Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2161-2022
Special issue:
https://doi.org/10.5194/hess-26-2161-2022
Opinion article
 | Highlight paper
 | 
28 Apr 2022
Opinion article | Highlight paper |  | 28 Apr 2022

HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”

Brian Berkowitz

Related authors

Transport behavior displayed by water isotopes and potential implications for assessment of catchment properties
Dan Elhanati, Erwin Zehe, Ishai Dror, and Brian Berkowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3365,https://doi.org/10.5194/egusphere-2025-3365, 2025
Short summary
Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022,https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021,https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021,https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary

Cited articles

Akaike, H.: A new look at statistical model identification, IEEE T. Autom. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Andrade, J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., and Stanley, H. E.: Inertial effects on fluid flow through disordered porous media, Phys. Rev. Lett., 82, 5249, https://doi.org/10.1103/PhysRevLett.82.5249, 1999. 
Aronofsky, J. S. and Heller, J. P.: A diffusion model to explain mixing of flowing miscible fluids in porous media, T. Am. Inst. Min. Metall. Pet. Eng., 210, 345–349, 1957. 
Barkai, E., Metzler, R., and Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation, Phys. Rev. E, 61, 132–138, https://doi.org/10.1103/PhysRevE.61.132, 2000. 
Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413–1423, https://doi.org/10.1029/2000WR900032, 2000. 
Download
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable holy grail.
Share
Special issue