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Abstract. Conventional rainfall frequency analysis faces
several limitations. These include difficulty incorporating
relevant atmospheric variables beyond precipitation and lim-
ited ability to depict the frequency of rainfall over large areas
that is relevant for flooding. This study proposes a storm-
based model of extreme precipitation frequency based on the
atmospheric water balance equation. We developed a storm
tracking and regional characterization (STARCH) method to
identify precipitation systems in space and time from hourly
ERA5 precipitation fields over the contiguous United States
from 1951 to 2020. Extreme “storm catalogs” were created
by selecting annual maximum storms with specific areas and
durations over a chosen region. The annual maximum storm
precipitation was then modeled via multivariate distributions
of atmospheric water balance components using vine cop-
ula models. We applied this approach to estimate precipita-
tion average recurrence intervals for storm areas from 5000
to 100 000 km2 and durations from 2 to 72 h in the Missis-
sippi Basin and its five major subbasins. The estimated pre-
cipitation distributions show a good fit to the reference data
from the original storm catalogs and are close to the esti-
mates from conventional univariate GEV distributions. Our
approach explicitly represents the contributions of water bal-
ance components in extreme precipitation. Of these, water
vapor flux convergence is the main contributor, while precip-
itable water and a mass residual term can also be important,
particularly for short durations and small storm footprints.
We also found that ERA5 shows relatively good water bal-
ance closure for extreme storms, with a mass residual on av-
erage 10 % of precipitation. The approach can incorporate
nonstationarities in water balance components and their de-
pendence structures and can benefit from further advance-
ments in reanalysis products and storm tracking techniques.

1 Introduction

The probability of extreme rainfall is of great interest and
importance in flood risk estimation and management (e.g.,
Koutsoyiannis et al., 1998; Langousis et al., 2009; Ner-
antzaki and Papalexiou, 2022; Troutman and Karlinger,
2003). Standard practice is to fit a univariate probability dis-
tribution to either the largest rainfall observations each year
(an annual maxima series) or the rainfall values that exceed
a high threshold (a peaks-over-threshold or partial duration
series (Coles, 2001; Madsen et al., 1997; Miniussi et al.,
2020). In either case, the rainfall series corresponds to a
given duration (e.g., 1, 24 h, etc.) and spatial scale. The lat-
ter is usually the sampling orifice of a rain gauge (roughly
0.1 m2), although larger spatial scales are within reach via
techniques such as area reduction factors (ARF; e.g., Durrans
et al., 2002), spatial interpolation (e.g., Yang et al., 2015),
and stochastic storm transposition (Wright et al., 2013). The
resulting probability distributions are then used to extrapo-
late tail quantiles such as the 100-year average recurrence
interval (ARI) storm, which has a 0.01 annual exceedance
probability. Though such approaches have proved extremely
useful through decades of research and practice, they are not
without limitations. To motivate this study, we highlight two
such shortcomings here.

First, relying exclusively on rainfall observations – as op-
posed to using atmospheric and land surface processes and
variables that contribute to rainfall – can preclude knowledge
and measurements that could be informative for precipita-
tion frequency analysis (Katz et al., 2002; Klemeš, 1993).
This contrasts with techniques that estimate probable maxi-
mum precipitation – widely used in flood hazard analyses for
major dams and nuclear facilities – which for decades have
considered concepts and measurements of atmospheric water
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vapor storage and transport (e.g., Chen and Bradley, 2006;
Rakhecha and Clark, 1999; Rousseau et al., 2014; World
Meteorological Organization, 2009), and have recently ex-
panded to dynamic atmospheric simulations (e.g., Alaya et
al., 2018; Lee and Kim, 2018; Toride et al., 2019). To over-
come this limitation, some recent rainfall frequency studies
have attempted to use rainfall-related variables (e.g., sea sur-
face temperature and dew point temperature) and changes
in large-scale weather systems as predictors of rainfall fre-
quency and its changes (see, e.g., Kunkel et al., 2020; Rod-
erick et al., 2020a).

Second, while a single rain gauge can provide local ob-
servations that lead to ready-to-use quantile estimates (e.g.,
for flood hazard modeling), it severely restricts the number
of extremes and cannot represent areal maxima over a large
region. This is because much of the instrumental record at a
gauge consists of local and smaller events, which have lim-
ited value for understanding rarer and more extreme storms
at large scales (e.g., Durrans et al., 2002; Steiner et al.,
1999; Svensson and Jones, 2010). While this shortcoming
can be ameliorated using regionalization techniques that uti-
lize multiple nearby gauges (e.g., Dawdy et al., 2012; Schae-
fer, 1990), these gauge-based analyses still struggle to repre-
sent precipitation areal maxima due to rain gauges’ limited
sampling area (Matsoukas et al., 1999; Villarini et al., 2008)
and the complexity of storm spatiotemporal extents (Efstra-
tiadis et al., 2014; Krajewski, 1987).

In this study, we present an alternative approach for rain-
fall frequency analysis that addresses these two aforemen-
tioned limitations. Here, we highlight two key features of our
approach:

– First, our approach integrates a more physically detailed
(albeit still highly simplified) rainfall-producing pro-
cess. Specifically, we consider the atmospheric water
balance equation, in which the change of water vapor
storage within a control volume is balanced by water
vapor flux in and out – namely precipitation, evapo-
transpiration, and water vapor flux convergence (Brad-
bury, 1957; Banacos and Schultz, 2005; Su and Smith,
2021). Due to mass conservation, precipitation can be
modeled as a combination of the remaining components
that jointly form a multivariate distribution (Alaya et
al., 2020; Klemeš, 1993; Gao et al., 2005). Previous
multivariate precipitation modeling of precipitation fre-
quency can be seen in De Michele and Salvadori (2003),
Jun et al. (2017), and Salvadori and De Michele (2007),
but these focused on joint modeling of “precipitation
dimensions” (e.g., rainfall intensity, volume, and dura-
tion) rather than the atmospheric water balance. Here,
we use vine copulas to represent this multivariate dis-
tribution by decomposing it into bivariate dependence
structures and marginal distributions (Aas et al., 2009).
Applications of vine copula models have been seen
in risk analysis (Bevacqua et al., 2017; Sarhadi et al.,

2018; Xiong et al., 2014), rainfall simulation (Gyasi-
Agyei and Melching, 2012; Vernieuwe et al., 2015), and
streamflow modeling (Pereira and Veiga, 2018), but to
the best of our knowledge, no study has applied vine
copulas to extreme rainfall frequency analysis.

– Second, our approach is “storm-centered” (Chang et al.,
2016; Li et al., 2020; National Research Council, 1988,
1994) rather than gauge-centered. We use storm track-
ing methods to identify and follow two-dimensional
rainfall systems (i.e., storm objects) in space and time
within a land–atmosphere reanalysis dataset. These
storm objects, particularly their high-rainfall areas, are
considered as control volumes to compute the atmo-
spheric water balance for multivariate modeling. Our
“storm-centered” approach has three main properties:
(1) unlike gauge-centered approaches (Restrepo-Posada
and Eagleson, 1982), we can identify all major storms
over a region. (2) We can examine precipitation fre-
quency and drivers over user-defined areas, rather than
over the spatial scale of a rain gauge orifice. This fur-
ther allows us to derive “storm-centered” depth–area–
duration (DAD) relationships and ARIs over a region.
Specifically, based on areal precipitation extracted from
storm objects, we can characterize how precipitation es-
timates change with storm area, given a certain ARI and
storm duration. (3) The ARIs estimated by our approach
represent the frequency of extreme storms within a cho-
sen region. Such ARIs should be interpreted differently
from those in traditional gauge-based analysis that rep-
resent local precipitation frequencies. The last two prop-
erties are discussed in more detail in Sect. 5. Previous
“storm-centered” studies have investigated precipitation
properties based on observations and model simulations
(e.g., Chang et al., 2016; Davis et al., 2006; Hoskins and
Hodges, 2002; Pérez-Alarcón et al., 2022; Shaw et al.,
2016). Though there has been long-standing recogni-
tion that storm-centered methods hold some advantages
over gauge-based methods in rainfall frequency analysis
(e.g., National Research Council, 1994), far fewer stud-
ies have explored the topic (see Wright et al., 2020 for
recent review and discussion).

The objective of this study is to develop an alternative
approach for extreme precipitation frequency, by integrat-
ing storm tracking with a multivariate vine copulas model
of atmospheric water balance. The approach allows an ex-
plicit representation of the dependencies between rainfall-
contributing components. It also highlights some of the
strengths and limitations of using reanalysis and other atmo-
spheric simulations to study extreme rainfall and its drivers.
We use the approach to investigate the frequencies and char-
acteristics of major storms in the Mississippi Basin and its
five major subbasins. The remainder of the paper is organized
as follows: Sect. 2 describes the study basin and datasets.
Section 3 details the proposed methods for storm identifica-
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Table 1. Descriptions of used ERA5 variables.

ERA5 variable Symbol Description Unit

Mean total precipitation rate P Precipitation rate at the earth’s surface. mm h−1

Mean evaporation rate E Evapotranspiration rate to the atmosphere from the mm h−1

Earth’s surface.

Mean vertically integrated ∇ ·Q Divergence of the vertically integrated water vapor flux. mm h−1

moisture flux divergence The moisture flux divergence in ERA5 includes cloud
liquid and cloud ice, but their values are negligible.

Total column water vapor W Total precipitable water, the total amount of water vapor mm
from the Earth’s surface to the top of the troposphere.

tion and multivariate modeling. Results are shown in Sect. 4,
followed by discussion in Sect. 5. Conclusions are provided
in Sect. 6.

2 Study site and datasets

2.1 Study site

The study site is the Mississippi River Basin, located in
the central United States with a drainage area of over
3 220 000 km2 and consisting of five major subbasins:
the Arkansas-Red, Missouri, Upper Mississippi, Ohio-
Tennessee, and Lower Mississippi (Fig. 1). With abundant at-
mospheric moisture supply from the Gulf of Mexico and the
Pacific (e.g., Benedict et al., 2020; Smith and Baeck, 2015),
the Mississippi Basin has experienced multiple major storm-
induced flood events in recent decades, including in 1993,
2011, and 2019 (Allison et al., 2013; Pal et al., 2020; Ra-
balais et al., 1998). These caused major socio-economic im-
pacts throughout the basin (Mutel, 2010; Myers and White,
1993). Previous studies have shown links between extreme
storms and anomalously large atmospheric water vapor trans-
port (Holman and Vavrus, 2012; Su and Smith, 2021; Su-
dradjat et al., 2003) and high precipitable water (Kim et al.,
2022; Kunkel et al., 2020b) in the basin.

2.2 Datasets

ERA5 Reanalysis was used to identify storms and to com-
pute atmospheric moisture components. This dataset, pro-
duced by the European Center for Medium-Range Weather
Forecasting (ECMWF), provides hourly estimates of global
climate variables on a 0.25◦ grid from 1950 to the present
(Hersbach et al., 2020). Studies have shown that ERA5 has
improved performance over its predecessor ERA-Interim due
to advances in numerical schemes, data assimilation systems,
and spatiotemporal resolution (Beck et al., 2019; Urraca et
al., 2018; Zhang et al., 2018). In this study, we used 70 years
of ERA5 hourly data from 1951 to 2020 over the contigu-

Figure 1. Mississippi Basin, including (1) Arkansas-Red, (2) Mis-
souri, (3) Upper Mississippi, (4) Ohio-Tennessee, and (5) Lower
Mississippi subbasins. Blue shading denotes the domain over which
storm tracking was applied (24–52◦ N, 60–130◦W).

ous United States (24–52◦ N, 60–130◦W). The names and
descriptions of the variables used are shown in Table 1.

Meanwhile, Integrated Multi-satellite Retrievals for
Global precipitation measurement (IMERG) data from 2001
to 2019 were used to validate storm tracking results. IMERG
surface precipitation rates are estimated globally on a 30 min
0.1◦ scale using a constellation of satellite-based passive mi-
crowave and infrared sensors (Huffman et al., 2019); the
Final Run version of IMERG V06B used here incorpo-
rates monthly gauge-based bias correction. We aggregated
IMERG to the hourly scale and used a conservative method
from the Python package “xESMF” (Zhuang et al., 2020) to
regrid IMERG to 0.25◦ grid to match the boundary and spa-
tial resolution of ERA5.
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Figure 2. Process of the storm tracking and regional characterization method (STARCH). (a) ERA5 precipitation at 11:00 UTC on 25 Oc-
tober 2015; (b) identified storms after high threshold filtering (0.5 mm h−1) and almost-connected component labeling; each color denotes
one storm object; (c) identified storms after growing to low threshold boundaries (0.03 mm h−1); (d) example of storm tracking. Dashed
(solid) lines denote storm locations at 10:00 (11:00) UTC on 25 October 2015; (e) selected storm object (red) with 50 000 km2 area and 24 h
duration (11:00 UTC on 25 October to 10:00 UTC on 26 October 2015). Background colors denote the total precipitation in the 24 h period.

3 Methodology

3.1 Storm tracking and regional characterization
method (STARCH)

To identify and analyze regional extreme storm events in
the Mississippi Basin we developed the storm tracking
and regional characterization method (STARCH, publicly
available at https://github.com/lorenliu13/starch, last access:
18 September 2022). The method is a novel combination
of two prior storm tracking algorithms: (1) double-threshold
identification from the Thunderstorm Identification, Track-
ing, Analysis, and Nowcasting (TITAN) algorithm (Dixon
and Wiener, 1993) and (2) “almost-connected component la-
beling” from the Storm Tracking and Evaluation Protocol
(STEP; Chang et al., 2016). An area–duration selection al-
gorithm is also developed to search storms with user-defined
duration and area. STARCH can not only track storms based
on successive two-dimensional precipitation fields but can
also create catalogs of extreme storm events with specific ar-
eas and durations within a chosen region. The method, sum-
marized graphically in Fig. 2, consists of four key steps:

– Step 1 – storm identification: individual storm objects
within a precipitation field were identified at a sin-

gle time step. First, an initial threshold of 0.5 mm h−1

was applied to the precipitation field to identify storm
regions. Second, almost-connected-component labeling
classified closely distributed precipitating regions as a
single storm (Fig. 2b). This labeling algorithm used a
circular morphing structure with radius Rm to erode
and dilate precipitating regions, clustering small re-
gions with nearby larger ones (more details on almost-
connected labeling can be found in Chang et al., 2016).
Lastly, the identified storm objects were morpholog-
ically “grown” to a low threshold boundary of 0.03
mm h−1 (Fig. 2c). The combination of two thresholds
with the almost-connected component labeling algo-
rithm can accurately identify individual storms while
preserving original storm structures. Since a storm sys-
tem can consist of multiple separated precipitation re-
gions, using a single threshold usually results in either
too many isolated objects or too few overly-large storms
(Steiner et al., 1995). A high threshold within the la-
beling algorithm can help associate high-precipitation
storm centers with nearby low-precipitation areas. After
that, growing to a low boundary preserves more precip-
itation grids and can thus better represent the original
storm spatial structures. The high and low thresholds
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were chosen through visual inspection and trial and er-
ror.

– Step 2 – storm tracking: in this step, storms were tracked
across time steps using the overlapping ratio method
(NCAR, 2019). For storm i in current time step t1 and
storm j in previous time step t0, the overlapping ratio R
is the sum of the proportions of the overlapping area to
the two storm areas:

R(t1, i,j)=
A

Ai (t1)
+

A

Aj (t0)
, (1)

where R(t1, i,j)⊂ [0,2] is the overlapping ratio, A is
the overlapping area between storm i and storm j ,
Ai(t1) is the area of storm i at time step t1, andAj (t0) is
the area of storm j at time step t0; all the areas are mea-
sured by pixels. If two storm objects from Step 1 have a
sufficiently high threshold value of R, they are deemed
to be a single storm and tracked as such; otherwise, the
more recent object is labeled as a new storm. If multi-
ple possible matches are found between current storms
and the previous storm, the two having the highest R
are tracked. Based on visual inspection, two consecutive
storm objects should generally have R > 0.3, whereas
two unrelated objects should have a value around 0. We
selected an R threshold of 0.3 based on visual inspec-
tion and trial and error. An example of storm tracking is
shown in Fig. 2d.

– Step 3 – area–duration selection: the third step is to ex-
tract extreme precipitation events of desired duration D
and area A for each subbasin based on the storms iden-
tified in Steps 1 and 2. A storm was deemed to have
occurred in a subbasin if its area within that subbasin
exceeds 2500 km2 (about 5 ERA5 pixels) or its average
precipitation over the subbasin exceeded 0.1 mm h−1.
For such a storm in the subbasin, we extracted the D-
hour period during which the storm had the highest to-
tal precipitation over the subbasin. Within that extracted
period, we applied an area selection algorithm to find a
contiguous region of area A that has the highest precip-
itation in the subbasin. To do this, a binary search was
implemented to find a precipitation threshold whose
corresponding contour area on the total precipitation
map is close to but less than the desired area A. We be-
gan with a threshold at the midrange of the precipitation
interval, i.e., (maximum+minimum)/2 and computed
the contour areas, i.e., areas of precipitation regions
above the threshold. The largest contour area was com-
pared with the desired area A. If the contour area was
less than A, we narrowed the precipitation interval to
the lower half, i.e., from the minimum to the midrange.
Otherwise, we narrowed the interval to the upper half.
We then repeatedly calculated the midrange of the new
interval as the next threshold and compared the contour

Table 2. Parameter settings used in STARCH.

Precipitation Morph High Low Overlapping
dataset radius threshold threshold ratio

Rm (mm h−1) (mm h−1) threshold
(pixel) (–)

ERA5 4 0.5 0.03 0.3
IMERG 6 0.3 0 0.3

area with the desired area A. All the thresholds and as-
sociated contour areas were recorded throughout the it-
erations. The binary search stops if the difference be-
tween the contour area and desired area is less than one
pixel, or the selected contour area does not change in
three consecutive iterations. From the search record, we
found a threshold with a contour area that is close to
but less than the desired area A. Thereafter, the area se-
lection algorithm recursively expands and recalculates
the contour by one pixel at a time until the difference
between the contour area and area A is less than one
pixel. An example of the area–duration selection result
of a storm event of 24 h and 50 000 km2 in the Lower
Mississippi Basin is shown in Fig. 2e.

– Step 4 – storm catalog generation: the final step is to
quantify storm characteristics and build annual max-
imum “storm catalogs”. For each storm selected in
Step 3, we computed the storm area, duration, centroid
speed, bearing (clockwise direction for north of centroid
movement), and atmospheric water balance components
(described below in Sect. 3.2). The annual maximum
storm catalogs were created by collecting the largest
storm each year with areaA and durationD for the Mis-
sissippi Basin and each subbasin.

STARCH was applied to ERA5 from 1951 to 2020 and
IMERG from 2001 to 2019 using the parameters from Ta-
ble 2. Since the precipitation patterns in IMERG are some-
what more scattered than those in ERA5, we increased
the morphing structure radius and reduced the precipitation
thresholds to avoid overly isolated storm regions. The same
overlapping ratio threshold was used for both datasets. Af-
terward, the area–duration selection was applied to ERA5
storms for the five subbasins and the whole Mississippi
Basin. Values of storm area A were 5000, 25 000, 50 000,
and 100 000 km2, and values of storm duration D were 2, 6,
12, 24, 48, and 72 h. This combination of areas and durations
resulted in 24 annual maximum storm catalogs for each sub-
basin and 144 cases in total.

3.2 Atmospheric water balance

This study treats each storm area identified by STARCH as
a control volume for computing a vertically integrated atmo-
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spheric water balance (Su and Smith, 2021), which can be
written as

∂W

∂t
= E−P −∇ ·Q, (2)

whereW is total precipitable water (mm), E is evapotranspi-
ration to the atmosphere from the Earth’s surface (mm h−1,
positive if directed upward, i.e., entering the storm control
volume), P is precipitation (mm h−1, positive if directed
downward); ∇ ·Q is the divergence of the vertically inte-
grated water vapor flux vector (mm h−1, negative ∇ ·Q in-
dicates convergence of water vapor into the storm). Equa-
tion (2) relates the temporal change in precipitable water to
land surface evapotranspiration, precipitation from the atmo-
sphere, and water vapor flux convergence;W , in units of mm,
is defined as

W =

zt∫
0

ρv(z)dz, (3)

where ρv(z) is the water vapor density (kg m−3), and zt is the
height of the troposphere above ground level. The divergence
term is based on the vertically integrated water vapor flux
vector Q= (Qx,Qy), defined as

Qx =

zt∫
0

ρv(z)u(z)dz, (4)

Qy =

zt∫
0

ρv(z)v(z)dz, (5)

where u(z) and v(z) are the east–west and north–south com-
ponents of the wind (m s−1), Qx and Qy have the units
of kg m−1 s−1, representing the mass flux of water vapor
across a plane of unit width in the east–west and north–south
directions, respectively, extending to the top of the tropo-
sphere.

All water balance components
(
∂W
∂t

, E, P , and ∇ ·Q) in
Eq. (2) were computed for storms in each storm catalog de-
scribed in Sect. 3.1 based on the ERA5 variables in Table 1.
The time derivative term ∂W

∂t
was computed by central dif-

ferencing the total precipitable waterW within the storm du-
ration. These components form the basis of the multivariate
extreme precipitation modeling described next.

3.3 Multivariate vine copula model

This section describes a multivariate vine copula model to
estimate the frequency of extreme precipitation based on
other atmospheric water balance components. According to
Eq. (2), precipitation can be calculated as the sum of the
evapotranspiration, water vapor flux divergence, and the time
derivative of total precipitable water. In principle, the wa-
ter balance is closed by mass conservation. However, due to

data assimilation and differencing schemes, ERA5 does not
guarantee water balance closure (see Sect. 5.1 for further dis-
cussion). Therefore, a residual error term was introduced to
Eq. (2):

P = E−∇ ·Q−
∂W

∂t
+ ε, (6)

where ε is the water balance residual (mm h−1), i.e., the dif-
ference between precipitation and the sum of remaining wa-
ter balance components.

Treating the right-hand side terms in Eq. (6) as random
variables, precipitation can be represented by a multivariate
distribution P = F

(
E,∇ ·Q, ∂W

∂t
,ε
)
. According to Sklar’s

theorem, a four-variate distribution can be expressed using
copulas and marginal distributions of random variables (Aas
et al., 2009):

F (x1,x2,x3,x4)= C (F1 (x1) ,F2 (x2) ,F3 (x3) ,F4 (x4)), (7)

where F(·) is the joint cumulative distribution func-
tion (CDF), F1(x1) · · ·F4(x4) represent the marginal CDFs of
the components on the right-hand side of Eq. (6), andC is the
copula describing the dependence structure between those
components. The joint probability density function (PDF) of
the multivariate model p(·) can be factorized with condition-
ing:

p(x1,x2,x3,x4)=p(x1|x2,x3,x4)p (x3|x2,x4)

p (x2|x4)p (x4) , (8)

among which the conditional PDF can be rewritten with a
bivariate copula, for example:

p
(
x1,x2|xj

)
=c12|j

(
F1|j

(
x1|xj

)
,F2|j

(
x2|xj

))
p
(
x1|xj

)
p
(
x2|xj

)
, (9)

where c12|j is the copula density between x1|xj and x2|xj .
Based on Eq. (9), Eq. (8) is further decomposed into bivariate
copulas and marginal PDFs:

p(x1,x2,x3,x4)= p1 (x1)p2 (x2)p3 (x3)p4 (x4)

· c12 (x1x2)c24 (x2,x4)c43 (x4,x3) T1

· c14|2
(
x1|2,x4|2

)
c23|4

(
x2|4,x3|4

)
T2

· c13|24
(
x1|24,x3|24

)
T3. (10)

The decomposition can be illustrated by the tree structure
in Fig. 3a, where the nodes are variables and the edges are
bivariate copulas; T1, T2, and T3 are the tree levels that repre-
sent the corresponding parts of Eq. (10). This representation
of the joint PDF via bivariate copulas is called a vine copula.
Vine copulas hold advantages for high-dimension modeling,
since one only needs to estimate bivariate copulas and cor-
responding conditional CDFs to obtain an estimator of the
joint PDF. On the other hand, the decomposition in Eq. (8)
is not unique, leading to different possible tree structures and
necessitating model selection.
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Figure 3. (a) A vine copula tree structure for atmospheric water balance components (d = 4), where 1, 2, 3, and 4 represent water balance
components. Note that the permutation is not unique and depends on model fitting; (b) normalized bivariate copula contour plots of all pair
copulas specified in the copula tree structure in (a). The contour colors represent the copula densities.

We used the R package “VineCopula” to sequentially se-
lect vine structures and estimate copula parameters (Nagler
et al., 2021). First, the tree structure at the top level (T1) was
determined by the max spanning trees to maximize the sum
of the edge weights. The commonly used edge weight is the
absolute value of Kendall’s τ correlation coefficient between
variables on the nodes. Second, for each pair of variables,
the parameters of the bivariate copulas were estimated us-
ing maximum likelihood estimation, and the best bivariate
copula was chosen based on the Akaike information crite-
rion. The above procedure was repeated on the next tree level
until reaching the bottom level to complete the vine copula
estimation. The marginal CDFs of the water balance com-
ponents are also required. We fitted empirical CDFs for E,
∂W
∂t

, and ε with Weibull plotting position (Dingman, 2015),
which is commonly chosen in fitting vine copulas. However,
empirical CDFs will constrain the simulated water balance
components to the maximum in the sample data, which can
lead to unrealistic upper-bounded tail behavior. To overcome
this, we fitted the divergence term∇·Q using the generalized
extreme value (GEV; e.g., Walshaw, 2013) distribution:

F(x;µ,σ,γ )= exp

{
−

[
1+ γ

(
x−µ

σ

)]− 1
γ

}
, (11)

where F(·) is the CDF of the GEV distribution, x is the
divergence term, µ ∈ (−∞,+∞) is the location parameter
measuring the central tendency of extremes, σ ∈ (0,+∞) is
the scale parameter measuring the variability of extremes;
γ ∈ (−∞,+∞) is the shape parameter that determines the

type of the GEV distribution and tail behavior. We chose the
divergence term to fit the GEV distribution because of its
dominant role in the atmospheric water balance in extreme
storms (described further in Sect. 4.4.2). The GEV distribu-
tion was estimated by the L moments method (e.g., Gubareva
and Gartsman, 2010) via the R package “extRemes” (Gille-
land and Katz, 2016). Figure 3b shows an example of a fitted
vine copula model, where each subplot is a normalized bi-
variate copula contour representing the dependence structure
between variables in Fig. 3a. The orientation of the contours
denotes positive or negative tail dependence, while the con-
tour width denotes the strength of the correlation.

For each annual maximum storm catalog described in
Sect. 3.1 (144 cases in total), we fitted an individual vine
model to the water balance components (E , ∇ ·Q, ∂W

∂t
, and

ε). The fitted model was used to simulate samples, where
each sample represents a possible combination of water bal-
ance components in an annual maximum event. “Synthetic”
precipitation annual maxima were then calculated from these
components based on Eq. (6). Model uncertainty was quan-
tified via the parametric bootstrapping method of Bevac-
qua et al. (2017) and summarized here. First, a vine copula
model was fitted based on the annual maximum storm cat-
alog (n= 70). Second, we used the fitted model to simulate
samples of size 70 and repeated 100 times (i.e., to obtain
100 bootstrap realizations). Based on each bootstrap realiza-
tion, we fitted a new vine copula model, retaining the same
vine copula structure as that fitted based on the original storm
catalog but reselecting and re-estimating the bivariate copu-
las. We used each fitted model to simulate 500 samples to

https://doi.org/10.5194/hess-26-5241-2022 Hydrol. Earth Syst. Sci., 26, 5241–5267, 2022



5248 Y. Liu and D. B. Wright: A storm-centered multivariate modeling of extreme precipitation frequency

Figure 4. Comparison of storm tracking results based on ERA5 (a–d) and IMERG (e–h) starting at 20:00 UTC on 12 October 2015. Each
tracked storm object is marked with one label and color through time.

calculate associated precipitation, equivalent to 500 years of
annual maxima. Precipitation frequency was then estimated
by the empirical CDF using the Cunnane plotting position
(Cunnane, 1978; other plotting position formulae were tested
and results were very similar):

F̂
(
x(i)

)
=
i− 0.4
n+ 0.2

, (12)

where F̂ (·) is the empirical CDF, x(i) is the ith ranked value
of precipitation, and n is the number of simulated events. An-
other way of bootstrapping is to generate bootstrap realiza-
tions (n= 70) by randomly sampling data with replacements
from the annual maximum storm catalog and to use each real-
ization to fit a vine copula model. These bootstrapping results
were not shown because the estimates were similar.

We also computed relative root mean square er-
ror (RRMSE) to measure discrepancies between simulated
and reference precipitation at the same recurrence intervals:

RRMSE=

√
1
n

n∑
i=1

(
x(i)− x

ref
(i)

)2

1
n

n∑
i=1
xref
(i)

, (13)

where xref
(i) is the ith ranked reference precipitation from

the storm catalog with recurrence interval empirically deter-
mined by the Cunnane plotting position, x(i) is the ith mean
simulated precipitation with the same recurrence interval,
and n= 70 is the size of the storm catalog.

4 Results

4.1 Storm identification and tracking

In this section, STARCH storm tracking results based on
ERA5 were compared with those from IMERG. This com-
parison is intended to validate the basic spatiotemporal prop-
erties of ERA5-simulated storm systems against observation-
based IMERG results. This was done via visual inspection
of storm tracks and comparing storm characteristics between
the two datasets for the 2001–2019 period. An example over
9 h is shown in Fig. 4. Precipitation regions in ERA5 are
generally more contiguous in space than in IMERG. Despite
some local differences, storm patterns are generally similar
between the two datasets. This is confirmed by the large-
sample comparison of the storm characteristics shown in Ta-
ble 3. The average area (maximum precipitation intensity)
of ERA5 storms is 7 % (2 %) higher than IMERG storms,
while the average speed (bearing) differs by 4 % (7 %). Dis-
crepancies in storm duration and number are slightly larger;
storms in ERA5 last 26 % longer than those in IMERG, while
the number of storms per hour is about 20 % smaller. These
differences are attributable to the intermittent precipitation
regions in IMERG, where the scattered precipitation grids
around the storm body are likely to be identified as individual
storms with a shorter duration. In summary, despite some dis-
crepancies, ERA5 storm object properties are roughly con-
sistent with a satellite-based observational dataset, lending
support to subsequent analyses that rely on ERA5-based ob-
jects.
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Table 3. Comparison of the average storm characteristic based on ERA5 and IMERG datasets from 2001 to 2019.

Max Area Duration Speed Bearing Number
intensity (km2) (h) (km h−1) (◦) (h−1)

(mm h−1)

ERA5 1.4 85 574.3 7.8 36.3 11.1 0.8
IMERG 1.3 79 466.4 5.8 37.8 10.3 1.0
Difference (%) 2 7 26 −4 7 −20

Figure 5. Q–Q plots of standardized atmospheric water balance components between vine copula simulations and reference data from the
storm catalog in the Arkansas-Red Basin with a storm area of 25 000 km2 and a duration of 2 h. The red circle denotes the mean of simulated
values with the reference data at the same percentile. Blue shading denotes the spread of simulations from bootstrapping.

4.2 Goodness-of-fit of the vine copula model

Goodness-of-fit of the vine copula models was assessed by
comparing model simulations with reference data from the
annual maximum storm catalogs. Quantile–quantile (Q–Q)
plots were used to compare water balance components from
reference data against simulated values at the same quan-
tile. The simulations here were generated from 100 boot-
strap realizations with a sample size of 70. By examining
the Q–Q plots of all the 144 cases, we found that the points
of reference values and mean simulations fall approximately
on the diagonal line, indicating satisfying model fitting (see

Fig. 5 for one example). The good fitting is also supported by
Pearson’s correlation coefficients between sorted reference
data and mean simulations. The mean correlation coefficient
is 0.995 for E, 0.992 for ∇ ·Q, 0.997 for ∂W

∂t
, and 0.993 for

ε, with standard deviations of 0.005, 0.005, 0.002, and 0.007,
respectively.

We compared copula-simulated precipitation annual max-
ima against the reference ERA5 precipitation annual maxima
from each storm catalog. The ARI of the reference and sim-
ulated precipitation was estimated using the Cunnane plot-
ting position. An example of one storm catalog can be seen
in Fig. 6; a GEV distribution fitted to the ERA5 precipita-
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Figure 6. Comparison of estimated return levels of precipitation
between vine copula and GEV models in the Arkansas-Red Basin
with a storm area of 25 000 km2 and duration of 2 h.

tion annual maxima using L moments is also shown. Both
the univariate GEV and vine copula models can describe
the distribution of reference precipitation, with copula esti-
mates slightly exceeding those of the GEV – and cleaving
more closely to the reference – for recurrence intervals above
10 years. By examining all 144 storm catalogs, we found that
both vine and GEV models agree well with the empirical dis-
tributions of the reference data. Good agreement between the
model and reference data is also supported by small RRM-
SEs with a mean of 3 % and a standard deviation of 1 %, in-
dicating that the vine model can depict the dependence struc-
tures between atmospheric water balance components to gen-
erate realistic precipitation ARIs.

4.3 Recurrence interval estimates of the vine copula
model

100-year precipitation rate return levels from the vine copula
and univariate GEV models were calculated for all 144 storm
catalogs (Fig. 7; results of 10-year and 500-year return levels
are also shown in Figs. A1 and A2 in Appendix A, respec-
tively). As expected, the precipitation rate decreases with in-
creasing storm area and duration. The storm catalog for the
entire Mississippi Basin yields the overall highest precipi-
tation estimates, varying from 3.8 to 31.0 mm h−1, depend-
ing on the storm area and duration; this is to be expected
since the storm catalog consists of the most extreme storms
from all individual subbasins. The Lower Mississippi Basin
is the wettest subbasin, with precipitation ranging from 2.9 to
28.8 mm h−1. Estimates generally decrease for subbasins far-
ther away from the Gulf of Mexico’s moisture supply. The
100-year precipitation rate from the vine models agrees well
with that from the GEV, with the percentage difference on av-
erage less than 4 %. Generally, the vine model estimates are
higher than GEV for 100-year storms with durations ≤ 12 h
or area≤ 25 000 km2. The difference between the two mod-
els grows as ARI increases (see Figs. A1 and A2).

100-year DAD relationships based on vine copula esti-
mates for the Upper Mississippi Basin are shown in Fig. 8a.
At the 5000 km2 scale, the precipitation depth increases by
105 % (21 %) from 2 to 6 h (48 to 72 h). When the area grows
from 5000 to 100 000 km2, the difference between 72 and 2 h
depths reduces from 165 to 107 mm. For a fixed duration,
the depth decreases quickly between 5000 and 25 000 km2

and then slowly until reaching 100 000 km2. For 72 h storms,
the depth decreases by 41 % (210 to 124 mm) from 5000 to
100 000 km2, while for 2 h storms, the decrease is 61 % (45 to
18 mm).

Our approach can characterize the areal distributions of
storm precipitation at different frequency levels. Figure 8b
shows depth–area relationships for 24 h storms with ARIs
ranging from 2 to 500 years in the Upper Mississippi Basin.
The precipitation estimates are the highest at 5000 km2, rang-
ing from 95 mm (2-year ARI) to 155 mm (500-year ARI).
Such a difference between 2-year and 500-year depths de-
creases as the area increases. The reduction in precipitation
depth with increasing area (i.e., the slope of line segments
connecting different areas) is relatively consistent across all
ARIs. This suggests that area–depth relationships tend to be
independent of storm recurrence intervals. Similarly to other
types of statistical models of extremes, the uncertainties in-
crease with ARI (also shown in Fig. 6).

We also compared DAD relationships across subbasins.
Figure 8c and d shows the precipitation estimates for 2 and
24 h storms with 100-year ARI in the six basins. Many
of these largest storms are from the Lower Mississippi
Basin. At the 2 h duration, the overall Mississippi Basin has
depth estimates between 24 mm (100 000 km2) and 61 mm
(5000 km2), followed by the Lower Mississippi Basin rang-
ing from 21 to 57 mm. The depth in the Arkansas-Red Basin
is 57 mm at 5000 km2, dropping to 30 mm at 25 000 km2 and
18 mm at 100 000 km2. The remaining three subbasins have
similar results of 15–19 mm at 100 000 km2 and 45–50 mm
at 5000 km2.

Subbasin differences between the DAD curves are more
substantial at the 24 h duration (Fig. 8d). Akin to the 2 h du-
ration, Mississippi and Lower Mississippi Basins have simi-
lar curves and higher precipitation than the other subbasins.
The 24 h duration curves for the Arkansas-Red and Ohio-
Tennessee Basins are similar, while Missouri and Upper
Mississippi Basins are quite close. Overall, the differences
in DAD relationships indicate strong spatial heterogeneity
of extreme storms inside the Mississippi Basin, presumably
stemming from distance to significant moisture sources.

4.4 Atmospheric water balance in extreme storms

4.4.1 Magnitude of water balance components

This section provides a deeper examination of ERA5 water
balance components used in the vine copula model. ∇ ·Q
represents the water vapor supply from nearby regions. Re-
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Figure 7. Estimated 100-year precipitation rate (mm h−1) by vine copula and univariate GEV models. GEV estimates are shown in paren-
theses. The background color denotes the percentage difference between vine copula and GEV estimates.

Figure 8. Estimated DAD curves. (a) Upper Mississippi basin with 100-year ARI and different durations. (b) Upper Mississippi basin with
the duration of 24 h and different ARIs. (c) Comparison between subbasins with 2 h duration and 100-year ARI. (d) Comparison between
subbasins with 24 h duration and 100-year ARI. Markers denote the mean precipitation depth with the specific area. Shading denotes the
spread of model estimates.
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call that a negative value – which is the case in all cata-
logs – indicates that water vapor is moving into the storm
(i.e., convergence). The divergence term has the highest
magnitude, indicating its central role in extreme precipita-
tion (Fig. 9a). The mean (standard deviation) of divergence
decreases from −9.1 to −3.5 mm h−1 (6.7 to 1.9 mm h−1)
with increasing area and decreases from −12 to −2 mm h−1

(5.5 to 0.6 mm h−1) with increasing duration, reflecting the
reality that very high rates of water vapor inflow cannot be
sustained over large areas or long periods.

The sum of ∂W
∂t

and ε constitute an average of 17 % of
precipitation, with some cases reaching as high as 35 %;
∂W
∂t

is negative in most cases (Fig. 9b), indicating that wa-
ter vapor is “lost” to precipitation. The term does not vary
with storm area, remaining around 0.3 mm h−1. However, the
mean (standard deviation) of ∂W

∂t
does decrease with dura-

tion, from −0.6 (0.4) mm h−1 at 2 h to −0.08 (0.02) mm h−1

at 72 h. For longer durations, the mean approaches zero,
which is consistent with the expectation of the long-term at-
mospheric water balance (Gutenstein et al., 2021).

As mentioned in Sect. 3.3, the residual ε is introduced
to compensate for the imperfect closure of atmospheric wa-
ter balance in ERA5. Most residual terms are negative, in-
dicating that the sum of E, ∇ ·Q, and ∂W

∂t
tends to be

higher than ERA5 precipitation. The residual constitutes
10 % of the precipitation on average. As shown in Fig. 9c,
ε is the highest at 5000 km2, with a mean (standard de-
viation) of −1.6 (1.6) mm h−1. The mean (standard devia-
tion) decreases to −0.2 (0.2) mm h−1 at 100 000 km2. The
residual also decreases with increasing duration. For 2 h
storms, the mean (standard deviation) is −1.6 (1.6) mm h−1,
while for 72 h storms, the mean (standard deviation) is
−0.12 (0.09) mm h−1.

Contrary to long-term water balances (Berrisford et al.,
2011; Gutenstein et al., 2021), the evapotranspiration term
for extreme storms is small at around 3 % of precipitation
(Fig. 9d). The mean of the evapotranspiration rate decreases
from 0.12 to 0.09 mm h−1 with increasing area, and the stan-
dard deviation decreases from 0.08 to 0.03 mm h−1 (though
the median is relatively constant with area). There is no clear
relationship between E and storm duration.

4.4.2 Dependency structure of moisture balance
components

Kendall’s τ nonparametric rank correlation coefficients
(Abdi, 2007) were computed between all water balance com-
ponents for each of the 144 storm catalogs. The means
and standard deviations of these correlations are shown in
Table 4. The strongest correlation of −0.64 is found be-
tween divergence and precipitation. The divergence term also
shows a relatively strong correlation of 0.42 with the resid-
ual term. Evapotranspiration is unrelated to the other com-
ponents, with mean correlations less than 0.1. The corre-
lations between the time derivative term and the residual

Table 4. The mean and standard deviation (in parenthesis) of
Kendall’s τ correlation coefficients between water balance com-
ponents. For each of the 144 storm catalogs, Kendall’s τ correla-
tion coefficient was computed between two components; the means
and standard deviations shown here were obtained from Kendall’s τ
from all the storm catalogs.

E ∇ ·Q ∂W
∂t

ε P

E – −0.03 0.01 −0.04 0.09
(0.14) (0.11) (0.09) (0.16)

∇ ·Q – −0.19 0.42 −0.64
(0.12) (0.11) (0.12)

∂W
∂t

– 0.07 −0.05
(0.12) (0.09)

ε – −0.23
(0.12)

P –

(precipitation) are also very weak, with average coefficients
of 0.07 (−0.05), respectively. We repeated this correlation
analysis based on vine copula model simulations, finding
very similar results to Table 4 (results not shown).

We further examined how correlations between water va-
por components depend on storm area and duration (Fig. 10).
The average correlation coefficient between the divergence
and time derivative term increases with storm area (Fig. 10a),
while exhibiting a more complex pattern for duration – in-
creasing from 0.21 at 2 h to 0.24 at 24 h and then decreasing
to 0.15 at 72 h (Fig. 10b). For the divergence and the residual
terms, the mean correlation drops from 0.5 to 0.34 with in-
creasing area and from 0.46 to 0.35 with increasing duration.
The average correlation between the divergence and precipi-
tation terms decreases from 0.69 to 0.58 with increasing area
while rising from 0.49 at 2 h duration to 0.75 at 72 h dura-
tion. The average correlation between the time derivative and
residual terms shows a modest reduction from 0.13 to 0.08
with increasing area, and a larger drop, from 0.29 to 0.17,
with increasing duration. The average correlation between
residual and precipitation terms drops from 0.29 to 0.17 with
increasing area, while it increases from 0.18 at 2 h to 0.27
at 24 h and drops to 0.23 at 72 h duration. In short, there are
complex relationships among water balance components that
depend on storm spatiotemporal scale and cannot be ignored
in any attempt at modeling their joint roles in extreme pre-
cipitation.

The correlation analyses shown in Table 4 and Fig. 10
are imperfect representations of the dependency structure
between water balance components, since correlation coef-
ficients distill bivariate distributions into a single number.
The vine copula, on the other hand, can capture such struc-
tures. More detailed relationships can be seen by plotting
the simulation results from the vine copula model. Figure 11
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Figure 9. Boxplots of the average water balance components. Points show the average of the water balance components from each storm
catalog, with colors denoting storm durations.

Figure 10. The absolute values of correlation coefficient τ between water vapor components according to (a) area and (b) duration. Points
are the absolute values of τ based on each of the annual maximum storm catalogs. Diamonds show the mean of all the computed τ ; error
bars show the 95 % confidence interval of the mean.

shows an example – the 25 000 km2, 2 h storm catalog for the
Arkansas-Red Basin. The lower portion of the plot shows the
conditional distribution of one water balance component for
a fixed value of a second component, with the red line show-
ing the median and the shaded contours denoting deciles.
Nonlinear relationships can be seen in ε vs. ∇ ·Q, ε vs. ∂W

∂t
,

and ε vs. P . Note that the correlation coefficients for ∂W
∂t

vs. ε and ∂W
∂t

vs. P are 0.30 and −0.23, respectively, which
is much higher than the averages of 0.07 and −0.05 from
Table 3. This highlights that considerable variability exists in
the dependency relationships across the many storm catalogs,
linked to storm region, area, and duration.

The histograms along the diagonal show the marginal dis-
tributions of each water balance component used in the vine
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Figure 11. Bivariate dependency structure of simulated atmospheric water balance components from the 25 000 km2, 2 h duration storm
catalog for the Arkansas-Red Basin. Histograms along the diagonal show the marginal distributions of the individual components. Panels
below and left of the diagonal show variation in copula simulations of one water balance component conditioned on another component, with
the red line denoting conditional median and blue shading denoting deciles. Panels above and to the right of the diagonal shows Kendall’s τ
correlation coefficients between components.

copula model; the divergence term’s histogram is smooth due
to the use of a GEV marginal distribution, while the other
three components used empirical CDFs. We used empirical
CDFs for the remaining variables to reduce additional pa-
rameters and errors introduced by fitting parametric distribu-
tions; this is common practice in vine copula modeling. How-
ever, empirical CDFs can constrain the simulated variables to

their maximum in the original sample data, leading to unre-
alistic upper-bounded tail behavior. Therefore, we used GEV
distribution to fit the dominant component (i.e., the conver-
gence term) to allow the model to generate extreme precipi-
tation that exceeds the original maximum. Note that it is fea-
sible to fit parametric distributions to all atmospheric water
balance components. The influence on the results is rather
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minor as long as the parametric distribution fits to each com-
ponent are good. For example, the distribution of the residual
term can be fitted by a t-distribution, while the time derivative
and evapotranspiration terms can be fitted with beta distribu-
tions. Another advantage of using parametric distribution is
that nonstationarities (e.g., changing location and scale) in
each atmospheric water balance component can be modeled
with distribution parameters that vary with time or other cli-
mate indices (see Sect. 5.5).

5 Discussion

5.1 Residual in the atmospheric water balance

The residual term ε is introduced in our study to close the
atmospheric water balance of reanalysis data, which can af-
fect precipitation estimates. Mass balance errors could come
from the data assimilation (DA) scheme and the change of
observation systems within ERA5 Reanalysis (Mayer et al.,
2021; Lewis et al., 2019). Studies have also shown that the
differencing method to compute the water vapor flux di-
vergence is another major source of error (Mayer et al.,
2021; Gutenstein et al., 2021; Seager and Henderson, 2013).
Nonetheless, the average residual is about 10 % of the pre-
cipitation for all cases, indicating that the ERA5 shows rel-
atively good water balance closure for extreme events in
the Mississippi Basin. The residual term is the greatest for
5000 km2 and 2 h storms and approaches zero as duration
and area increase. Compared with the univariate model fitted
solely on precipitation, the multivariate vine copula model
allows us to explicitly include the residual term and model
its dependence structures with other components. In future
work, comparisons could be made between vine copulas fit-
ted based on reanalysis and climate models. The latter class
of simulations is not subject to DA-related mass balance vio-
lations and, thus, could help to identify the dominant sources
of water balance closure error (i.e., DA or differencing).

5.2 Uncertainty and bias in ERA5 reanalysis

ERA5 Reanalysis is based on numerical weather forecasts
combined with multiple observations and is subject to mul-
tiple error sources, including numerical model errors, obser-
vation errors, DA errors, and spatiotemporal heterogeneity
of data sources (Bosilovich et al., 2008; Nogueira, 2020).
As a result, precipitation bias exists in ERA5 over the study
region, which can influence our model estimates. Previ-
ous studies have shown discrepancies in precipitation clima-
tology between ERA5 and observations over the CONUS.
We performed an additional comparison with interpolated
gauge-based precipitation fields, supporting that ERA5 un-
derestimates extreme precipitation in the Mississippi Basin
(see Appendix B). The underestimation may be related to
insufficiently strong water vapor flux divergence, given its
primary role in extreme storms and high correlation with

precipitation as described in Sect. 4.4. Also, the coarse spa-
tial and temporal resolution of ERA5 may limit its ability to
represent small-scale, short-lived convective storms that gen-
erate extreme precipitation (Beck et al., 2019; Ebert et al.,
2007). Studies have also mentioned precipitation bias com-
ing from orography smoothing and inadequate observations
over mountainous areas (Essou et al., 2017; Jiao et al., 2021).
Overall, one must be careful when analyzing extreme storms
based on reanalysis, since the accuracy can vary greatly in
space and time depending on topography, climate region, and
the quantity and quality of assimilated observations (Ebert et
al., 2007; Essou et al., 2017; Zhang et al., 2018).

Uncertainties also exist in atmospheric water balance com-
ponents in ERA5 Reanalysis and can influence the precipita-
tion estimates from the vine copula model. Uniquely among
reanalyses (to the best of our knowledge), ERA5 includes
coarser-resolution (3 h, 0.5◦ grid scales) ensembles that can
be used to examine some forms of uncertainty. To assess
these uncertainties, we computed the water balance compo-
nents in the annual maximum storm catalogs based on 10
ERA5 ensemble members (results not shown). These ensem-
bles estimate the uncertainties of observations in DA and
model parameterizations (Hersbach et al., 2020). All the at-
mospheric water balance components showed certain varia-
tions, especially for precipitation and water vapor flux con-
vergence. Nevertheless, the coarser resolution of the ensem-
ble members smooths out high precipitation regions and pe-
riods and result in different storm tracking and search results,
making it difficult to use these to quantify the uncertainty in
our precipitation estimates. However, the variability in ERA5
ensemble members can still qualitatively reflect the uncer-
tainty in atmospheric variables across different subbasins and
different storm spatiotemporal scales. Other reanalysis or nu-
merical models, such as MERRA-2 (Gelaro et al., 2017;
Moalafhi et al., 2017), can also be alternative sources to eval-
uate the uncertainty in ERA5 reanalysis. For a valid compar-
ison, a common period of these datasets (e.g., 1980–2020)
and transformation to the same spatial-temporal resolution
are needed to perform storm tracking and vine copula fitting.
An ensemble distribution can be generated from extreme pre-
cipitation estimates based on each dataset. It is expected that
the variability of the precipitation estimates would increase
by incorporating multiple reanalysis/numerical models.

5.3 Connection to DAD and area reduction factors

Our “storm-centered” approach allows the estimation of pre-
cipitation frequency for a specific area and duration within
a region (as shown in Sect. 4.3). This constitutes an alter-
native way to approach the long-standing task of deriving
DAD relationships, i.e., describing how extreme precipita-
tion depth varies with averaging area and duration, usually
for the purpose of flood analysis (Alexander, 1963; USACE,
1945; Weather Bureau, 1946). It should be noted, however,
that the derivation of DAD from individual storms has gen-
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erally not been extended to recurrence intervals as is done
here (e.g., in Fig. 8). The one notable exception that we are
aware of is stochastic storm transposition (Alexander, 1963;
Foufoula-Georgiou, 1989; Wright et al., 2020). Our method
– which can produce ARI estimates associated with DAD re-
lationships – shares SST’s focus on storm catalogs (Wright et
al., 2013; Zhou et al., 2019). While it is not the primary focus
of this study, we show the potential of the “storm-centered”
idea to address the old question of DAD relationships, with
the help of advancements in precipitation products and storm
tracking methods.

Both DAD and our approach also share a connection to
area reduction factors (ARFs), which are fractions between
zero and 1 that depict the ratio of the average precipita-
tion depth over an area to a point-scale precipitation depth,
given a fixed duration. DAD and ARF are highly related con-
cepts, despite serving somewhat different purposes. ARFs
are used to convert gauge-based (i.e., point-scale) precipita-
tion frequency estimates to areal estimates of the same ARI
and duration (e.g., Kao and Deneale, 2021; Miller, 1964;
Olivera et al., 2008). Most ARF studies have tried to ob-
tain such ratios using a “fixed-area” approach, i.e., to re-
late precipitation depth from point to area at a fixed loca-
tion (e.g., Asquith and Famiglietti, 2000; Breinl et al., 2020;
Durrans et al., 2002), though others have argued that storm-
centered ARF approaches are more conceptually valid (Kim
and Kang, 2017; Thorndahl et al., 2019; Wright et al., 2014).
The ability to derive storm-centered DAD relationships using
our method can, in principle, obviate the need for ARFs en-
tirely, something that has been advocated previously (Wright
et al., 2014). To support this point, we compared vine copula
DAD curves with those estimated by the ARFs from Kao et
al. (2020) in the Ohio River Basin at 10-year ARI (see Ap-
pendix C and Fig. C1). The vine copula DAD estimates agree
well with those ARF estimates for storm duration between
6 and 72 h, while for 2 h storms, the vine copula estimates are
more conservative, i.e., the precipitation depth reduces much
more slowly with increasing area. Such discrepancies may be
attributable to the ARF estimation of Kao et al. (2020) being
a “fixed-area” approach, i.e., the precipitation depth is com-
pared to areal depth in a watershed. Nevertheless, the number
of large watersheds in the Mississippi Basin (e.g., watersheds
greater than 50 000 km2) is limited, which may limit the ap-
proach’s ability to identify truly areal maxima, especially
for short-duration large-area storms. This suggests that our
“storm-centered” approach may provide more conservative
DAD relationships for storms with short durations. An alter-
native explanation, however, could be that these differences
highlight the limits of ERA5 in depicting extreme convec-
tive rainfall at small space-time scales. Another contention
within the ARF literature is whether or not such ratios are in-
dependent of recurrence intervals (e.g., Greener and Roesch,
1997; Osborn et al., 1980; Pavlovic et al., 2016). Relevant to
this debate, we found that DAD appears to be independent

of recurrence intervals for 5000–100 000 km2 scales in the
Mississippi Basin.

5.4 Interpretation of average recurrence intervals

The ARI is conventionally interpreted as the expected time
interval (in years) between events exceeding a certain mag-
nitude at one specific location (Coles, 2001; Serinaldi, 2015).
On the contrary, our “storm-centered” approach identified all
the storms at different locations within the basin to create an-
nual maximum storm catalogs. As a result, the ARI estimates
in our study describe the probability that an extreme storm
will happen somewhere within a region (e.g., the Mississippi
basin or subbasin), while the storm location is not specified.
Examples of equivalent formulations of ARI can be found in
Bosma et al. (2020) and Zhu et al. (2013). Moving from this
formulation to the computation of ARIs at one specific site
(e.g., a watershed) requires one to model the storm spatial
arrival process, which describes the probability that the ex-
treme storm “hits” the chosen site (e.g., Nathan et al., 2016;
Wilson and Foufoula-Georgiou, 1990; Wright et al., 2020).
The arrival process is challenging because the storm occur-
rence rate can vary greatly across a region due to inhomo-
geneous precipitation properties (e.g., Wilson and Foufoula-
Georgiou, 1990; Wright et al., 2020; Yu et al., 2021). One
simplification is to assume that storm position is indepen-
dent of storm characteristics, and the storm center is equally
likely to occur within the basin (Alexander, 1969; Foufoula-
Georgiou, 1989). Then, the exceedance probability at a spe-
cific watershed within the basin can be written as

Pc(X > x)=
Ac

As
·Ps(X > x), (14)

where Pc(X > x) is the exceedance probability of precipita-
tion X at the specific watershed, Ac is the watershed area,
As is the basin area where the annual maxima storm cat-
alog is built, and Ps(X > x) is the exceedance probabil-
ity obtained based on the vine copulas model in this study.
More complex arrival formulations could consider watershed
shape and orientation (Wright et al., 2013). Such arrival pro-
cesses could be realized using stochastic models (Foufoula-
Georgiou, 1989; Wilson and Foufoula-Georgiou, 1990; Eng-
land et al., 2014) or Monte Carlo simulations (Wright et al.,
2013; Zhou et al., 2019; Yu et al., 2021) but are beyond the
scope of this study.

5.5 Nonstationarity in multivariate models

Changes in annual and extreme precipitation due to anthro-
pogenic climate change in the Mississippi Basin have been
observed and investigated in many studies (e.g., Karl and
Knight, 1998; Groisman et al., 2004; Pan et al., 2016; Gori
et al., 2022), with important implications for precipitation
frequency estimates (e.g., Milly et al., 2008; Bender et al.,
2014; Zscheischler et al., 2018). For multivariate distribu-
tion models (e.g., copulas), nonstationarities may exist in
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the marginal distributions of random variables or their rela-
tionships, i.e., dependency structures (Xu et al., 2020). Our
approach can consider nonstationarities by using marginal
distributions and dependence structures with parameters that
vary as a function of, e.g., time, temperature, or climate in-
dices in vine copulas (for examples, see Bender et al., 2014;
Jiang et al., 2015; Sarhadi et al., 2018; Xu et al., 2020).
This attribute gives our method more flexibility to analyze
extreme storm frequency in a changing climate, especially
to reveal nonstationary relationships between moisture com-
ponents. Nevertheless, we expect high uncertainties when
using nonstationary models due to statistical issues (Seri-
naldi and Kilsby, 2015) and a lack of clarity around pre-
cipitation change across gridded precipitation datasets (Mal-
lakpour et al., 2022). Therefore, multi-model trend compari-
son and careful interpretation are necessary components for
nonstationary modeling (Mallakpour et al., 2022), especially
when using reanalysis that exhibits substantial inter-model
variability (Alexander et al., 2020). As mentioned above,
such modeling is potentially within reach of our framework
but is beyond the scope of this study.

6 Summary and conclusions

In the study, we present a storm-centered multivariate copula
model based on the atmospheric water balance equation to
estimate the frequency of extreme spatiotemporal precipita-
tion. The model was applied to extreme precipitation within
the Mississippi Basin. Two-dimensional storm objects were
identified using the storm tracking and regional character-
ization (STARCH) method applied to ERA5 precipitation
fields over the contiguous United States from 1951 to 2020.
STARCH identified storm objects at each time step, then
merged them across time to track storms. Afterward, an area–
duration selection algorithm was used to extract the largest
storms from each year with specific areas and durations in
order to create “storm catalogs”, each of 70 annual maxima.
Selected areas were 5000, 25 000, 50 000, and 100 000 km2,
and durations were 2, 6, 12, 24, 48, and 72 h. This selection
process was applied to the whole Mississippi Basin and its
five major subbasins, resulting in 144 storm catalogs. Using
the STARCH method, the spatiotemporal properties of ERA5
storms were validated against the observation-based IMERG
precipitation dataset, showing good consistency.

The annual maximum precipitation distribution was rep-
resented using a joint distribution of atmospheric water bal-
ance components: land surface evapotranspiration, water va-
por flux divergence, the time derivative of water vapor stor-
age, and a residual error term. The latter was included to ac-
count for imperfect water balance closure in ERA5. Within
each storm catalog, water balance components from ERA5
were computed for each annual maximum storm object and
fitted to a multivariate vine copula model. This model used
a GEV marginal distribution for the divergence term and

empirical distributions for the other components. The fitted
model was then used to simulate samples of water balance
components to calculate the associated precipitation via the
water balance equation. The frequency of annual precipita-
tion maxima was then estimated nonparametrically based on
these simulations. The following conclusions can be drawn:

It is feasible to generate plausible extreme precipitation
estimates from a vine copula model that incorporates addi-
tional physical information from the atmospheric water bal-
ance. Good fits were found based on Q–Q plots and com-
parisons of estimated ARI against those from more conven-
tional univariate GEV distributions fitted to ERA5 precipi-
tation. This indicates that the copula approach can represent
the complex dependence structures between water balance
components. Percentage differences between the vine copula
and univariate GEV models were on average less than 4 %
for the 100-year ARI but increased for rarer quantiles.

Among water balance components, water vapor flux di-
vergence is the dominant term in extreme precipitation. Land
surface evapotranspiration plays the smallest role, constitut-
ing about 3 % of precipitation. The sum of the time derivative
of precipitable water and residual terms constitute an average
of 17 % of precipitation. Nonlinear dependencies among wa-
ter balance components vary with storm region, area, and du-
ration; these cannot be neglected when modeling their joint
roles in extreme precipitation.

Prior studies have shown that, due to data assimilation
and numerical methods, the atmospheric water vapor mass in
ERA5 is not perfectly conserved. Despite this, we found rel-
atively good atmospheric water balance closure for extreme
events in the Mississippi Basin, with the residual on aver-
age constituting about 10 % of precipitation. To our knowl-
edge, this is the first study that examines atmospheric wa-
ter balance closure for precipitation extremes in reanalysis
data. The residual term is the greatest in the 5000 km2 and
2 h storm catalogs and approaches zero as duration and area
increase. Users need to treat the residual carefully when ex-
amining extreme precipitation from reanalysis (and possibly
other atmospheric simulations such as climate models), es-
pecially for short durations and small spatial scales.

Despite the advancement in numerical and data assimila-
tion schemes, ERA5 is still subject to model bias; it tends
to underestimate extreme precipitation over the Mississippi
Basin. This bias may be attributable to the inadequate simu-
lation of water vapor flux divergence due to its dominant role
in precipitation extremes. Also, coarse spatiotemporal reso-
lution and limited observations for assimilation over moun-
tainous areas can contribute further to precipitation biases.

Overall, rainfall frequency analysis can benefit from uti-
lizing additional information from atmospheric/land surface
processes. Compared with the conventional approach, the
vine copula model allows an explicit representation of the
dependence structures between atmospheric water balance
components and enables us to investigate the main driver of
extreme precipitation. The model does not need an explicit

https://doi.org/10.5194/hess-26-5241-2022 Hydrol. Earth Syst. Sci., 26, 5241–5267, 2022



5258 Y. Liu and D. B. Wright: A storm-centered multivariate modeling of extreme precipitation frequency

parametric form for the tail of the precipitation distribution,
as it is determined by the tail of the moisture components
and their dependence structures. This dependence structure
can also serve as a constraint that prevents unrealistic large
estimates (Bevacqua et al., 2017). Though not explored here
due to the complications in interpreting the results (e.g., non-
stationary ARIs), the approach is also able to accommodate
nonstationary conditions by incorporating marginal distribu-
tions and dependence structures that vary with time or ac-
cording to other climate predictions (e.g., temperature or cli-
mate indices, see Bender et al., 2014; Sarhadi et al., 2018;
Xu et al., 2020).

Our “storm-centered” approach enables us to focus on the
major extreme storms over a region, notwithstanding ERA5’s
tendency to underestimate those extremes. This feature con-
trasts with more typical gauge-based analyses that may re-
strict the number of extreme events due to a limited sam-
pling area. By preserving the spatiotemporal structure of the
storms, we can investigate extreme precipitation frequency in
user-defined areas. Such areal precipitation estimates demon-
strate the potential of using the “storm-centered” idea to de-
rive DAD relationships for storms with different ARIs, with
the help of long-term reanalysis products and storm tracking
techniques.

The ARIs estimated by our approach represent the fre-
quencies of extreme storms that happen over the entire re-
gion. To obtain precipitation ARIs for one specific site within
that basin, an additional storm arrival process (i.e., the prob-
ability that the storm “hits” the site) is needed to modify the
ARI estimates. Such arrival processes can be realized using
statistical models or Monte Carlo simulations and will be a
direction of future study. Despite evident biases in extreme
precipitation, reasonable atmospheric water balance closure
can be found in ERA5, lending confidence that it and similar
reanalyses can represent reasonable water vapor interactions
(Brown and Kummerow, 2014), which can help to under-
stand the mechanisms of extreme events. In the longer run,
the performance of this approach can be expected to benefit
from further developments in numerical weather simulation
and data assimilation.
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Appendix A: 10- and 500-year precipitation estimates of
the vine copula model

Figure A1. Estimated 10-year precipitation from vine copula and univariate GEV models. GEV estimates are in parentheses.

Figure A2. Estimated 500-year precipitation from vine copula and univariate GEV models. GEV estimates are in parentheses.
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Appendix B: Comparison of ERA5 and nClimgrid
extreme precipitation

To better assess the bias in ERA5 extreme precipitation,
here we provide a comparison between ERA5 Reanalysis
and a gauge-based product, the Gridded 5 km GHCN-Daily
Temperature and Precipitation Dataset (nClimGrid, Vose et
al., 2014), which provides daily precipitation on a 0.05◦

grid for CONUS by interpolating gauge observations. The
nClimGrid data were regridded to 0.25◦ using the conser-
vative method described in Sect. 2.2 to match ERA5’s spa-
tial resolution. To match the temporal resolutions of the two
datasets, we shifted the ERA5 time zone from Universal
Time Coordinated (UTC) to Central Standard Time (CST)
and computed daily precipitation using the daily interval
(07:00–06:59) in nClimGrid. ERA5 daily precipitation pat-
terns were generally consistent with those from nClimGrid,
suggesting similar storm spatiotemporal properties (results
not shown). We computed the difference in the 99th per-
centile daily precipitation between ERA5 and nClimGrid
in the 1951–2020 period, shown in Fig. B1. Basin-average
99th daily precipitation from ERA5 and nClimGrid, and their
differences are summarized in Table B1. The ERA5 99th per-
centile of daily precipitation is on average 8 % lower than
that of nClimgrid in the Mississippi Basin, with strong spa-
tial variation across subbasins. Specifically, ERA5 underesti-
mates extreme precipitation in the Lower Mississippi Basin;
this underestimation diminishes in areas further inland. On
the other hand, ERA5 overestimates precipitation over the
mountainous areas in the west Missouri Basin.

Table B1. Comparison of basin-averaged 99th percentile daily precipitation between ERA5 and nClimGrid from 1951 to 2020. The percent-
age difference is computed by (nClimGrid-ERA5)/nClimGrid× 100.

Basin name ERA5 nClimGrid nClimGrid-ERA5 Percent
(mm h−1) (mm h−1) (mm h−1) difference

(%)

Mississippi 1.13 1.22 0.10 7.97
Arkansas-Red 1.21 1.38 0.17 12.12
Lower Mississippi 1.67 2.10 0.43 20.56
Missouri 0.89 0.88 −0.008 −0.92
Upper Mississippi 1.21 1.31 0.10 7.82
Ohio-Tennessee 1.34 1.48 0.14 9.53
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Figure B1. 99th percentile daily precipitation during 1951–2020 for (a) ERA5, (b) nClimGrid, and (c) the difference between the two
datasets.
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Appendix C: Validation of vine copula DAD
relationships

The vine copula DAD curve was compared against the ARFs
in Kao et al. (2020). The ARFs were estimated for 10-
year precipitation with durations of 2–72 h and areas of 10–
100 000 km2 in the Ohio River Basin, using a watershed-
based approach and gauge-based dataset (DSI-3240, Na-
tional Climatic Data Center, 2003). We calculated new DAD
curves by converting the vine copula hourly precipitation
depth at 5000 km2 to the depths at larger areas based on the
ARFs. The new DAD curves were then compared with the
original DAD curves estimated from vine copulas, as shown
in Fig. C1. More discussion of this figure can be found in
Sect. 5.3.

Figure C1. Comparison of DAD curves estimated from vine copu-
las (solid markers) and ARFs from Kao et al. (2020) (empty makers)
for Ohio River Basin with 10-year ARI and 2–72 h durations.
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