Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5241-2022
https://doi.org/10.5194/hess-26-5241-2022
Research article
 | 
20 Oct 2022
Research article |  | 20 Oct 2022

A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance

Yuan Liu and Daniel B. Wright

Data sets

ERA5 hourly data on single levels from 1959 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.adbb2d47

Gridded 5 km GHCN-daily temperature and precipitation dataset (nCLIMGRID) version 1 R. Vose, S. Applequist, M. Squires, I. Durre, M. Menne, C. Williams Jr., C. Fenimore, K. Gleason, and D. Arndt http://datadiscoverystudio.org/geoportal/rest/metadata/item/c01f625b48b14c5d8031a76a9de2b45a/html

GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06 G. Huffman, E. Stocker, D. Bolvin, E. Nelkin, and J. Tan https://doi.org/10.5067/GPM/IMERG/3B-HH/06

Data documentation for dataset 3240 (DSI-3240) hourly precipitation National Climatic Data Center https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00313/html

Model code and software

STARCH (Storm Tracking And Regional CHaracterization) Y. Liu and D. Wright https://doi.org/10.5281/zenodo.7091017

VineCopula: Statistical Inference of Vine Copulas T. Nagler, U. Schepsmeier, J. Stoeber, E. C. Brechmann, B. Graeler, T. Erhardt, C. Almeida, A. Min, C. Czado, M. Hofmann, M. Killiches, H. Joe, and T. Vatter https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf

NCAR/Irose-titan NCAR https://github.com/NCAR/lrose-titan/

xESMF: Universal Regridder for Geospatial Data J. Zhuang, R. Dussin, A. Jüling, and S. Rasp https://doi.org/10.5281/zenodo.1134365

Download
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.