Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2161-2022
Special issue:
https://doi.org/10.5194/hess-26-2161-2022
Opinion article
 | Highlight paper
 | 
28 Apr 2022
Opinion article | Highlight paper |  | 28 Apr 2022

HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”

Brian Berkowitz

Related authors

Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022,https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021,https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021,https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”
Brian Berkowitz and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020,https://doi.org/10.5194/hess-24-1831-2020, 2020
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024,https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Laboratory heat transport experiments reveal grain size and flow velocity dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949,https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary

Cited articles

Akaike, H.: A new look at statistical model identification, IEEE T. Autom. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Andrade, J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., and Stanley, H. E.: Inertial effects on fluid flow through disordered porous media, Phys. Rev. Lett., 82, 5249, https://doi.org/10.1103/PhysRevLett.82.5249, 1999. 
Aronofsky, J. S. and Heller, J. P.: A diffusion model to explain mixing of flowing miscible fluids in porous media, T. Am. Inst. Min. Metall. Pet. Eng., 210, 345–349, 1957. 
Barkai, E., Metzler, R., and Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation, Phys. Rev. E, 61, 132–138, https://doi.org/10.1103/PhysRevE.61.132, 2000. 
Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413–1423, https://doi.org/10.1029/2000WR900032, 2000. 
Download
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable holy grail.
Special issue