Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Department of Civil and Environmental Engineering, University of
Wisconsin-Madison, Madison, 53706, USA
Daniel B. Wright
Department of Civil and Environmental Engineering, University of
Wisconsin-Madison, Madison, 53706, USA
Related authors
No articles found.
Wenyue Zou, Ruidong Li, Daniel B. Wright, Jovan Blagojevic, Peter Molnar, Mohammad A. Hussain, Yue Zhu, Yongkun Li, Guangheng Ni, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4099, https://doi.org/10.5194/egusphere-2025-4099, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present a framework using observed rainfall and temperature to generate realistic storms and simulate street-scale flooding for present and future climates. It integrates temperature-based rainfall scaling, storm-frequency estimation, and urban flood modeling, demonstrated in Beijing to assess changes in regional storm and flood depth, timing, and flow velocity. The workflow is data-light, physically grounded, and transferable worldwide.
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717, https://doi.org/10.5194/hess-25-4701-2021, https://doi.org/10.5194/hess-25-4701-2021, 2021
Short summary
Short summary
The role of rainfall space–time structure in flood response is an important research issue in urban hydrology. This study contributes to this understanding in small urban watersheds. Combining stochastically based rainfall scenarios with a hydrological model, the results show the complexities of flood response for various return periods, implying the common assumptions of spatially uniform rainfall in urban flood frequency are problematic, even for relatively small basin scales.
Cited articles
Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions
of multiple dependence, Insurance: Math. Econ., 44, 182–198,
https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009.
Abdi, H.: The Kendall rank correlation coefficient, in: Encyclopedia of Measurement and Statistics, Sage Publications, Inc., 508–510, ISBN 9781412916110, 2007.
Alaya, M. A. B., Zwiers, F., and Zhang, X.: Probable Maximum Precipitation:
Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value
Analysis, J. Hydrometeorol., 19, 679–694, 2018.
Alaya, M. A. B., Zwiers, F. W., and Zhang, X.: A bivariate approach to
estimating the probability of very extreme precipitation events, Weather Clim. Extrem., 30, 100290, https://doi.org/10.1016/j.wace.2020.100290, 2020.
Alexander, G. N.: Using the probability of storm transposition for estimating the frequency of rare floods, J. Hydrol., 1, 46–57, https://doi.org/10.1016/0022-1694(63)90032-5, 1963.
Alexander, G. N.: Application of probability to spillway design flood
estimation, in: Proceedings of the Leningrad Symposium on Floods and Their Computation, August 1967, Gentbrugge, Belgium, 536–543, 1969.
Alexander, L. V., Bador, M., Roca, R., Contractor, S., Donat, M. G., and Nguyen, P. L.: Intercomparison of annual precipitation indices and extremes
over global land areas from in situ, space-based and reanalysis products,
Environ. Res. Lett., 15, 055002, https://doi.org/10.1088/1748-9326/ab79e2, 2020.
Allison, M. A., Vosburg, B. M., Ramirez, M. T., and Meselhe, E. A.: Mississippi River channel response to the Bonnet Carré Spillway opening
in the 2011 flood and its implications for the design and operation of river
diversions, J. Hydrol., 477, 104–118, https://doi.org/10.1016/j.jhydrol.2012.11.011, 2013.
Asquith, W. H. and Famiglietti, J. S.: Precipitation areal-reduction factor
estimation using an annual-maxima centered approach, J. Hydrol., 230, 55–69, https://doi.org/10.1016/S0022-1694(00)00170-0, 2000.
Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in
Forecasting Convective Initiation: Historical and Operational Perspectives,
Weather Forecast., 20, 351–366, https://doi.org/10.1175/waf858.1, 2005.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A.
I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of
26 precipitation datasets using Stage-IV gauge-radar data for the CONUS,
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Bender, J., Wahl, T., and Jensen, J.: Multivariate design in the presence of
non-stationarity, J. Hydrol., 514, 123–130, https://doi.org/10.1016/j.jhydrol.2014.04.017, 2014.
Benedict, I., van Heerwaarden, C. C., van der Ent, R. J., Weerts, A. H., and
Hazeleger, W.: Decline in Terrestrial Moisture Sources of the Mississippi
River Basin in a Future Climate, J. Hydrometeorol., 21, 299–316,
https://doi.org/10.1175/JHM-D-19-0094.1, 2020.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties
in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011.
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.:
Multivariate statistical modelling of compound events via pair-copula
constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017.
Bosilovich, M. G., Chen, J., Robertson, F. R., and Adler, R. F.: Evaluation
of Global Precipitation in Reanalyses, J. Appl. Meteorol. Clim., 47, 2279–2299, https://doi.org/10.1175/2008JAMC1921.1, 2008.
Bosma, C. D., Wright, D. B., Nguyen, P., Kossin, J. P., Herndon, D. C., and
Shepherd, J. M.: An Intuitive Metric to Quantify and Communicate Tropical
Cyclone Rainfall Hazard, B. Am. Meteorol. Soc., 101, E206–E220, https://doi.org/10.1175/BAMS-D-19-0075.1, 2020.
Bradbury, D.: Moisture Analysis and Water Budget in Three Different Types of
Storms, J. Meteorol., 14, 559–565, https://doi.org/10.1175/1520-0469(1957)014<0559:maawbi>2.0.co;2, 1957.
Breinl, K., Müller-Thomy, H., and Blöschl, G.: Space–Time
Characteristics of Areal Reduction Factors and Rainfall Processes, J.
Hydrometeorol., 21, 671–689, https://doi.org/10.1175/JHM-D-19-0228.1, 2020.
Brown, P. J. and Kummerow, C. D.: An Assessment of Atmospheric Water Budget
Components over Tropical Oceans, J. Climate, 27, 2054–2071,
https://doi.org/10.1175/JCLI-D-13-00385.1, 2014.
Chang, W., Stein, M. L., Wang, J., Kotamarthi, V. R., and Moyer, E. J.:
Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions, J. Climate, 29, 8355–8376, https://doi.org/10.1175/JCLI-D-15-0844.1, 2016.
Chen, L.-C. and Bradley, A. A.: Adequacy of using surface humidity to
estimate atmospheric moisture availability for probable maximum precipitation, Water Resour. Res., 42, W09410, https://doi.org/10.1029/2005WR004469, 2006.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values,
Springer, UK, 78–91, https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Cunnane, C.: Unbiased plotting positions – A review, J. Hydrol., 37, 205–222, https://doi.org/10.1016/0022-1694(78)90017-3, 1978.
Davis, C., Brown, B., and Bullock, R.: Object-Based Verification of Precipitation Forecasts. Part I: Methodology and Application to Mesoscale
Rain Areas, Mon. Weather Rev., 134, 1772–1784, https://doi.org/10.1175/MWR3145.1, 2006.
Dawdy, D. R., Griffis, V. W., and Gupta, V. K.: Regional Flood-Frequency
Analysis: How We Got Here and Where We Are Going, J. Hydrol. Eng., 17, 953–959, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000584, 2012.
De Michele, C. and Salvadori, G.: A Generalized Pareto intensity-duration
model of storm rainfall exploiting 2-Copulas, J. Geophys. Res.-Atmos. 108, 4067, https://doi.org/10.1029/2002JD002534, 2003.
Dingman, S. L.: Physical hydrology, in: 3rd Edn., Waveland Press, Inc,
Long Grove, Illinois, 643 pp., ISBN 978-1-4786-1118-9, 2015.
Dixon, M. and Wiener, G.: TITAN: Thunder Identification, Tracking, Analysis,
and Nowcasting – A Radar-based Methodology, J. Atmos. Ocean. Tech., 10, 785–797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2, 1993.
Durrans, S. R., Julian, L. T., and Yekta, M.: Estimation of Depth-Area
Relationships using Radar-Rainfall Data, J. Hydrol. Eng., 7, 356–367,
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(356), 2002.
Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of Near-Real-Time
Precipitation Estimates from Satellite Observations and Numerical Models, B. Am. Meteorol. Soc., 88, 47–64, https://doi.org/10.1175/BAMS-88-1-47, 2007.
Efstratiadis, A., Koussis, A. D., Koutsoyiannis, D., and Mamassis, N.: Flood
design recipes vs. reality: can predictions for ungauged basins be trusted?,
Nat. Hazards Earth Syst. Sci., 14, 1417–1428, https://doi.org/10.5194/nhess-14-1417-2014, 2014.
England, J. F., Julien, P. Y., and Velleux, M. L.: Physically-based extreme
flood frequency with stochastic storm transposition and paleoflood data on
large watersheds, J. Hydrol., 510, 228–245, https://doi.org/10.1016/j.jhydrol.2013.12.021, 2014.
Essou, G. R. C., Brissette, F., and Lucas-Picher, P.: The Use of Reanalyses
and Gridded Observations as Weather Input Data for a Hydrological Model:
Comparison of Performances of Simulated River Flows Based on the Density of
Weather Stations, J. Hydrometeorol., 18, 497–513, https://doi.org/10.1175/JHM-D-16-0088.1, 2017.
Foufoula-Georgiou, E.: A probabilistic storm transposition approach for
estimating exceedance probabilities of extreme precipitation depths, Water
Resour. Res., 25, 799–815, https://doi.org/10.1029/WR025i005p00799, 1989.
Gao, S., Cui, X., Zhou, Y., and Li, X.: Surface rainfall processes as simulated in a cloud-resolving model, J. Geophys. Res.-Atmos., 110, 202, https://doi.org/10.1029/2004JD005467, 2005.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016.
Gori, A., Lin, N., Xi, D., and Emanuel, K.: Tropical cyclone climatology
change greatly exacerbates US extreme rainfall–surge hazard, Nat. Clim.
Change, 12, 171–178, https://doi.org/10.1038/s41558-021-01272-7, 2022.
Grebner, D. and Roesch, T.: Regional dependence and application of DAD relationships, in: FRIEND '97 Regional Hydrology – Concepts and Models for Sustainable Water Resource Management, IAHS Press, Wallingford, Oxfordshire, 223–230, ISBN 978-1-901502-35-0, 1997.
Groisman, P. Y., Knight, R. W., Karl, T. R., Easterling, D. R., Sun, B., and
Lawrimore, J. H.: Contemporary Changes of the Hydrological Cycle over the
Contiguous United States: Trends Derived from In Situ Observations, J. Hydrometeorol., 5, 64–85, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2, 2004.
Gubareva, T. and Gartsman, B.: Estimating distribution parameters of extreme
hydrometeorological characteristics by L-moments method, Water Resour., 37, 437–445, https://doi.org/10.1134/S0097807810040020, 2010.
Gutenstein, M., Fennig, K., Schröder, M., Trent, T., Bakan, S., Roberts,
J. B., and Robertson, F. R.: Intercomparison of freshwater fluxes over ocean
and investigations into water budget closure, Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, 2021.
Gyasi-Agyei, Y. and Melching, C.: Modelling the dependence and internal
structure of storm events for continuous rainfall simulation, J. Hydrol., 464–465, 249–261, https://doi.org/10.1016/j.jhydrol.2012.07.014, 2012.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2022.
Holman, K. D. and Vavrus, S. J.: Understanding Simulated Extreme Precipitation Events in Madison, Wisconsin, and the Role of Moisture Flux
Convergence during the Late Twentieth and Twenty-First Centuries, J. Hydrometeorol., 13, 877–894, https://doi.org/10.1175/JHM-D-11-052.1, 2012.
Hoskins, B. J. and Hodges, K. I.: New Perspectives on the Northern
Hemisphere Winter Storm Tracks, J. Atmos. Sci., 59, 1041–1061,
https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2, 2002.
Huffman, G., Stocker, E., Bolvin, D., Nelkin, E., and Tan, J.: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
Jiang, C., Xiong, L., Xu, C.-Y., and Guo, S.: Bivariate frequency analysis
of nonstationary low-flow series based on the time-varying copula, Hydrol. Process., 29, 1521–1534, https://doi.org/10.1002/hyp.10288, 2015.
Jiao, D., Xu, N., Yang, F., and Xu, K.: Evaluation of spatial-temporal
variation performance of ERA5 precipitation data in China, Sci. Rep., 11,
17956, https://doi.org/10.1038/s41598-021-97432-y, 2021.
Jun, C., Qin, X., Gan, T. Y., Tung, Y.-K., and De Michele, C.: Bivariate
frequency analysis of rainfall intensity and duration for urban stormwater
infrastructure design, J. Hydrol., 553, 374–383, https://doi.org/10.1016/j.jhydrol.2017.08.004, 2017.
Kao, S.-C. and Deneale, S. T.: Application of Point Precipitation Frequency
Estimates to Watersheds, ORNL – Oak Ridge National Lab., Oak Ridge, TN, USA,
https://doi.org/10.2172/1808414, 2021.
Kao, S.-C., DeNeale, S. T., Yegorova, E., Kanney, J., and Carr, M. L.:
Variability of precipitation areal reduction factors in the conterminous
United States, J. Hydrol. X, 9, 100064, https://doi.org/10.1016/j.hydroa.2020.100064, 2020.
Karl, T. R. and Knight, R. W.: Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States, B. Am. Meteorol. Soc., 79, 231–242, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2, 1998.
Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in
hydrology, Adv. Water Resour., 25, 1287–1304, https://doi.org/10.1016/S0309-1708(02)00056-8, 2002.
Kim, E. and Kang, B.: Estimation of Storm-centered ARF Using Radar Rainfall
by Duration and Return Periods, in: Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), Bankog, Thailand, https://doi.org/10.2991/msam-17.2017.59, 2017.
Kim, S., Sharma, A., Wasko, C., and Nathan, R.: Linking total precipitable
water to precipitation extremes globally, Earth's Future, 10, e2021EF002473, https://doi.org/10.1029/2021EF002473, 2022.
Klemeš, V.: Probability of extreme hydrometeorological events – a
different approach, in: Proceedings of the Yokohama Symposium, July 1993,
Yokohama, abstract no. 203, 1993.
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework
for studying rainfall intensity-duration-frequency relationships, J. Hydrol., 206, 118–135, https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.
Krajewski, W. F.: Cokriging radar-rainfall and rain gage data, J. Geophys. Res.-Atmos., 92, 9571–9580, https://doi.org/10.1029/JD092iD08p09571, 1987.
Kunkel, K. E., Easterling, D. R., Karl, T. R., Biard, J. C., Champion, S.
M., Gleason, B. E., Johnson, K. M., Li, A., Stegall, S., Stevens, L. E.,
Stevens, S. E., Squires, M., Sun, L., and Yin, X.: Incorporation of the
Effects of Future Anthropogenically-Forced Climate Change in Intensity-Duration-Frequency Design Values, North Carolina Institute for
Climate Studies, North Carolina State University, https://precipitationfrequency.ncics.org/pdfs/RC_2517_Final_Report_version2_Sep_04_2020_clean.pdf
(last access: 1 September 2021), 2020a.
Kunkel, K. E., Stevens, S. E., Stevens, L. E., and Karl, T. R.: Observed
Climatological Relationships of Extreme Daily Precipitation Events With
Precipitable Water and Vertical Velocity in the Contiguous United States,
Geophys. Res. Lett., 47, e2019GL086721, https://doi.org/10.1029/2019GL086721, 2020b.
Langousis, A., Veneziano, D., Furcolo, P., and Lepore, C.: Multifractal
rainfall extremes: Theoretical analysis and practical estimation, Chaos Solit. Fract., 39, 1182–1194, https://doi.org/10.1016/j.chaos.2007.06.004, 2009.
Lee, O. and Kim, S.: Estimation of Future Probable Maximum Precipitation in
Korea Using Multiple Regional Climate Models, Water, 10, 637,
https://doi.org/10.3390/w10050637, 2018.
Lewis, J., McKinnie, C., Parrish, K., Crosby, W., Cruz, C., Dove, M., Gaines, R., Girdner, S., Gambill, R., Ramirez, D., Tayler, R., Agnew, M., Veatch, W., Dircksen, M., Brown, T., Griggs, F., Copeland, R., Rentfro, B., Ashley, J., Windham, J., and Howe, E.: Mississippi River and Tributaries flowline assessment main report, United States Army Corps of Engineers, Mississippi Valley Division, https://doi.org/10.21079/11681/32623, 2019.
Li, Z., Wright, D. B., Zhang, S. Q., Kirschbaum, D. B., and Hartke, S. H.:
Object-Based Comparison of Data-Driven and Physics-Driven Satellite Estimates of Extreme Rainfall, J. Hydrometeorol., 21, 2759–2776, https://doi.org/10.1175/JHM-D-20-0041.1, 2020.
Liu, Y. and Wright, D.: STARCH (Storm Tracking And Regional Characterization), Zenodo [code], https://doi.org/10.5281/zenodo.7091017, 2022.
Madsen, H., Rasmussen, P. F., and Rosbjerg, D.: Comparison of annual maximum
series and partial duration series methods for modeling extreme hydrologic
events: 1. At-site modeling, Water Resour. Res., 33, 747–757,
https://doi.org/10.1029/96WR03848, 1997.
Mallakpour, I., Sadeghi, M., Mosaffa, H., Akbari Asanjan, A., Sadegh, M.,
Nguyen, P., Sorooshian, S., and AghaKouchak, A.: Discrepancies in changes in
precipitation characteristics over the contiguous United States based on six
daily gridded precipitation datasets, Weather Clim. Extrem., 36, 100433, https://doi.org/10.1016/j.wace.2022.100433, 2022.
Matsoukas, C., Islam, S., and Kothari, R.: Fusion of radar and rain gage
measurements for an accurate estimation of rainfall, J. Geophys. Res.-Atmos., 104, 31437–31450, https://doi.org/10.1029/1999JD900487, 1999.
Mayer, J., Mayer, M., and Haimberger, L.: Consistency and Homogeneity of Atmospheric Energy, Moisture, and Mass Budgets in ERA5, J. Climate, 34, 3955–3974, https://doi.org/10.1175/JCLI-D-20-0676.1, 2021.
Miller, J. F.: Two- to Ten-Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States, US Weather Bureau, Washington, DC, https://www.weather.gov/media/owp/hdsc_documents/TechnicalPaper_No49.pdf
(last access: 15 January 2022), 1964.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead:
Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Miniussi, A., Marani, M., and Villarini, G.: Metastatistical Extreme Value
Distribution applied to floods across the continental United States, Adv. Water Resour., 136, 103498, https://doi.org/10.1016/j.advwatres.2019.103498, 2020.
Moalafhi, D. B., Evans, J. P., and Sharma, A.: Influence of reanalysis datasets on dynamically downscaling the recent past, Clim. Dynam., 49, 1239–1255, https://doi.org/10.1007/s00382-016-3378-y, 2017.
Mutel, C. F. (Ed.): A watershed year: anatomy of the Iowa floods of 2008,
University of Iowa Press, Iowa City, 250 pp., ISBN 978-1-58729-854-7, 2010.
Myers, M. F. and White, G. F.: The Challenge of the Mississippi Flood,
Environment: Sci. Policy Sustain. Dev., 35, 6–35, https://doi.org/10.1080/00139157.1993.9929131, 1993.
Nagler, T., Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B.,
Erhardt, T., Almeida, C., Min, A., Czado, C., Hofmann, M., Killiches, M.,
Joe, H., and Vatter, T.: VineCopula: Statistical Inference of Vine Copulas,
CRAN R project [code], https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf
(last access: 6 April 2022), 2021.
Nathan, R., Jordan, P., Scorah, M., Lang, S., Kuczera, G., Schaefer, M., and
Weinmann, E.: Estimating the exceedance probability of extreme rainfalls up
to the probable maximum precipitation, J. Hydrol., 543, 706–720,
https://doi.org/10.1016/j.jhydrol.2016.10.044, 2016.
National Climatic Data Center: Data documentation for dataset 3240 (DSI-3240) hourly precipitation, NCEI [data set], https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00313/html (last access: 15 August 2022), 2003.
National Research Council: Estimating probabilities of extreme floods:
methods and recommended research, National Academy Press, Washington,
ISBN 978-0-309-03791-4, 1988.
National Research Council: Estimating Bounds on Extreme Precipitation
Events: A Brief Assessment, https://doi.org/10.17226/9195, 1994.
NCAR: NCAR/Irose-titan, GitHub [code], https://github.com/NCAR/lrose-titan/ (last access: 19 May 2022), 2019.
Nerantzaki, S. D. and Papalexiou, S. M.: Assessing extremes in hydroclimatology: A review on probabilistic methods, J. Hydrol., 605, 127302, https://doi.org/10.1016/j.jhydrol.2021.127302, 2022.
Nogueira, M.: Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over
the last 40 years: Process-based analysis of systematic and random
differences, J. Hydrol., 583, 124632, https://doi.org/10.1016/j.jhydrol.2020.124632, 2020.
Olivera, F., Asce, M., Choi, J., Kim, D., and Li, M.-H.: Estimation of
Average Rainfall Areal Reduction Factors in Texas Using NEXRAD Data, J. Hydrol. Eng., 13, 438–448, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(438), 2008.
Osborn, H., Lane, L., and Myers, V. A.: Rainfall/Watershed Relationships for
Southwestern Thunderstorms, T. ASAE, 23, 82–87, https://doi.org/10.13031/2013.34529, 1980.
Pal, S., Lee, T. R., and Clark, N. E.: The 2019 Mississippi and Missouri
River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics, Geophys. Res. Lett., 47, e2019GL086933, https://doi.org/10.1029/2019GL086933, 2020.
Pan, Z., Zhang, Y., Liu, X., and Gao, Z.: Current and future precipitation
extremes over Mississippi and Yangtze River basins as simulated in CMIP5
models, J. Earth Sci., 27, 22–36, https://doi.org/10.1007/s12583-016-0627-2, 2016.
Pavlovic, S., Perica, S., St Laurent, M., and Mejía, A.: Intercomparison of selected fixed-area areal reduction factor methods, J. Hydrol., 537, 419–430, https://doi.org/10.1016/j.jhydrol.2016.03.027, 2016.
Pereira, G. and Veiga, Á.: PAR(p)-vine copula based model for stochastic
streamflow scenario generation, Stoch. Environ. Res. Risk A., 32, 833–842,
https://doi.org/10.1007/s00477-017-1411-2, 2018.
Pérez-Alarcón, A., Coll-Hidalgo, P., Fernández-Alvarez, J. C.,
Sorí, R., Nieto, R., and Gimeno, L.: Moisture Sources for Precipitation
Associated With Major Hurricanes During 2017 in the North Atlantic Basin, J. Geophys. Res.-Atmos., 127, e2021JD035554, https://doi.org/10.1029/2021JD035554, 2022.
Rabalais, N. N., Turner, R. E., Wiseman Jr., W. J., and Dortch, Q.:
Consequences of the 1993 Mississippi River flood in the Gulf of Mexico, Regul. Rivers: Res. Manage., 14, 161–177,
https://doi.org/10.1002/(SICI)1099-1646(199803/04)14:2<161::AID-RRR495>3.0.CO;2-J, 1998.
Rakhecha, P. R. and Clark, C.: Revised estimates of one-day probable maximum
precipitation (PMP) for India, Meteorol. Appl., 6, 343–350,
https://doi.org/10.1017/s1350482799001280, 1999.
Restrepo-Posada, P. J. and Eagleson, P. S.: Identification of independent
rainstorms, J. Hydrol., 55, 303–319, https://doi.org/10.1016/0022-1694(82)90136-6, 1982.
Roderick, T. P., Wasko, C., and Sharma, A.: An Improved Covariate for
Projecting Future Rainfall Extremes?, Water Resour. Res., 56, e2019WR026924, https://doi.org/10.1029/2019WR026924, 2020.
Rousseau, A. N., Klein, I. M., Freudiger, D., Gagnon, P., Frigon, A., and
Ratté-Fortin, C.: Development of a methodology to evaluate probable
maximum precipitation (PMP) under changing climate conditions: Application
to southern Quebec, Canada, J. Hydrol., 519, 3094–3109,
https://doi.org/10.1016/j.jhydrol.2014.10.053, 2014.
Salvadori, G. and De Michele, C.: On the Use of Copulas in Hydrology: Theory
and Practice, J. Hydrol. Eng., 12, 369–380, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369), 2007.
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffenbaugh, N.
S.: Multidimensional risk in a nonstationary climate: Joint probability of
increasingly severe warm and dry conditions, Sci. Adv., 4, eaau3487, https://doi.org/10.1126/sciadv.aau3487, 2018.
Schaefer, M. G.: Regional analyses of precipitation annual maxima in
Washington State, Water Resour. Res., 26, 119–131,
https://doi.org/10.1029/WR026i001p00119, 1990.
Seager, R. and Henderson, N.: Diagnostic Computation of Moisture Budgets in the ERA-Interim Reanalysis with Reference to Analysis of CMIP-Archived Atmospheric Model Data, J. Climate, 26, 7876–7901, https://doi.org/10.1175/JCLI-D-13-00018.1, 2013.
Serinaldi, F.: Dismissing return periods!, Stoch. Environ. Res. Risk A., 29, 1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2015.
Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17–36, https://doi.org/10.1016/j.advwatres.2014.12.013, 2015.
Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I.,
Hwang, Y.-T., Li, C., O'Gorman, P. A., Rivière, G., Simpson, I. R., and
Voigt, A.: Storm track processes and the opposing influences of climate
change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016.
Smith, J. A. and Baeck, M. L.: “Prophetic vision, vivid imagination”: The
1927 Mississippi River flood, Water Resour. Res., 51, 9964–9994,
https://doi.org/10.1002/2015WR017927, 2015.
Steiner, M., Houze, R. A., and Yuter, S. E.: Climatological Characterization
of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge
Data, J. Appl. Meteorol. Clim., 34, 1978–2007,
https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2, 1995.
Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., and Darden, R. W.:
Effect of bias adjustment and rain gauge data quality control on radar
rainfall estimation, Water Resour. Res., 35, 2487–2503,
https://doi.org/10.1029/1999WR900142, 1999.
Su, Y. and Smith, J. A.: An Atmospheric Water Balance Perspective on Extreme
Rainfall Potential for the Contiguous US, Water Res., 57, e2020WR028387, https://doi.org/10.1029/2020WR028387, 2021.
Sudradjat, A., Brubaker, K. L., and Dirmeyer, P. A.: Interannual variability
of surface evaporative moisture sources of warm-season precipitation in the
Mississippi River basin, J. Geophys. Res.-Atmos., 108, 8612,
https://doi.org/10.1029/2002JD003061, 2003.
Svensson, C. and Jones, D.: Review of methods for deriving area reduction
factors, J. Flood Risk Manage., 3, 232–245, https://doi.org/10.1111/j.1753-318X.2010.01075.x, 2010.
Thorndahl, S., Nielsen, J. E., and Rasmussen, M. R.: Estimation of Storm-Centred Areal Reduction Factors From Radar Rainfall for Design in
Urban Hydrology, Water, 11, 263–266, https://doi.org/10.3390/w11061120, 2019.
Toride, K., Iseri, Y., Warner, M. D., Frans, C. D., Duren, A. M., England,
J. F., and Kavvas, M. L.: Model-Based Probable Maximum Precipitation
Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric
Rivers?, J. Hydrometeorol., 20, 2383–2400, https://doi.org/10.1175/JHM-D-19-0039.1, 2019.
Troutman, B. M. and Karlinger, M. R.: Regional flood probabilities, Water
Resour. Res., 39, 1095, https://doi.org/10.1029/2001WR001140, 2003.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data, Solar Energy, 164, 339–354, https://doi.org/10.1016/j.solener.2018.02.059, 2018.
USACE: Storm rainfall in the United States, US Govt. Print. Off., https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/7347/ (last access: 17 May 2022), 1945.
Vernieuwe, H., Vandenberghe, S., De Baets, B., and Verhoest, N.: A continuous rainfall model based on vine copulas, Hydrol. Earth Sys. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, 2015.
Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.: Rainfall and sampling uncertainties: A rain gauge perspective, J. Geophys. Res.-Atmos., 113, D11102, https://doi.org/10.1029/2007JD009214, 2008.
Vose, R., Applequist, S., Squires, M., Durre, I., Menne, M., Williams Jr., C., Fenimore, C., Gleason, K., and Arndt, D.: Gridded 5 km GHCN-daily temperature and precipitation dataset (nCLIMGRID) version 1, NOAA [data set], http://datadiscoverystudio.org/geoportal/rest/metadata/item/c01f625b48b14c5d8031a76a9de2b45a/html (last access: 6 April 2022), 2014,
Walshaw, D.: Generalized Extreme Value Distribution, in: Encyclopedia of
Environmetrics, John Wiley & Sons, Ltd, https://doi.org/10.1002/9780470057339.vae062.pub2, 2013.
Weather Bureau: Manual for Depth-Area-Duration analysis of storm precipitation, Cooperative Studies Section, Division of Climatological and Hydrolic Services, https://books.google.com/books?id=7-Q3lWenPPoC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (last access: 17 May 2022), 1946.
Wilson, L. L. and Foufoula-Georgiou, E.: Regional Rainfall Frequency Analysis via Stochastic Storm Transposition, J. Hydraul. Eng., 116, 859–880,
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:7(859), 1990.
World Meteorological Organization: Manual on estimation of probable maximum
precipitation (PMP), https://damfailures.org/wp-content/uploads/2020/10/WMO-1045-en.pdf
(last access: 2 July 2021), 2009.
Wright, D. B., Smith, J. A., Villarini, G., and Baeck, M. L.: Estimating the
frequency of extreme rainfall using weather radar and stochastic storm
transposition, J. Hydrol., 488, 150–165, https://doi.org/10.1016/j.jhydrol.2013.03.003, 2013.
Wright, D. B., Smith, J. A., and Baeck, M. L.: Critical examination of area
reduction factors, J. Hydrol. Eng., 19, 769–776, 2014.
Wright, D. B., Yu, G., and England, J. F.: Six decades of rainfall and flood
frequency analysis using stochastic storm transposition: Review, progress,
and prospects, J. Hydrol., 585, 124816, https://doi.org/10.1016/j.jhydrol.2020.124816, 2020.
Xiong, L., Yu, K., and Gottschalk, L.: Estimation of the distribution of
annual runoff from climatic variables using copulas, Water Resour. Res., 50, 7134–7152, https://doi.org/10.1002/2013WR015159, 2014.
Xu, P., Wang, D., Singh, V. P., Lu, H., Wang, Y., Wu, J., Wang, L., Liu, J.,
and Zhang, J.: Multivariate Hazard Assessment for Nonstationary Seasonal
Flood Extremes Considering Climate Change, J. Geophys. Res.-Atmos., 125,
e2020JD032780, https://doi.org/10.1029/2020JD032780, 2020.
Yang, X., Xie, X., Liu, D. L., Ji, F., and Wang, L.: Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region, Adv. Meteorol., 2015, e563629, https://doi.org/10.1155/2015/563629, 2015.
Yu, G., Wright, D. B., and Holman, K. D.: Connecting Hydrometeorological
Processes to Low-Probability Floods in the Mountainous Colorado Front Range,
Water Resour. Res., 57, e2021WR029768, https://doi.org/10.1029/2021WR029768, 2021.
Zhang, Q., Ye, J., Zhang, S., and Han, F.: Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources: Ground-Based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data, J. Sensors, 2018, e3428303, https://doi.org/10.1155/2018/3428303, 2018.
Zhou, Z., Smith, J. A., Wright, D. B., Baeck, M. L., Yang, L., and Liu, S.:
Storm Catalog-Based Analysis of Rainfall Heterogeneity and Frequency in a
Complex Terrain, Water Resour. Res., 55, 1871–1889, https://doi.org/10.1029/2018WR023567, 2019.
Zhu, L., Quiring, S. M., and Emanuel, K. A.: Estimating tropical cyclone
precipitation risk in Texas, Geophys. Res. Lett., 40, 6225–6230,
https://doi.org/10.1002/2013GL058284, 2013.
Zhuang, J., Dussin, R., Jüling, A., and Rasp, S.: xESMF: Universal Regridder for Geospatial Data, Zenodo [code], https://doi.org/10.5281/zenodo.1134365, 2020.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
We present a new approach to estimate extreme rainfall probability and severity using the...