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Abstract. Extensive efforts over decades have focused on
quantifying chemical transport in subsurface geological for-
mations, from microfluidic laboratory cells to aquifer field
scales. Outcomes of resulting models have remained largely
unsatisfactory, however, largely because domain heterogene-
ity – characterized for example by porosity, hydraulic con-
ductivity and geochemical properties – is present over mul-
tiple length scales, and “unresolved”, practically unmeasur-
able heterogeneities and preferential pathways arise at virtu-
ally every scale. While spatial averaging approaches are ef-
fective when considering overall fluid flow, wherein pressure
propagation is essentially instantaneous, purely spatial av-
eraging approaches are far less effective for chemical trans-
port essentially because well-mixed conditions do not pre-
vail. We assert here that an explicit accounting of tempo-
ral information, under uncertainty, is an additional but fun-
damental component in an effective modeling formulation.
As an outcome, we further assert that “upscaling” of chem-
ical transport equations – in the sense of attempting to de-
velop and apply chemical transport equations at large length
scales, based on measurements and model parameter values
obtained at significantly smaller length scales – can be con-
sidered an unattainable “holy grail”. Rather, we maintain that
it is necessary to formulate, calibrate and apply models using
measurements at similar scales of interest.

1 Introduction

1.1 Background

There have been extensive efforts over the last ∼ 60 years to
model and otherwise quantify fluid flow and chemical (con-
taminant) transport in soils and subsurface geological forma-
tions, from millimeter-size, laboratory microfluidic cells to
aquifer field scales extending to hundreds of meters and even
tens of kilometers.

Soils and subsurface formations typically exhibit signifi-
cant heterogeneity in terms of domain characteristics such as
porosity, hydraulic conductivity, structure, and biogeochem-
ical properties (mineral and organic matter content). How-
ever, only more recently has it become broadly accepted
that effects of heterogeneity over multiple length scales, with
“unresolved”, practically unmeasurable heterogeneities aris-
ing at every length scale from pore to field, cannot sim-
ply be “averaged out”. Indeed, much research on flow and
transport in porous media, dating since ∼ 1950, has been
based on the search for length scales at which one can define
a “representative elementary volume” or otherwise-named
“averaging volume”, above which variability in fluid and
chemical properties becomes constant. In this context, too,
many varieties of homogenization, volume averaging, effec-
tive medium, and stochastic continuum theories have been
developed in an extensive literature. These methods allowed
formulation of continuum-scale, generally Eulerian, partial
differential equations to quantify (“model”) fluid flow and
chemical transport, which were then applied in the soil and
groundwater literature at length scales ranging from millime-
ters to full aquifers. While originally deterministic in char-
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acter, a variety of stochastic formulations and Monte Carlo
numerical simulation techniques, introduced from the 1980s,
enabled analysis of uncertainties in input parameters such as
hydraulic conductivity.

However, while analysis of fluid flow using these meth-
ods has proven relatively effective, modeling of chemical
transport, and an accounting of associated (biogeo)chemical
reactions in cases of reactive chemical species and/or host
porous media, has revealed serious limitations. We discuss
the reasons for this in the sections below. Briefly, the over-
arching reason for these successes and failures is that spatial
averaging approaches are effective when considering overall
fluid flow rates and quantities: pressure propagation is essen-
tially instantaneous, and the system is “well mixed” because
mixing of water “parcels” is functionally irrelevant. How-
ever, purely spatial averaging approaches are far less effec-
tive for chemical transport, essentially because well-mixed
conditions do not prevail, and spatial averaging is inadequate;
here, an explicit, additional accounting of temporal effects is
required.

The focus of the current contribution is on modeling con-
servative chemical transport in geological media. In terms
of modeling, one can delineate two main types of scenar-
ios: (i) pore-scale modeling in relatively small domains, with
a detailed and specified pore structure, and (ii) continuum-
scale modeling in porous media domains, which average pore
space and solid phases at scales from laboratory flow cells to
field-scale plots and aquifers. Case (i) requires, e.g., Navier–
Stokes or Stokes equation solutions for the underlying flow
field, coupled with solution of a local (e.g., advection–
diffusion) equation for transport, while case (ii) requires
Darcy (or related) equation solutions for the underlying flow
field, coupled with solution of a governing transport equa-
tion for chemical transport. Note that, here and throughout,
we shall use the terms continuum level and continuum scale
in reference to case (ii) scenarios and pore scale to refer
to case (i) scenarios, although we recognize that pore-scale
Navier–Stokes and advection–diffusion equations, too, are
continuum partial differential equations.

Disclaimer: here and throughout this contribution, the
overview comments and references to existing philosophies,
methodologies, and interpretations are written mostly in
broad terms, with only limited citations selected from the
vast literature. This approach is taken with a clear recogni-
tion and respect for the extensive body of literature that has
driven our field forward over the last decades but with the
express desire to avoid any risk of unintentionally alienating
colleagues and/or misrepresenting aspects of relevant stud-
ies. As an Opinions contribution, and with length consider-
ations in mind, there is no attempt to provide an exhaustive
listing and description of the relevant literature.

1.2 Assertions

The pioneering paper of Gelhar and Axness (1983) focused
on quantifying conservative chemical transport at the contin-
uum level. They expressed heterogeneity-induced chemical
spreading in terms of the (longitudinal) macrodispersion co-
efficient – as it appears in the classical (macroscopically 1D)
advection–dispersion equation – with knowledge of the vari-
ance and correlation length of the log-hydraulic conductiv-
ity field and the mean, ensemble-averaged fluid velocity. The
conceptual approach embodied in Gelhar and Axness (1983)
– and by many researchers since then (as well as previously)
– was founded on delineation of the spatial distribution of
the hydraulic conductivity and application of an averaging
method to yield a governing transport equation with “effec-
tive parameters” that describes chemical transport at a given
length scale (e.g., Dagan, 1989; Gelhar, 1993; Dagan and
Neuman, 1997).

In contrast, we assert here that spatial information, alone,
is generally insufficient for quantification of chemical trans-
port phenomena. Rather, temporal information is an addi-
tional, but fundamental, component in an effective model-
ing formulation. In the discussion below, we shall justify this
argument by a series of examples. We examine (i) spatial in-
formation on, e.g., the hydraulic conductivity distribution at
the continuum level or distribution of the solid phase at the
pore-scale level and (ii) temporal information on, e.g., con-
taminant (tracer, “particle”) transport mobility and retention
in different regions of a domain. We thus define a type of
“information hierarchy”, with different types of information
required for different flow and chemical transport problems
of interest.

As an outcome of the above assertion and the discussion
below, we further assert that “upscaling” of chemical trans-
port equations – development and application of chemical
transport equations at large (length) scales, with correspond-
ing parameter values, based on measurements and model pa-
rameter values obtained at significantly smaller length scales
– can be considered an unattainable “holy grail”. Rather, we
maintain that it is necessary to formulate and calibrate mod-
els and then apply them over spatial scales with relatively
similar orders of magnitude. This does not exclude use of
similar equation formulations at different spatial scales, but
it does entail use of different parameter values, at the relevant
scale of interest, that cannot be determined a priori or from
purely spatial or flow-only measurements.

1.3 Approach – outline

While our focus is on chemical transport, knowledge of fluid
flow and delineation of the velocity field throughout the do-
main is a prerequisite. We therefore first discuss fluid flow as
an intrinsic element of the “information hierarchy”. Specifi-
cally, we address the following.
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1. How basic structural information on “conducting ele-
ments” in a system representing a porous and/or frac-
tured geological domain can provide insight regarding
overall fluid conduction in the domain as a function of
conducting element density. We emphasize that without
direct simulation of fluid flow in such a system, this type
of analysis does not delineate the actual flow field and
velocity distributions throughout the domain.

2. How spatial information on the hydraulic conductivity
distribution at a continuum scale, or solid-phase distri-
bution at the pore scale, throughout the domain, can be
used to determine the flow field. We then show that this
is insufficient to define chemical transport.

3. How temporal information on chemical species mi-
gration, which quantifies distributions of retention and
release times (or rates) of chemicals by advective–
dispersive–diffusive and/or chemical mechanisms, can
be used to determine the full spatial and temporal evo-
lution of a migrating chemical plume, either by solution
of a transport equation or use of particle tracking on the
velocity field.

We comment, parenthetically, that in conceptual–
philosophical terms, this hierarchy and the limitations
of each level are in a sense analogous to representation of
geometrical constructs in multiple dimensions: in principle,
one can represent, as a projection, a d-dimensional object in
d − 1 dimensions. However, of course, by its very nature, a
projection does not capture all features of the construct in its
“full” dimension. To illustrate this, an imaginary 1D curve
can represent a 2D Möbius strip, a 2D perspective drawing
can represent a 3D cube, and a 3D construct can represent a
4D object (where the fourth dimension might be time), and
yet none of these d−1-dimensional representations contains
all features of the actual d-dimensional objects. Similarly,
despite our frequent attempts to the contrary, one cannot
properly describe (2) only from (1) or (3) only from (2).

2 Fluid flow

Analysis of the geometry of structural elements in a domain
can yield basic insights into fluid flow patterns. This ap-
proach is used, for example, when examining fracture net-
works in essentially impermeable host rock. As discussed
below, however, full delineation of the underlying velocity
field ultimately requires solution of equations for fluid flow.

In this context, percolation theory (Stauffer and Aharony,
1994) is particularly useful in determining, statistically,
whether or not a domain with N conducting elements (e.g.,
fractures) includes sufficient element density to form a con-
nected pathway enabling fluid flow across the domain. One
can estimate, for example, (i) the critical value,Nc, for which
the domain is “just” connected, as a function of fracture

length distribution or (ii) the critical average fracture length
as a function of N needed to reach domain connectivity
(Berkowitz, 1995). Similarly, percolation theory shows how
the overall hydraulic conductivity of the domain scales as the
number of conducting elements, N , relative to the Nc criti-
cal number of conducting elements required for the system
to begin to conduct fluid. Percolation theory also addresses
diffusivity scaling behavior of chemical species. However,
fundamentally, percolation is a statistical framework suit-
able for large (“infinite”) domains and provides universal
scaling behaviors with no coefficient of equality; see, e.g.,
Sahimi (2021) for detailed discussion.

Other approaches have been advanced to analyze do-
main connectivity, for example, using graph theory and con-
cepts of identification of paths of least resistance in porous-
medium domains (e.g., Rizzo and de Barros, 2017) or topo-
logical methods (e.g., Sanderson and Nixon, 2015). Like per-
colation theory, such approaches provide useful information
on and “estimates” of the hydraulic connectivity and flow
field, and even of the first arrival times of chemical species,
without solving equations for fluid flow and chemical trans-
port. However, these methods do not provide full delineation
of the flow field and velocity distribution throughout a do-
main.

These considerations indicate that, in general, dynamic as-
pects of fluid flow are critical: knowledge of pure geometry
is not sufficient, and we must actually solve for the flow field,
at either the pore scale or continuum scale, to determine the
velocity field and actual flow paths throughout the domain.
Delineation of a flow field and velocity distribution by solu-
tion of the Navier–Stokes equations (or Stokes equation for
small Reynolds numbers) or by solution of the Darcy equa-
tion may be considered rigorous, correct, and effective. How-
ever, in the process of solving for the flow field, two key fea-
tures arise, one more relevant to pore-scale analyses and the
other more relevant to continuum-scale analysis, as detailed
in Sect. 2.1 and 2.2, respectively.

2.1 Pore-scale flow field analysis

Why is knowledge only of the geometrical “static” structure
(spatial distribution of the solid phase) insufficient to know
the flow dynamics in a pore-scale domain? Consider the 2D
domain shown in Fig. 1, containing sparsely and randomly
distributed obstacles (porosity of 0.9). Figure 1 shows solu-
tions of the Navier–Stokes equations for two Reynolds num-
ber (Re) values. Recall that Re ≡ ρvL/µ, where ρ and µ are
density and dynamic viscosity of the fluid, respectively, v is
fluid velocity, andL is a characteristic linear dimension. Here
and throughout, the fluid is assumed to have constant viscos-
ity. Andrade et al. (1999) showed clearly that well-defined
preferential flow channels at lower Re, while at higher Re,
channeling is less intense and the streamline distribution is
more spatially homogeneous in the direction orthogonal to
the main flow. The domain shown in Fig. 1 is not intended
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to represent a natural geological domain but rather to illus-
trate streamline behavior in even relatively simple pore-scale
geometries.

Figure 1 demonstrates that the streamlines in individual
pores change because of the interplay between inertial and
viscous forces given by Re. In other words, with a change
in overall fluid velocity or hydraulic gradient across the do-
main, the actual flow paths can be altered, together with a
change in overall and (spatially) local residence times of fluid
molecules; the same factors also govern chemical species, as
addressed below. Of course, the significantly lower porosities
and more tortuous pore space configuration in natural, het-
erogeneous geological porous media may affect the impact
of inertial effects, especially at the pore scale, but the prin-
ciple remains relevant. We note, too, parenthetically, that the
behavior shown in Fig. 1 is also relevant to fluid flow within
fracture planes, wherein the obstacles represent contact areas
and regions of variable aperture.

Clearly, then, except in highly idealized and simplified ge-
ometries, use of a purely analytical solution to identify the
full velocity field and streamline patterns at the pore scale is
not feasible. Moreover, the extent and changes in streamlines
are not intuitively obvious without full numerical solution of
the governing flow equations, for any specific set of porous-
medium structures and boundary conditions.

2.2 Continuum-scale flow field analysis

Considering now continuum-scale domains, but in analogy
to the example shown in Sect. 2.1, we illustrate why knowl-
edge only of the geometrical “static” structure is insufficient
to know the flow dynamics, without solution of the Darcy
equation. Here, the geometrical structure refers to the spatial
distribution of the hydraulic conductivity, K .

Figure 2 represents a realization of a numerically gen-
erated (statistically homogeneous, isotropic, Gaussian) hy-
draulic conductivity 2D domain. The Darcy equation solu-
tion for this domain yields values of hydraulic head through-
out the domain; these are converted to local velocities to
enable delineation of the streamlines and preferential flow
paths. The latter are highlighted by actually solving for
chemical transport by following the migration of “particles”
representative of masses of dissolved chemical species in-
jected along the inlet boundary of the flow domain; see Ed-
ery et al. (2014) for details. Of particular significance is that
99.9 % of the injected particles travel in preferential path-
ways through a limited number of domain cells. We return
to Fig. 2 in Sect. 3.3.2, where we discuss a framework that
effectively characterizes and quantifies chemical transport.

Unlike the pore-scale case shown in Sect. 2.1, at the Dar-
cy/continuum scale, streamlines are not altered with changes
in the overall hydraulic gradient as long as laminar flow con-
ditions are maintained. And yet, preferential flow paths are
(possibly surprisingly) sparse and ramified, sampling only
limited regions of a given heterogeneous domain, with the

vast fraction of a migrating chemical species that interrogates
the domain being even more limited. Significantly, except
in highly idealized and simplified geometries, delineation of
these pathways is not intuitively obvious (e.g., by simple in-
spection of the hydraulic conductivity map in Fig. 2a) or de-
finable from a priori analysis or tractable analytical solution.
Rather, numerical solution of the governing flow equations
is required for any particular/specific set of porous-medium
structures and boundary conditions. Note, too, that critical
path analysis from percolation theory (discussed in Sect. 2)
– again from purely “static” information without solution of
the flow field – yields an incorrect interpretation, as shown in
detail by Edery et al. (2014).

We emphasize that the delineation of “preferential flow
paths” is usually relevant only for study of chemical trans-
port; if water quantity, alone, is the focus, then specific “flow
paths” traveled by water molecules – and their advective and
diffusive migration along and between streamlines and in-
to/out of less mobile regions – are of little practical interest.
On the other hand, the movement of chemical species, which
experience similar advective and diffusive transfers, must be
monitored closely to be able to quantify overall migration
through a domain. We return to considering patterns of chem-
ical migration in Sect. 3. This argument, too, reinforces the
assertion that delineation of actual chemical transport can-
not be deduced purely from spatial information and solution
for fluid flow but must be treated by solution of a transport
equation.

It is significant, too, that fluid flow and chemical transport
occur in preferential pathways that contain low-conductivity
sections (indicated by circles in Fig. 2c and d). How do we
explain passage through low-hydraulic-conductivity “bottle-
necks” within the preferential pathways rather than migration
“only” through the highest-conductivity patches?

To address this question, we first consider what happens
in a 1D path. Consider two paths, each containing a series
of five porous-medium elements or blocks, with distinct hy-
draulic conductivity values, Ki . Consider Path 1, with a se-
ries of hydraulic conductivity values of 3, 3, 3, 3, and 3,
and Path 2, with values 6, 6, 1, 6, and 6 (specific length-
/time units are irrelevant here). The value of K = 1 rep-
resents a clear “bottleneck” in an otherwise higher-K path
than that of Path 1. In a 1D series, however, the overall hy-
draulic conductivity (Koverall) of the path is given by the har-
monic mean of the conductivities of the elements comprising
the path:Koverall = 5/(6i=1,51/Ki). Significantly, in the two
cases here, both paths have Koverall = 3. So, a “bottleneck”
(K = 1) can be “overcome” and does not cause necessarily a
potential pathway to be less “desirable” than a pathway with-
out such “bottlenecks”. In other words, flow through path-
ways containing some low-K regions should be expected.
Of course, in 2D and 3D systems, patterns of heterogene-
ity and pathway “selection” by water/chemicals are signif-
icantly more complicated, but the principle discussed here
for 1D systems still holds in the sense that lower-hydraulic-
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Figure 1. Two-dimensional domain containing randomly distributed obstacles (squares and rectangles). Stream functions for (a)Re = 0.0156
and (b) Re = 15.6 are shown with constant increments between consecutive streamlines (from Andrade et al., 1999; copyright American
Physical Society). The different patterns of preferential pathways are clear and distinct. The three pairs of circles (red, blue, black) highlight
three (of many) specific locations where the streamlines are seen to change as a function of Re.

conductivity (“bottleneck”) elements can (and do) exist in the
preferential pathways (e.g., Margolin et al., 1998; Bianchi et
al., 2011).

3 Chemical transport

We now consider the next level of the “information hierar-
chy” outlined in Sect. 1.3. To quantify the evolution of a mi-
grating chemical plume, knowledge of the flow field is not
generally sufficient, and additional means to characterize and
quantify the behavior are needed. Dynamic aspects of chem-
ical transport require us to think (also) in terms of time, not
just space and physical structure. Moreover, it is generally
insufficient to determine the transport of the chemical plume
center of mass. Rather, in terms of water resource contami-
nation and remediation, for example, it is critical to charac-
terize, respectively, the early and late arrival times in compli-
ance or monitoring regions downstream of the point, areal,
or volumetric regions in which the chemical species entered
the system.

As we show below, it becomes clear that there are dynamic
aspects of chemical transport, over and above the role of the
flow field: we must actually solve for chemical transport, at
either the pore scale or continuum scale, to determine the
spatial plume and/or temporal breakthrough curve evolution
of the migrating chemical plume. In both the pore-scale and
continuum-scale domains, the critical control that arises is
that of time, in addition to space. This is in sharp contrast
to fluid flow at the pore and continuum scales, as shown
in Sect. 2.1 and 2.2: pore-scale fluid flow displays chang-
ing streamlines with changes in hydraulic gradient, while
continuum-scale fluid flow follows distinct but difficult-to-
identify preferential flow paths essentially independent of the
hydraulic gradient.

We point out, too, that for both pore-scale and continuum-
level scenarios, one can solve explicitly a governing equa-
tion for transport. Alternatively, one can obtain an “equiva-
lent” solution by solving for “particle tracking” of transport
along the calculated streamlines, in a Lagrangian framework.
In other words, particle tracking methods essentially repre-
sent an alternative means of solving an (integro-)partial dif-
ferential equation for chemical transport; such methods can
be applied, too, when the precise partial differential equation
is unknown or the subject of debate. We also note that so-
lution of the relevant equations for fluid flow and chemical
transport is sometimes achieved by (semi-)analytical meth-
ods if the flow/transport system can be treated sufficiently
simply (e.g., as macroscopically, section-averaged 1D flow
and transport in a rectangular domain).

We first discuss principal features of pore-scale (Sect. 3.1)
and continuum-scale (Sect. 3.2) chemical transport, and in
Sect. 3.3, we focus on effective model formulations. We fo-
cus on conservative chemical species and mention chemi-
cal reaction effects only peripherally. Note that other fac-
tors such as temporally/spatially changing fluid viscosity and
surface tension, or mechanical and wetting properties of the
solid phase, represent further complexities that are not con-
sidered here.

3.1 Pore-scale chemical transport analysis

To illustrate why knowledge only of the flow field is in-
sufficient for full quantification of chemical transport, con-
sider the three porous-medium domains shown in Fig. 3.
Each domain is comprised of pore-scale images of a natural
rock, modified by enlarging the solid-phase grains, to yield
three different configurations: a statistically homogeneous
system domain, a weakly correlated system, and a structured,
strongly correlated system (see Nissan and Berkowitz, 2019,
for details). Fluid flow was determined by solution of the
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Figure 2. Maps of (a) hydraulic conductivity, K , distribution in a domain with 300× 120 cells, (b) preferential pathways for fluid flow (and
chemical transport), and (c) preferential pathways through cells that each contain a visitation of at least 0.1 % of the total number of chemical
species particles injected into the domain (flux-weighted, along the entire inlet boundary). Flow is from left to right. Note that the color
bars are in ln(K) scale for (a) and log10 number of particles for (b, c) (Edery et al., 2014; © with permission from the American Geophys-
ical Union 2014). (d) Laboratory flow cell (dimensions 2.13 (length)× 0.65 (height)× 0.10 (width) m) with an exponentially correlated K
structure, showing preferential pathways for blue dye injected near the inlet (flow is left to right); dark-, medium-, and light-colored sands
represent high, medium, and low conductivity, respectively (Levy and Berkowitz, 2003; © with permission from Elsevier 2003). The circles
shown in (c) and (d) highlight two (of many) regions in which the pathways are seen to contain lower K “bottlenecks”.

Navier–Stokes equations (Fig. 1a). Transport of a conserva-
tive chemical species was then simulated via a (Lagrangian)
streamline particle tracking method for an ensemble of par-
ticles that advance according to a Langevin equation. Trans-
port behavior was determined for two values of the macro-
scopic (domain-average) Péclet number (Pe). Recall that
Pe ≡ vL/D, where v is fluid velocity, L is a characteristic
linear dimension, andD is the coefficient of molecular diffu-
sion. Here, the macroscopic Pe is based on the mean particle
velocity and mean particle displacement distance per transi-
tion (or “step”).

Figure 3 shows that, regardless of possible pore-scale
streamline changes as a function of hydraulic gradient (recall
Sect. 2.1, considering different values of Re), the choice of
macroscopic Péclet number in a given domain plays a signif-
icant role in the evolution of the migrating chemical plume.
In particular, the relative effects of advection and diffusion,
which vary locally in space, are critical, as is the overall res-
idence time in the domain. We stress here, and return to this
key point in the discussion below, that the spatially and in
some cases temporally local changes in relative effects of
advection and diffusion – characterized by the local Pe –
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Figure 3. Fluid velocities and chemical migration in three porous media configurations (from left to right): homogeneous system, randomly
heterogeneous system, and structured heterogeneous system. The upper row shows the (normalized) velocity field for the three configura-
tions; the color bar represents relative velocity, with dark blue being lowest. The middle and lower rows show, respectively, numerically
simulated particle tracking patterns of an inert chemical species (blue dots) at Pe = 1 (middle row) and Pe = 100 (lower row) for the
three configurations (white color indicates solid phase; black color indicates liquid phase). Each system has overall dimensions of 8 cm
(length)× 6 cm (height). Note: the particle plumes are shown at 10 % of the final time of each simulation; absolute travel times differ among
the plots. The insets in the left-hand-side plots of the middle and lower rows show the pore-scale chemical species distributions; note the
more diffuse pattern for Pe = 1 (from Nissan and Berkowitz, 2019; © with permission from the American Physical Society 2019).

dominate determination of the plume evolution. This can be
understood from study of Fig. 3 for two choices of macro-
scopic Pe values in each of the three heterogeneity configu-
rations; the different patterns of longitudinal and transverse
spreading are observed clearly.

The behavior shown in Fig. 3 is essentially well known
from extensive simulations and experiments appearing in the
literature. This behavior is described here to stress the impor-
tance of temporal effects and to point out that information
only of the advective velocity field – as discussed in Sect. 2.1
and 2.2 – is not sufficient to “predict” chemical transport.

3.2 Continuum-scale chemical transport analysis

The aspects discussed in Sect. 3.1 are relevant, analogous,
and applicable essentially also to chemical transport at the
continuum scale. Consider the two laboratory experiments
shown in Figs. 4 and 5. Each flow cell was filled with
a different clean, sieved sand configuration; see Levy and
Berkowitz (2003) for details. Figure 4 shows a uniform (“ho-
mogeneous”) packing of clean sand, while Fig. 5 shows a
coarse sand containing a randomly heterogeneous arrange-

ment of rectangular inclusions consisting of a fine sand. The
flow cells, fully saturated with water, enabled macroscopi-
cally (section-averaged) 1D, steady-state flow, with a mean
gradient parallel to the horizontal axis of the cell. As seen
in the two figures, neutrally buoyant, inert red dye was in-
jected at seven (Fig. 4) and five (Fig. 5) points near the inlet
side to illustrate the spatiotemporal evolution of the chemical
plumes.

Most notably, in both Figs. 4 and 5, (i) each of the plumes
has a different, unique pattern, which continues over the du-
ration of the plume migration, and (ii) none of the plumes
is “elliptical”, as expected in classical Fickian transport the-
ory and embodied in solutions of the classical advection–
dispersion equation (ADE). Indeed, vertical averaging of
each plume shown in Figs. 4 and 5, at each time, does not
yield Gaussian (normally distributed) concentration profiles
but rather asymmetrical, “heavy-tailed” profiles.

At this juncture, note that here and below we use the
terms “non-Fickian” or “anomalous” – others sometimes
use the terms “pre-asymptotic” or “pre-ergodic” – to denote
any chemical transport behavior that differs from that de-
scribed by the classical ADE or a similar type of continuum-
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Figure 4. Photographs of dye transport in a flow cell (dimensions 0.86 (length)× 0.45 (height)× 0.10 (width) m) containing a uniform
packing of quartz sand (average grain diameter 0.532 mm), under a constant flow rate with Pe > 1, at four times (Levy and Berkowitz, 2003;
© with permission from Elsevier 2003).

Figure 5. Photographs of dye transport in a flow cell (dimensions 0.86 (length)× 0.45 (height)× 0.10 (width) m) containing a randomly
heterogeneous packing of quartz sand, under a constant flow rate with Pe > 1, at three times. The rectangular inclusions comprise sand with
an average grain diameter ∼ 0.5× smaller and hydraulic conductivity ∼ 3× lower than the surrounding sand matrix (Levy and Berkowitz,
2003; © with permission from Elsevier 2003).

scale formulation. Typically, though, non-Fickian transport
is characterized by early and/or late arrival times of mi-
grating chemical species to some control or measurement
plane/point, relative to those resulting from solution of the
ADE. The ADE applies to so-called Fickian behavior, in the
sense that it accounts for mechanical dispersion as a macro-
scopic form of Fick’s law; mechanical dispersion arises as an
“effective” (or “average”) quantity that describes local fluc-
tuations around the average (advective) fluid velocity. Thus,
in this formulation, a pulse of chemical introduced into a
macroscopically 1D, uniform velocity, for example, leads
to temporal and spatial concentration distributions that are
equivalent to a normal (Gaussian) distribution.

It is in this context that the term “homogeneous” pack-
ing used above is placed in quotation marks to indicate that
in natural geological media, “homogeneity” does not really
exist. Any natural geological sample of porous medium con-
tains multiple scales of heterogeneity, and at each particu-
lar scale of measurement, “unresolved” heterogeneities that
are essentially unmeasurable are present. And thus, as seen
in Fig. 4, for example, the overall transport pattern even in
a “homogeneous” system can be non-Fickian (anomalous).
We therefore emphasize that because natural heterogeneity
in geological formations occurs over a broad range of scales,
“normal” (Fickian) transport tends to be the “anomaly”,
whereas “anomalous” (non-Fickian) transport is ubiquitous
and should be considered “normal”.
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Moreover, as noted in Sect. 2.2, streamlines are not al-
tered with changes in the overall hydraulic gradient, at the
continuum (Darcy) scale, as long as laminar flow conditions
are maintained, because increasing the hydraulic gradient in-
creases the fluid velocity along the existing, “pre-defined”
streamlines by the same factor. However, the character of
chemical transport can be altered, as the change in residence
time in the domain affects the relative effects of advection
and diffusion space. And in domains with heterogeneous dis-
tributions of hydraulic conductivity, the local Pe (Sect. 3.1)
can vary more strongly, too.

Thus, we argue that patterns of chemical transport can-
not be fully determined from information only on the veloc-
ity field; solution of an appropriate continuum-scale trans-
port equation cannot be avoided. In conclusion, then, and
with particular reference to the (conceptually and theoreti-
cally beautiful) classical ADE – and to “conventional” con-
ceptual understanding and quantitative description of chem-
ical transport – we suggest that one must separate mathe-
matical convenience and wishful thinking from the reality
of experiments: there is a definitive need for more powerful
formulations of transport equations. In this context, one is re-
minded of the quotation by the biologist Thomas Henry Hux-
ley: “The great tragedy of science – the slaying of a beautiful
theory by an ugly fact.” (President’s Address to the British
Association for the Advancement of Science, Liverpool Meet-
ing, 14 September 1870)

3.3 Modeling chemical transport and the myth that
“fewer parameters are always better”

So how do we effectively model chemical transport?
As noted at the outset of Sect. 2, solution of the Navier–

Stokes or Darcy equations to determine the full flow field
and velocity distribution in a given porous-medium domain
has been proven correct and effective in most applications
and is well accepted in the literature. However, modeling of
chemical transport is more contentious, the reasons for which
we expand upon below.

We argue here that modeling of chemical species transport
requires us to think in terms of time, not just space. To assist
the reader in entering this frame of thinking and to sharpen
our conceptualization, we provide two examples to illustrate
aspects of time and space in the context of chemical transport
dynamics.

1. The classical example of the brachistochrone (ancient
Greek: “shortest time”), or path of fastest descent, is
the curve that would carry an idealized point-like body,
starting at rest and moving along the curve, without fric-
tion, under constant gravity, to a given end point in the
shortest time. Somewhat non-intuitively, the path that
leads to the shortest travel time is not a straight line,
but, rather, a special curve that is longer than a straight
line (a cycloid), as demonstrated by Johann Bernoulli

in 1697 (see http://old.nationalcurvebank.org//brach/
brach.htm, last access: 25 April 2022).

2. What error can be introduced when “averaging” in
terms of space? Consider the case of driving a total dis-
tance of 100 km, by first traveling 50 km at 1 km h−1

and then traveling 50 km at 99 km h−1. If we average
the speed in terms of space (distance), then we traveled
two segments of 50 km at two speeds, so the average
speed is (1+99)/2= 50 km h−1. In this framework, the
total time to travel the 100 km “should” only have been
2 h. However, in terms of time, the travel time is actually
50.5 h.

These simple examples help to emphasize the errors intro-
duced by traditional conceptual thinking, wherein the effects
of spatial transport and domain heterogeneity are quantified
only on the basis of spatial characteristics. It is worth re-
calling, too, Einstein’s quantitative treatment of Brownian
motion (Einstein, 1905). Prior to his analysis, researchers
applied – with puzzlement – a time-dependent velocity, v,
to quantify experimental measurements. Einstein (1905) in-
stead examined a recursion relation and expansion that led
to a diffusion equation whose solution showed, for the first
time, that the root mean squared displacement of particles
undergoing Brownian motion is proportional to

√
t and not

to vt , as had been assumed traditionally. An astounding con-
ceptual breakthrough over a century ago, this nature of diffu-
sive motion is now “common knowledge”.

In this same framework of focusing on time, the examples
shown in Figs. 4 and 5 emphasize that, for chemical trans-
port, we must recognize the critical role of rare events. These
rare events involve chemical species – migrating “particles”
or “packets” – that are held up or retained while traveling
through or into/out of lower-velocity regions in the porous
domain over various periods of time. Such events can have a
dominant impact on overall transport patterns at both the pore
and continuum scales. In this context, one must exercise cau-
tion with simple averaging of “small-velocity fluctuations”
and effects of molecular diffusion. Rather, small-scale het-
erogeneities in both space and time do not necessarily “av-
erage out” or become insignificant at larger scales; rather,
the effects of “rare events” (e.g., temporary trapping of even
small amounts of chemical species via diffusion into and out
of low-velocity regions) and fluctuations can propagate and
become magnified, within and across length scales from pore
to aquifer.

Armed with these thoughts, we suggest that modeling
chemical transport has been debated in the literature for at
least three reasons.

1. The desire to work with spatial averaging approaches
and equations: the research community was (and still is)
split over the need to recognize and incorporate, explic-
itly, influences of temporal mechanisms caused largely
by spatial heterogeneity (as characterized by the do-
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main hydraulic conductivity) when formulating “effec-
tive” (or “averaged”) equations. And even when recog-
nized, debate remains as to the appropriate mathemati-
cal formulation.

2. The lack of data: at least part of the difficulty in devel-
oping appropriate models is the lack of availability of
high-resolution laboratory data and field measurements
against which chemical transport models can be tested.
Indeed, many elaborate theoretical developments have
been advanced over the decades, with accompanying
analytical and numerical solutions – and yet, remark-
ably, comparative studies against actual laboratory data
remain limited, and tests with field measurements are
even sparser (see also Sect. 4 for further discussion of
this point).

3. The choice of approach to, and purpose of, chem-
ical transport modeling: two overarching approaches
to quantifying chemical transport can be defined, fo-
cusing on (i) quantification of “effective”, “overall”
chemical transport behavior without requiring high-
resolution discretization and numerical solution of the
domain, and, alternatively, (ii) high-resolution hydroge-
ological delineation and then intensive numerical sim-
ulation on highly discretized grids. We address ap-
proaches (i) and (ii) individually, below, in the context
also of points (1) and (2).

The debate in the literature between “effective” and high-
resolution hydrogeological modeling, as well as various pre-
conceptions and misconceptions discussed below and in
Sect. 4, leads naturally to consideration of the (often incor-
rectly invoked) argument that “fewer model parameters are
better”.

We first discuss briefly aspects of high-resolution hydro-
geological modeling in Sect. 3.3.1 and then focus on “effec-
tive” transport equation modeling in Sect. 3.3.2. We empha-
size that the latter approach is applicable to both small- and
large-scale domains. The former approach is generally in-
tended for large- (field-)scale systems, although it is in some
sense often applied for detailed pore-scale modeling; this ap-
proach is not particularly contentious, per se, but it is ham-
pered by the complexity and cost associated with the demand
for highly detailed hydrogeological information. Therefore,
research work remains heavily invested in “effective” trans-
port equation modeling.

3.3.1 High-resolution domain delineation and modeling

Efforts to resolve large-scale aquifer systems and to delin-
eate the hydraulic conductivity distribution at increasingly
higher resolutions began in earnest in the 1990s. Analy-
sis of field sites emphasized relatively high-resolution dis-
cretization of domain structure (e.g., blocks of the order of
10 m3 at the field scale, Eggleston and Rojstaczer, 1998, and

200×200×1 m3 at large regional scales, Maples et al., 2019).
These efforts, first focusing on determining the fluid flow
field and subsequently on delineating pathways for chemi-
cal transport, began largely because of dissatisfaction with
results of application of 1D, 2D, and 3D forms of an “effec-
tive” (averaged) ADE (see further discussion in Sect. 3.3.2).
Acquiring high-resolution measurements of structural (e.g.,
mineralogy, porosity) and hydrological properties (e.g., hy-
draulic conductivity) was made more feasible in recent years
by advances in hydrogeophysics, as well as by advances in
computational capabilities that enable incorporation of this
information into finely discretized meshes and numerical so-
lution for fluid flow and chemical transport.

In these highly resolved, high-resolution gridded domains,
the flow field can be determined from solution of Darcy’s
law. Chemical transport is then simulated either by use of
streamline particle tracking methods, by accounting for ad-
vection and diffusion in a Lagrangian framework, or via
solution of a local, mesh element continuum-scale trans-
port equation. For chemical transport, use of an advection–
diffusion equation might appear preferable – given that it
requires no estimate for the local dispersivity – but some
researchers apply an advection–dispersion equation, which
necessitates use of mesh-scale dispersivity values that are
either assumed or estimated from local measurements. The
latter case assumes mesh-scale transport to be fully Fickian
(recall Sect. 3.2). More recently, alternative formulations of
a governing transport equation that incorporates broad tem-
poral effects can also be used in this type of modeling ap-
proach; see, e.g., Hansen and Berkowitz (2020) for incorpo-
ration of a continuous time random walk method (discussed
in Sect. 3.3.2). Parenthetically, we note that “analogous”,
high-resolution measurements are made at the pore scale –
in millimeter to decimeter rock core samples – as a basis for
computationally intensive modeling of fluid flow and chem-
ical transport at these scales. Similarly to the evolution of
this approach for field-scale studies, high-resolution mea-
surements advanced from use of 2D rock micrographs to ad-
vanced micro-computed tomography protocols (e.g., Thovert
and Adler, 2011; Bijeljic et al., 2013; recall Sect. 2.1).

This approach is attractive in terms of the ability to “repro-
duce” detailed heterogeneous hydraulic conductivity struc-
tures and can provide useful “overall assessments” of fluid
flow and chemical transport pathways, as well as migration
of a chemical plume. Moreover, solutions for fluid flow and
chemical transport can be considered “exact”, at least at the
scale at which the domain is discretized; they can thus also
capture at least some aspects of non-Fickian transport. How-
ever, even at this type of spatial resolution, the ability to ef-
fectively quantify actual chemical transport, even relative to
the limited available field measurements, remains a question
of debate; the research community, as well as practicing engi-
neers, still often prefer to analyze chemical transport in a do-
main by use of relatively simple (often 1D, section-averaged)
model formulations.
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Finally, we point out that in the context of efforts to ob-
tain increasing amounts of structural and hydrological infor-
mation at a given field site, due consideration should also be
given to the “worth” of data. Thus – for example – in an effort
to quantify fluid flow or conservative chemical transport in an
aquifer, do we really need “full”, detailed knowledge of the
system (e.g. porosity, hydraulic conductivity) at every point
in the formation? Possibly non-intuitively, the adage “more
data are better” is often not true, and model incorporation of
statistical uncertainty can offer equally satisfactory solutions
with less costly and less measurement-intensive and compu-
tationally intensive detail (e.g., Dai et al., 2016).

3.3.2 “Effective” characterization and modeling

At least since the 1960s, the research community has focused
enormous efforts on formulation of “averaged” or “effective”
(often macroscopically, section-averaged 1D) transport equa-
tions to quantify chemical transport without requiring high-
resolution discretization and computationally intensive nu-
merical solution of the domain. The now “classical” ADE
was advanced as the governing partial differential equation;
see also further discussion on “effective scales of interest” in
the context of “upscaling” (Sect. 4). Recall that, as discussed
in Sect. 3.2, the ADE assumes Fickian transport behavior, in
the sense that mechanical dispersion – which is defined as an
average quantity to describe local fluctuations around the av-
erage (advective) fluid velocity – is treated macroscopically
by Fick’s law. The classical ADE then specifies coefficients
of longitudinal and transverse dispersivity, which by defini-
tion are constants.

Solutions of the ADE were compared against conserva-
tive tracer experiments in laboratory columns (generally 10–
100 cm) to produce breakthrough curves of concentration
vs. time, at a set outlet distance, but even from the outset,
the applicability of the ADE was questioned by some re-
searchers (e.g., Aronofsky and Heller, 1957; Scheidegger,
1959). Subsequent flow cell experiments demonstrated, for
example, that the dispersivity constants are not actually con-
stant and change with length scale – even over tens of cen-
timeters – to achieve even approximate fits to the measure-
ments (e.g., Silliman and Simpson, 1987). Moreover, solu-
tions of the ADE appear inadequate when compared to trans-
port in laboratory flow cells with distinct regions of different
hydraulic conductivities (e.g., Maina et al., 2018). In a sense,
then, it can be considered somewhat surprising that this form
of the ADE was subsequently assumed to apply, over sev-
eral decades, in a rather sweeping fashion to a wide range of
hydrogeological scenarios and length scales. Detailed discus-
sions of these aspects appear in, e.g., Berkowitz et al. (2006,
2016). Parenthetically, we stress again here that if one has
complete information at the pore scale, then solution of the
Navier–Stokes and advection–diffusion equations within the
pore space can capture the true chemical transport behavior;
i.e., purely spatial information is sufficient to describe chem-

ical transport. But, at continuum scales, time and unresolved
heterogeneities became critical, and an “averaged” equation
like the ADE with a “macrodispersion” concept is problem-
atic.

To move beyond the ADE and the definitive need for ef-
fective transport equations that quantify non-Fickian as well
as Fickian transport (recall Figs. 4 and 5), we consider an
alternative approach. The idea is to account for the temporal
distribution that affects chemical migration, in addition to the
spatial distribution, at a broad continuum level and employ a
transport equation in the spirit of a “general-purpose” ADE.
This approach necessarily leads to transport behaviors that
are more general than those indicated by a “general ADE”,
i.e., in the context of an overall, averaged 1D transport sce-
nario, for example.

To explain this approach, we refer to the continuous
time random walk (CTRW) framework, which is particularly
broad and general (Berkowitz et al., 2006). Significantly, and
conveniently, it turns out that special, or limit, cases of a
general CTRW formulation lead to other well-known formu-
lations that can also quantify various types of non-Fickian
transport, as explained in, e.g., Dentz and Berkowitz (2003)
and Berkowitz et al. (2006). These “subsets” include mobile–
immobile (e.g., Feehley et al., 2000), multirate mass trans-
fer (e.g., Haggerty and Gorelick, 1995; Harvey and Gore-
lick, 1995; Carrera et al., 1998), and time-fractional deriva-
tive formulations (e.g., Barkai et al., 2000; Schumer et al.,
2003; Metzler and Klafter, 2004). Indeed, in spite of refer-
ences to these model formulations as being “different”, they
are closely related, with clear mathematical correspondence.
Each formulation has advantages, depending on the domain,
problem, and objectives of model use, but model selection
must first be justified physically, and it is inappropriate, for
example, to apply a mobile–immobile (two-domain) model
to interpret chemical transport in a “uniform, homogeneous”
porous medium when it displays non-Fickian transport be-
havior (recall Fig. 4).

Here, we describe only briefly the principle and basic as-
pects of the CTRW formulation; detailed explanations and
developments are available elsewhere (e.g., Berkowitz et al.,
2006).

To introduce “temporal thinking” in the context of non-
Fickian transport, we begin by mentioning the analogy be-
tween a classical random walk (RW) – which leads to Fick’s
law – and the CTRW. A classical random walk is given in
Eq. (1):

Pn+1(l)=
∑
l′

p(l, l′)Pn(l
′), (1)

where p(l, l′) represents the probability of a random walker
(“particle”) advancing from location l′ to l, Pn(l′) denotes
the probability of a particle being located at l′ at (fixed) time
step n, and Pn+1(l) denotes the probability of the particle
then being located at l at step n+ 1. With this formulation in
mind, Einstein (1905) and Smoluchowski (1906a, b) demon-
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strated that for n sufficiently large and a sufficient number
of particles undergoing purely (statistically) random move-
ments in space, the spatial evolution of the particle distribu-
tion is equivalent to the solution of the (Fickian) diffusion
equation. This elegant discovery demonstrated that a partial
differential equation and its solution can be represented by
following, numerically, the statistical movement of particles
(i.e., particle tracking) following a random walk. Remark-
ably, random walk formulations are “generic” in the sense
that they can be applied in a broad range of phenomena in
physics, chemistry, mathematics, and the life sciences; here,
they describe naturally migration of chemical species (dis-
solved “particles” or “packets”) in water-saturated porous
media. Generalizing the partial differential equation to in-
clude transport by advection, solution of the ADE under var-
ious boundary conditions can then be determined by an ap-
propriate random walk method.

The simple random walk given in Eq. (1) can be general-
ized by accounting for time, replacing the particle transition
(or iteration) counter n by a time distribution. The general-
ized formalism in Eq. (2), with the joint distribution ψ(s, t),
called “continuous time random walk” and applied to trans-
port, was first introduced by Scher and Lax (1973):

Rn+1(s, t)=
∑
s′

t∫
0

ψ(s− s′, t − t ′)Rn(s
′, t ′)dt ′, (2)

where Rn+1(s, t) is the probability per time of a particle just
arriving at site s at time t after n+ 1 steps and ψ(s, t) is the
probability rate for a displacement from location s′ to time s

with a difference of arrival times of t − t ′. It is clear that
ψ(s, t) is the generalization of p(l, l′) in Eq. (1) and that the
particle steps can now each take place at different times. In-
deed, it is precisely this explicit accounting of a distribution
of temporal contributions to particle transport, not just spa-
tial contributions, that offers the ability to effectively quan-
tify transport behaviors as expressed by, e.g., heavy-tailed,
non-Fickian particle arrival times.

Where does the generalization in Eq. (2) lead us? In
a mindset similar to that of Brownian motion and Ein-
stein’s (1905) breakthrough mentioned above at the outset of
Sect. 3.3, a puzzle arose about 7 decades later for researchers
attempting to interpret observations of electron transit times
in disordered semiconductors. The electron mobility (defined
as velocity per unit electric field), which was considered an
intrinsic property of the material, was found to depend on
variables that changed the duration of the experiment, such
as sample length or electric field. Scher and Montroll (1975),
considering Eq. (2), discovered that the mean displacement l
of the electron packet does not advance as l = vt but rather
as l ∼ tβ .

In the context of chemical transport in geological for-
mations, the behavior l ∼ tβ can be attributed to a wide
distribution of transition times in naturally disordered ge-
ological media. In the CTRW formulation, the transition

time distribution is characterized by a power law of the
form ψ(t)∼ t−1−β for t→∞ and 0< β < 2; significantly,
the resulting transport behavior is Fickian for β > 2. At
large times, for this ψ(t) dependence, the mean displace-
ment l(t) and standard deviation σ(t) of the migrating chemi-
cal plume c(s, t) scale as l(t)∼ tβ and σ(t)∼ tβ for t→∞,
0< β < 1 (Shlesinger, 1974). Moreover, for t→∞ with
1< β < 2, the plume scales as l(t)∼ t and σ(t)∼ t (3−β)/2.
These behaviors are notably different than that of Fickian
transport models, for which (from the central limit theorem),
l(t)∼ t and σ(t)∼ t1/2.

With the concepts described here, and using the gener-
ally applicable decoupled form ψ(s, t)= p(s)ψ(t), where
p(s) is the probability distribution of the transition lengths
and ψ(t) is the probability rate for a transition time t be-
tween sites, Eq. (2) can be developed into an (integro-)partial
differential equation. Thus, the ADE given by

∂c(s, t)

∂t
=−[v(s) · ∇c(s, t)−D(s) : ∇2c(s, t)], (3)

where c(s, t) is the concentration at location s and time t ,
v(s) is the velocity field, and D(s) is the dispersion tensor, is
replaced by the more general CTRW transport equation:

∂c(s, t)

∂t
=−

t∫
0

M(t − t ′)
[
vψ · ∇c(s, t

′)−Dψ : ∇∇c(s, t ′)
]

dt ′, (4)

where vψ and Dψ are generalized particle velocity and dis-
persion, respectively, and M(t) is a temporal memory func-
tion based on ψ(t).

The strength of this type of formulation is that it effectively
quantifies (non-Fickian) early arrivals and late time tailing of
migrating chemical species as well as the spatial evolution
of chemical plumes in heterogeneous media. For example,
recalling the scenario in Fig. 2, wherein 99.9 % of the in-
flowing particles traverse the preferential pathways seen in
Fig. 2c, detailed numerical simulations indicate that concen-
tration breakthrough curves exhibit significant, non-Fickian,
long-time tails (Edery et al., 2014). Choice of an appropri-
ate power-law form of ψ(t) was then shown to capture this
behavior; moreover, a functional form defining the value of
the power-law exponent β in ψ(t) was identified, based on
statistics of the hydraulic conductivity and particle interroga-
tion of the domain (Edery et al., 2014).

Equation (4) is essentially an ADE weighted by a tempo-
ral memory. When ψ(t) is an exponential function (or power
law but for β ≥ 2), M(t)→ δ(t), and we recover Fickian
transport described by the ADE; thus, the ADE assumes,
implicitly, that particle transition times are distributed ex-
ponentially. However, with a power-law form ψ(t)∼ t−1−β

for 0< β < 2, the transport is non-Fickian. A wide range of
functional forms of ψ(t) can be chosen, including, e.g., trun-
cated power-law forms that allow evolution to Fickian trans-
port at large times or travel distances (e.g., Dentz et al., 2004)
as well as Pareto (e.g., Hansen and Berkowitz, 2014) and
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curved (or inverse gamma; e.g., Nissan and Berkowitz, 2019)
temporal distributions. Other, generally simpler, choices
of ψ(t) or M(t) lead to mobile–immobile, multirate mass
transfer, and time-fractional derivative formulations, as men-
tioned above. We note, too, that the elegant result derived by
Gelhar and Axness (1983) and others, discussed in Sect. 1.2,
is valid only at an asymptotic limit, wherein transport is Fick-
ian and there is no residual non-Fickian memory in the plume
advance.

A plethora of related studies have examined a range of
perspectives and applications that explore CTRW formula-
tions. These studies address, for example, numerical simu-
lations (e.g., Le Borgne et al., 2008; Rhodes et al., 2008;
Berkowitz and Scher, 2010; Kang et al., 2014; Nissan and
Berkowitz, 2018; Hansen, 2020; Edery, 2021), fractured
formations (e.g., Geiger et al., 2010; Wang and Cardenas,
2017), stream transport (e.g., Boano et al., 2007), and lab-
oratory measurements at difference scales (e.g., Le Borgne
and Gouze, 2008; Major et al., 2011). Other studies have ex-
plored space-fractional differential equations (e.g., Benson et
al., 2000; Wang and Barkai, 2020).

Each of these power-law forms of course requires one or
more parameters – at least β – and, in some cases, other pa-
rameters that define, e.g., a transition time from non-Fickian
to Fickian transport (Berkowitz et al., 2006; Hansen and
Berkowitz, 2014; Nissan et al., 2017). These parameters have
physical meaning and are not purely empirical; perspectives
on “numbers of parameters” associated with all models are
discussed in Sect. 3.3.3. The question of how model param-
eter values are determined is addressed in Sect. 4.1.

The efficacy of formulations that incorporate, whether ex-
plicitly or implicitly, some type of power-law characteriza-
tion of temporal aspects of chemical transport is now gen-
erally recognized in the literature. Indeed, applications of
mobile–immobile, multirate mass transfer, time-fractional
advection–dispersion, and general CTRW formulations have
been made quite extensively and successfully. In particu-
lar, solutions of Eq. (4) and related variants have inter-
preted a wide range of chemical transport scenarios: (i) pore-
scale to meter-scale laboratory experiments, field studies, and
numerical simulations, (ii) in porous, fractured, and frac-
tured porous domains, (iii) accounting for constant and time-
dependent velocity fields, and (iv) for both conservative and
reactive chemical transport scenarios. Solutions to address
some of these scenarios are more easily obtained by use of
particle tracking methods that incorporate the same consider-
ations and power-law form of ψ(t), as embedded in Eq. (4).

Like the ADE, Eq. (3), the formulation given in Eq. (4)
represents a continuum-level mechanistic model (as derived
in, e.g., Berkowitz et al., 2002), in the sense that both equa-
tions contain clear advective and dispersive contributions.
The occurrence of a broad distribution of transition times,
fundamental to CTRW and related approaches, emanates
from a variety of physical controls. Discussion in the liter-
ature about the need for “mechanistic models” often uses

the term rather loosely: “mechanistic” transport model equa-
tions are based on fundamental laws of physics, with con-
stant parameters that have physical meaning (e.g., hydraulic
conductivity, diffusivity, sorption), and thus offer process un-
derstanding. However, to quantify the spatiotemporal evolu-
tion of a migrating chemical plume, additional parameters
are needed. Because of the nature of geological materials, a
transport equation should of course capture the relevant phys-
ical mechanisms that influence the transport as well as chem-
ical mechanisms if the species is reactive. But to do so, we
must also capture the uncertain characterization of hydrogeo-
logical properties due to the reality of unresolved, unmeasur-
able heterogeneities at any length scale of interest. Thus, we
suggest that a mechanistic–stochastic equation formulation
such as given in Eq. (4) is required. Such an equation (i) in-
corporates a probability density function to account for tem-
poral transitions that cannot be determined only from spatial
information, (ii) describes known transport mechanisms with
physically meaningful parameters, and (iii) accounts for un-
known (and unknowable) information.

We note here, too, that other stochastic continuum averag-
ing methods have been proposed in the literature in the same
context of efforts to formulate a “general”, “effective” trans-
port equation at a specific scale of interest (see further discus-
sion on “effective” equations and “upscaling” in Sect. 4). In
many cases, though, sophisticated stochastic averaging and
homogenization approaches have led to transport formula-
tions that are essentially intractable, in terms of solution,
and/or have remained at the level of hypothesis without being
tested successfully against actual data.

3.3.3 Are fewer parameters always better? (Answer:
no!)

The term “modeling” is used in many contexts and with dif-
fering intents. However, in the literature dealing with chem-
ical transport in subsurface hydrological systems, there are
frequent but often misguided “arguments” regarding “which
model is better”, with a major point of some authors being
the claim that “fewer parameters are always best”. Not al-
ways. Indeed, some models involve more parameters than
others, but if these parameters have physical meaning and are
needed as factors to quantify key mechanisms, then “more
parameters” are not a “weakness”. We emphasize, too, that
when weighing the use of any specific model, “better” also
depends, at least in part, on what the modeling effort is ad-
dressing. Clearly – regardless of the number of parameters –
a “back-of-the-envelope” calculation using a simple model is
sufficient if, for example, one requires only an order of mag-
nitude estimate of the center-of-mass velocity of a migrating
contaminant plume or, in other words, no need for artillery
to swat a mosquito. In this context, quoting Albert Einstein
regarding his simplification of physics into general relativity,
“Everything should be made as simple as possible, but not
simpler.”
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Considering chemical transport in subsurface geological
formations and the aim of quantifying (modeling) the evolu-
tion of a migrating chemical plume in both space and time,
we return to focus on the ADE- and CTRW-based formula-
tions discussed in Sect. 3.3.2. As noted in the preceding sec-
tions, CTRW and related formulations can describe transport
behaviors effectively. Most significantly, the seminal work of
Scher and Montroll (1975) showed that the β exponent must
be included because the mean displacement is not linear with
time (i.e., the mean displacement l of the electron packet
does not advance as l = vt but rather as l ∼ tβ ). Similarly,
a corresponding parameter, relative to an ADE formulation
invoking Fickian transport, is unavoidable when transport is
non-Fickian.

It should be recognized that quantitative model informa-
tion criteria, or model selection criteria, can be used to as-
sess and compare various model formulations that are ap-
plied to diverse scenarios (such as fluid flow or chemical
transport) in subsurface geological formations. These infor-
mation criteria (IC) include AIC (Akaike, 1974), AICc (Hur-
vich and Tsai, 1989), and KIC (Kashyap, 1982) measures
as well as the Bayesian (or Schwarz) BIC (Schwarz, 1978).
They are formulated to rank models or assign (probabilistic)
posterior weights to various models in a multimodel com-
parative framework and therefore focus on model parame-
ter estimates and the associated estimation uncertainty. As
such, these information criteria discriminate among various
models according to (i) the ability to reproduce system be-
havior and (ii) the structural complexity and number of pa-
rameters. Discussion of theoretical and applied features of
these criteria is given elsewhere (e.g., Ye et al., 2008). Us-
ing such measures specifically in the context of the ADE and
CTRW formulations, with an accounting also of chemical re-
actions, it was shown that while solution of an ADE can fit
measurements from some locations quite closely, the CTRW
formulation offers significantly improved predictive capabil-
ities when examined against an entire experimental data set
(Ciriello et al., 2015). In addition, focusing on the most sensi-
tive observations associated with the CTRW model provides
a stronger basis for model prediction relative to the most sen-
sitive observations corresponding to the ADE model.

To conclude this section: notwithstanding the above ar-
guments, some readers might continue to argue that the ap-
proach discussed here – viz. the need for time considerations
as well as space such as embodied in the CTRW framework
and related formulations – is “inelegant” because it requires
more parameters relative to the classical ADE. In response,
the reader is encouraged to recall the words of Albert Ein-
stein following criticism that his theory of gravitation was
“far more complex” than Newton’s. His response was sim-
ple: “If you are out to describe the truth, leave elegance to
the tailor”.

4 The holy grail of upscaling and myths about
“a priori” parameter determination

We begin by defining the term “upscaling” in the context
of the discussion here on chemical transport. As defined in
the Introduction, Sect. 1.2, we use the term “upscaling” to
describe the effort to develop and apply chemical transport
equations at large length scales, and identify corresponding
model parameter values, based on measurements and param-
eter values obtained at significantly smaller length scales.

We attempt “upscaling” in the hope of developing gov-
erning equations for chemical transport at larger and larger
scales, from pore, to core, to plot, and to field length scales.
Clearly, then, “upscaling” is relevant to the modeling ap-
proach discussed in Sect. 3.3.2 – which focuses on use of
“averaged” or “effective” (often 1D or section-averaged)
transport equations – and not to the high-resolution domain
delineation and modeling approach of Sect. 3.3.1.

However, in light of the discussion in Sects. 2 and 3, we
argue that upscaling of chemical transport equations is very
much an unattainable holy grail. Particularly in light of rec-
ognizing temporal effects, in addition to spatial characteriza-
tion, we maintain that it is necessary to formulate and cali-
brate models, and then apply them, at similar measurement
scales of interest. Of course, similar equation formulations
can be applied at different spatial scales. However, parame-
ter values for transport equations cannot generally be deter-
mined a priori or from purely spatial or flow-only measure-
ments; measurements with a temporal “component”, at the
relevant length scale of interest, are required.

In Sect. 4.1, we briefly discuss aspects of model calibra-
tion. This leads naturally to our discussion of upscaling in
Sect. 4.2.

4.1 Parameter determination and model calibration

First, it is prudent to offer some words about the need for pa-
rameter estimation or model calibration. Unless one is deal-
ing with first principles calculations of a physical process
such as molecular diffusion in a perfectly homogeneous do-
main, a priori determination of model parameters – for any
model equation formulation – requires calibration against
actual experimental measurements. In some limited cases,
detailed numerical simulations can be used at small (pore)
scales, e.g., using an advection–diffusion equation together
with solution of the Navier–Stokes equations to first deter-
mine the precise flow field in the pore space, but this also ne-
cessitates detailed measurements of the pore structure such as
obtained by computed tomography measurements (e.g., Bi-
jeljic et al., 2013). Indeed, then, at any realistic problem or
scale of interest, all chemical transport models require cali-
bration.

This fundamental tenet should be clear and well recog-
nized, yet the literature contains all-too-frequent – and both
misguided and misleading – “criticism” of various model for-
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mulations, claiming that “parameters are empirical because
they are estimated by calibration (fitting) to experiments”;
additional “criticisms” follow, for example, that such a model
is therefore not “universal” and/or that “it therefore has no
predictive capability”. We address these latter “criticisms”
in Sect. 4.2. Parameters are not “empirical” simply because
their values are determined by matching to an experiment.
Moreover, it should be recognized that application even of
the classical ADE at various column and larger scales re-
quires estimates – obtained by calibration – of dispersivity
coefficients; and for high-resolution domain delineation and
modeling as discussed in Sect. 3.3.1, calibrated “block-scale”
dispersivities are needed. Note that if dispersivities are not
actually determined for a specific experiment but selected
from the literature for “typical” values of dispersivity, there is
still a reliance on calibration from previous “similar” studies.
Moreover, with reference to the desire for model parameters
that represent fundamental, spatial hydrogeological proper-
ties of the domain, note that even the classical ADE disper-
sivity parameter is not uniquely identified with such proper-
ties; rather, it varies even in a given domain as a function of
chemical plume travel distance or time.

With regard to model “universality”, recall that, for exam-
ple, percolation theory (discussed at the beginning of Sect. 2)
offers “universal” exponents in scaling relationships. How-
ever, even for this type of convenient and useful, statisti-
cal model, such scaling relationships, too, can only advance
from “scaling” (e.g., A∼ B) to a full “equation” (e.g., A=
kB) by calibration of a coefficient of equality (k) against ac-
tual measurements. So, even in “simple” models, model cal-
ibration cannot be avoided.

To address “empiricism” – here enters the question of
whether parameters of a particular model (in this case, equa-
tions for chemical transport) have a physical meaning. As
discussed in Sect. 3.3.2, a mechanistic–stochastic equation
formulation such as given in Eq. (4) incorporates a prob-
ability density function to describe known transport mech-
anisms in a stochastic sense; but stochastic does not mean
“unphysical”, and the parameters as given in, e.g., particu-
lar functional forms of M(t) or ψ(t) are indeed physically
meaningful. For example, the key β-exponent characteriz-
ing the power-law behavior can be linked directly to the
statistics of the hydraulic conductivity field (Edery et al.,
2014) or, in a fracture network, determined from the veloc-
ity distribution in fracture segments (Berkowitz and Scher,
1998), which is related directly to physical properties of
the domain. Similarly, corresponding parameters appearing
in “subset” formulations to quantify non-Fickian transport
– e.g., mobile–immobile, multirate mass transfer, and time-
fractional derivative formulations – can be understood to
have physical meaning (e.g., Haggerty and Gorelick, 1995;
Harvey and Gorelick, 1995; Carrera et al., 1998; Dentz and
Berkowitz, 2003; Berkowitz et al., 2006). These parameters,
too, of course require determination by model calibration to
experimental data, or where appropriate to results of numeri-

cal simulations, just as for ADE and any other model formu-
lation.

4.2 Upscaling, the scale of interest, and predictive
capabilities

Upscaling of fluid flow “works” because at the Darcy scale
– which is the “practical” scale for most applications – flow
paths and streamlines do not change with increasing gradient
as long as a transition to turbulent flow is not reached. The
equation formulation remains valid, and the fluid residence
time in a domain is irrelevant because self-diffusion of water
does not affect overall fluid fluxes.

For chemical transport, though, the situation is totally dif-
ferent. Why? Because “upscaling” entails some kind of “cou-
pled” averaging or parameterization in both space and time,
and it is far from clear how, if at all, this can be achieved.
Moreover, small-scale concentration fluctuations do not nec-
essarily “average out” but instead propagate from local to
larger spatial scales. To illustrate another aspect of the com-
plexity, the Péclet number (Pe) in heterogeneous media,
with preferential pathways, varies locally in space (recall
Fig. 3 and the discussion in Sect. 3.1). Averaging to obtain
a macroscale (“upscaled”) Pe must address the relative, lo-
cally varying effects of advection and diffusion in space as
well as the overall residence time in the domain; after all,
it is these effects that dominate determination of the plume
evolution. Thus, upscaling requires spatial averaging, but (at
least an) implicit temporal averaging must also be included.
It can be argued that no single, effective Pe can be defined
for the entire domain; whether or not it is possible, and how
it is possible to average local Pe values to achieve a single,
meaningful domain-scale Pe remains an open question. And
whether we like it or not, even with complete information
on the spatial (local) Pe distribution, the impact on the over-
all transport pattern evolution cannot be determined without
actually solving for transport in the domain.

For chemically reactive species, the transport situation be-
comes even more complex, because the local residence time,
not just the local Pe, must be taken into consideration. More-
over, when precipitation or dissolution processes are present,
the velocity field will change locally, introducing additional
local temporal and spatial variability. And when sorption is
present but tapers off – for example, when the cation ex-
change capacity is met – even the diffusion coefficient it-
self changes. These factors further complicate attempts to
upscale. In this context, too, it should be noted that for chem-
ically reactive systems, it is well known that there is of-
ten a significant lack of correspondence between laboratory
and field-based estimates of geochemical reaction rates and
rates of rock weathering, with field-scale estimates – often
based on macroscopically Fickian, ADE-like transport for-
mulations – being generally significantly smaller (e.g., White
and Brantley, 2003).
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Thus, we suggest that focusing efforts on attempting to de-
velop upscaling methodologies for chemical transport, based
on any transport equation formulation, appears to be doomed
largely to failure – as evidenced, too, by decades of re-
search publications. Rather, we argue that because of the sub-
tle effects of temporal mechanisms and their close coupling
to spatial mechanisms, use of an “effective” or “averaged”
continuum-level equation to describe chemical transport re-
quires calibration of a suitable model at the appropriate scale
of interest, with model parameter values calibrated at essen-
tially the same scale. The model can then be applied to ex-
amine transport behaviors over spatial scales with relatively
similar orders of magnitude.

We emphasize, though, that as stated at the outset in
Sect. 4, we do argue that similar (continuum-level) trans-
port equation formulations can be applied at different spa-
tial scales, as long as they are mechanistically correct, with a
temporal component, and the parameter values are based on
measurements at the relevant length scale of interest.

Now, in the context of the above arguments regarding “up-
scaling” and model application, we return to the ideas pre-
sented in Sect. 3.3.2 and consideration of model formula-
tions that account for both spatial and temporal effects. We
first mention use of the ADE. As pointed out in Sect. 3.2
and the extensive literature, the “constant” (as required by the
ADE formulation) “intrinsic” dispersivity parameter changes
significantly even over relatively small increases in length
scales (e.g., tens of centimeters; Silliman and Simpson, 1987)
– and therefore also over timescales. It therefore makes no
real sense to attempt to define an “upscaled” dispersivity pa-
rameter for larger scales. Even in the framework of high-
resolution domain delineation and modeling, discussed in
Sect. 3.3.1 – which is not “upscaling” as defined here – the
question remains as to which dispersivity values are rele-
vant for field-scale aquifer “blocks” of the order of 100s to
1000s of cubic meters.

In contrast, CTRW and related transport formulations with
explicit accounting of time effects, as outlined in Sect. 3.3.2,
can be applied meaningfully to interpret real measurements
and transport behavior at “all” scales. We can use the same
equation formulation at different scales, with different but
relevant parameters at each scale. We emphasize, too, that
we do not argue for “hard” length scales: in principle, e.g.,
an appropriate CTRW-based model calibrated at 20 cm will
be applicable to 100 cm scales, and a model calibrated on a
100 m scale data set can be applicable at a kilometer scale
(e.g., Berkowitz and Scher, 1998, 2009; Rhodes et al., 2008;
Geiger et al., 2010; Edery, 2021). The point, though, is that
it makes no sense to calibrate at a centimeter scale and
then expect to somehow “upscale” parameters to apply the
same model at a kilometer scale. Note that, as an aside,
over very large field-length and field-time scales, we point
out that homogenization effects of molecular diffusion may
become more significant, lessening impacts of some prefer-
ential pathways. Similarly, a CTRW-based approach can be

applied over a range of timescales, because the power law
accounting for temporal effects can be as broad as needed.
In these cases, temporal effects are critical, because at the
continuum (Darcy) scale, streamlines do not change but res-
idence times do. Specifically, for example, a model formu-
lation with a fixed set of parameters can interpret transport
measurements in the same domain, but acquired under dif-
ferent hydraulic gradients or fluid velocities, and thus do-
main residence times (Berkowitz and Scher, 2009). Indeed,
because of the temporal accounting, CTRW has been applied
successfully over scales from pores (e.g., Bijeljic et al., 2013)
to kilometers (e.g., Goeppert et al., 2020), with parameter
calibration at the relevant scale of interest. In principle, then,
a calibrated model shown to be meaningful over one region
of a porous medium or geological formation can offer at least
a reasonable estimate of transport behavior elsewhere in the
medium/formation, at a similar length scale/timescale, and as
long as the medium/formation can be expected to have rea-
sonably similar hydrogeological structure and properties.

Finally, another critical aspect must be pointed out with
regard to continuum-scale transport models as outlined in
Sect. 3.2. The preceding discussion leads to the stated need
and desire – at least in principle – to achieve model “pre-
diction”. This term appears often, but it is often used incor-
rectly. Fitting a model solution to data is of course not “pre-
diction”. On the one hand, using specific experiments and
data sets, models can be used to characterize transport be-
havior, e.g., whether transport is Fickian or non-Fickian, or
whether a migrating chemical plume is compact or elongated
and ramified, which is of fundamental importance. However,
if prediction is the ultimate goal (recognizing that address-
ing prediction uncertainty is yet another consideration), then
we require multiple data sets from the same porous medium
or geological formation, in the sense that we need measure-
ments over a range of length scales and/or over a range of
timescales (i.e., same distance, different flow rates). An in-
tended model can then be calibrated against one part of the
data set; the calibrated model is then applied “as is”, and
the resulting solution, a “prediction”, is compared against
other “previously unknown” measurements. At the labora-
tory scale, such a protocol is feasible but rarely executed.
Rather, the literature generally reports fits of transport equa-
tion solutions at specific scales – individual data sets at a
given length scale – and not over a range of scales, so that no
real testing of “upscaling” or “prediction” is achieved. Thus,
even at laboratory scales, the true “predictive capability” of
a model is rarely examined or reported. Note that a similar
approach to “prediction” can be done in a purely numerical/-
computational study, using “ground truth simulations” that
are assumed to be correct (e.g., Darcy flow calculations and
then streamline particle tracking for chemical transport in a
highly resolved domain; recall Sect. 3.3.1) and then com-
paring solutions from a continuum (partial differential equa-
tion) model solution. However, it should be recognized that
results from assumed simulation methods are often unsatis-
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factory when compared against experimental measurements
and field observations.

At the field scale, the situation is even less satisfactory:
large-scale field tests for chemical transport are difficult and
expensive to execute, so that systematic data sets that en-
able testing of model “prediction” – as well as even ini-
tial calibration of a transport model – are essentially non-
existent. Moreover, while larger-scale structural features can
be identified in principle via non-invasive geophysical meth-
ods, higher-resolution sampling and measurements of hy-
draulic conductivity and geochemical parameters are neces-
sarily highly limited. As a result, oft-used, non-unique inter-
polation of sparse concentration measurements is employed
to yield (ideally 3D) contour maps of hydrogeological pa-
rameters and actual chemical concentrations, but interpola-
tion will unrealistically smoothen and dampen existing rami-
fied and irregular preferential pathways (recall Fig. 2). Thus,
notwithstanding the extensive research efforts reported in
the literature, truly comparative studies using field measure-
ments – to genuinely test proposed “upscaling” methodolo-
gies – are essentially non-existent (e.g., Berkowitz et al.,
2016). In this context, then, we note that criticism in the lit-
erature that a given continuum model “demonstrates no pre-
dictive capability” is in fact not generally based on its as-
sessment relative to sufficiently resolved, representative, and
real data sets. Finally, it is important to recognize that mod-
els are most commonly tested against 1D, section-averaged
concentration breakthrough curves, which can be (i) mea-
sured directly in laboratory column experiments, (ii) esti-
mated or derived in 2D/3D laboratory flow cells by averaging
over control planes, or (iii) estimated from limited monitor-
ing well measurements (single- or multi-level sampling with
depth) at a fixed number of locations. The latter case, in par-
ticular, requires extensive interpolation and/or assumption of
a large-scale, essentially 1D and uniform macroscopic flow
field. Moreover, chemical transport model discrimination of-
ten requires breakthrough curves that extend over the late
time tailing, which are particularly difficult to determine in
field conditions, due both to interruptions or lack of practical-
ity in well monitoring at long times and to detection limits of
measurement methods. While reliance on such 1D (section-
averaged, over some control plane) breakthrough curves may
not be ideal, it is often the reality in terms of feasible data ac-
quisition. As a direct consequence, model selection, model
parameter fits, and model calibration results may each (and
all) be non-unique and lead to confusing or conflicting con-
clusions. It is therefore critical that we at least select from
mechanistic–stochastic models based on fundamental laws
of physics, with parameters that have physical meaning, as
discussed in Sect. 3.3.2, rather than from models invoking
purely statistical distributions or assumptions known to be
incorrect.

5 Concluding remarks

The ideas, arguments, and perspectives offered here repre-
sent an effort to somehow summarize and synthesize an un-
derstanding of existing approaches and methods proposed to
quantify conservative chemical transport in subsurface hy-
drological systems. The literature on this subject is vast, ex-
tending over decades, and measurements and observations of
chemical transport range from pore-scale microfluidic labo-
ratory cells to aquifer field scales. A similarly broad range of
model formulations has been proposed to quantify and inter-
pret these measurements/observations. And yet outcomes of
these efforts are often largely unsatisfactory.

We contend that modeling obstacles arise largely because
domain heterogeneity – in terms of porosity, hydraulic con-
ductivity, and geochemical properties – is present over multi-
ple length scales, so that “unresolved”, practically unmeasur-
able heterogeneities and preferential pathways arise at every
length scale. Moreover, while spatial averaging approaches
are effective when considering overall fluid flow – wherein
pressure propagation is essentially instantaneous and the sys-
tem is “well mixed” – purely spatial averaging approaches
are far less effective for chemical transport, essentially be-
cause well-mixed conditions do not prevail. We assert here
that an explicit accounting of temporal information, under
uncertainty, is an additional – but fundamental – compo-
nent in an effective modeling formulation. As a consequence,
we argue that for continuum-scale analysis, mechanistic–
stochastic models such as those outlined in Sect. 3.2 must
be invoked to account explicitly for both “additional” tempo-
ral effects and unresolved heterogeneity. Clearly, no single
model is “best” for all situations and objectives, but any se-
lected model must be physically relevant and justified.

We further assert, as an outcome of these arguments, that
“upscaling” of chemical transport equations – in the sense of
attempting to develop and apply chemical transport equations
at large length scales based on measurements and model pa-
rameter values obtained at significantly smaller length scales
– is very much an unattainable holy grail. Rather, because
probabilistic considerations required to account for small-
scale fluctuations do not necessarily “average out” – and can
propagate from local to larger spatial scales – we maintain
that it is necessary to formulate and calibrate models and then
apply them over spatial scales with similar orders of magni-
tude.

In all of our efforts to reasonably model chemical trans-
port in subsurface hydrological systems, we should recog-
nize and accept the objective of advancing our science by
integrating theory, computational techniques, laboratory ex-
periments, and field measurement, with the aim of extracting
broadly applicable insights and establishing practical, func-
tional tools. In this context, as a close colleague and mentor
said to me many, many years ago, “remember, this is hydrol-
ogy, with very real problems to address . . . we’re not doing
string theory”.
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We have included many points for discussion and open
thought. Understandably, the reader may not agree with all
arguments and conclusions raised here, but scholarly debate
is critical: it is hoped that this contribution will stimulate fur-
ther discussion, assist in ordering classification of the (often
confusing) terminologies and considerations, and identify the
most relevant, real questions for analysis, implementation,
and future research.

We hope that the above thoughts and illustrations (i) en-
courage careful consideration prior to data collection,
whether from field measurements, laboratory experiments,
and/or numerical simulations, (ii) assist in experimental de-
sign and subsequent analysis, and, even more significantly,
(iii) influence the research agenda for the field by challeng-
ing researchers to ask and address appropriately formulated
questions. In terms of “modeling” efforts: recall the state-
ment by Manfred Eigen (Nobel Prize in Chemistry, 1967):
“A theory has only the alternative of being right or wrong. A
model has a third possibility: it may be right, but irrelevant.”
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