | 20 Oct 2022

A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance

Yuan Liu and Daniel B. Wright

Related authors

The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717, https://doi.org/10.5194/hess-25-4701-2021,https://doi.org/10.5194/hess-25-4701-2021, 2021
Short summary
Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality
Guo Yu, Daniel B. Wright, Zhihua Zhu, Cassia Smith, and Kathleen D. Holman
Hydrol. Earth Syst. Sci., 23, 2225–2243, https://doi.org/10.5194/hess-23-2225-2019,https://doi.org/10.5194/hess-23-2225-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024,https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024,https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024,https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insurance: Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 
Abdi, H.: The Kendall rank correlation coefficient, in: Encyclopedia of Measurement and Statistics, Sage Publications, Inc., 508–510, ISBN 9781412916110, 2007. 
Alaya, M. A. B., Zwiers, F., and Zhang, X.: Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis, J. Hydrometeorol., 19, 679–694, 2018. 
Alaya, M. A. B., Zwiers, F. W., and Zhang, X.: A bivariate approach to estimating the probability of very extreme precipitation events, Weather Clim. Extrem., 30, 100290, https://doi.org/10.1016/j.wace.2020.100290, 2020. 
Alexander, G. N.: Using the probability of storm transposition for estimating the frequency of rare floods, J. Hydrol., 1, 46–57, https://doi.org/10.1016/0022-1694(63)90032-5, 1963. 
Download
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.