Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Jiayi Fang
CORRESPONDING AUTHOR
Key Laboratory of Geographic Information Science (Ministry of
Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
Thomas Wahl
Department of Civil, Environmental, and Construction Engineering and National Center for Integrated Coastal Research, University of Central
Florida, 12800 Pegasus Drive, Orlando, FL 32816, USA
Jian Fang
College of Urban and Environmental Science, Central China Normal
University, Wuhan, 430079, China
Key Laboratory of Geographic Information Science (Ministry of
Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
Feng Kong
College of Humanities and Development Studies, China Agriculture
University, Beijing, 100083, China
Min Liu
Key Laboratory of Geographic Information Science (Ministry of
Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
Related authors
Xinlong Zhang, Jiayi Fang, Yue Qin, Weiping Wang, and Ping Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3799, https://doi.org/10.5194/egusphere-2024-3799, 2025
Short summary
Short summary
Compound coastal extreme weather like strong winds and heavy rain can induce sea level rise. We studied global data and found that these extreme weather events are linked especially in colder regions. They happen more often and with greater impact than thought. The increased sea levels during these events heighten the risk of coastal flooding. Our research predicts these conditions will worsen throughout this century, emphasizing the need to prepare for more frequent and severe coastal weather.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Ziyu Chen, Philip M. Orton, James F. Booth, Thomas Wahl, Arthur DeGaetano, Joel Kaatz, and Radley M. Horton
Hydrol. Earth Syst. Sci., 29, 3101–3117, https://doi.org/10.5194/hess-29-3101-2025, https://doi.org/10.5194/hess-29-3101-2025, 2025
Short summary
Short summary
Urban flooding can be driven by rain and storm surge or the combination of the two, which is called compound flooding. In this study, we analyzed hourly historical rain and surge data for New York City to provide a more detailed statistical analysis than prior studies of this topic. The analyses reveal that tropical cyclones (e.g., hurricanes) have potential for causing more extreme compound floods than other storms, while extratropical cyclones cause less extreme, more frequent compound events.
Sara Santamaria-Aguilar, Pravin Maduwantha, Alejandra R. Enriquez, and Thomas Wahl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1938, https://doi.org/10.5194/egusphere-2025-1938, 2025
Short summary
Short summary
Traditional flood assessments use an event-based approach, assuming flood risk matches the chance of flood drivers. However, flooding also depends on topography and the spatio-temporal features of events. The response-based approach uses many events to estimate flood hazard directly. In Gloucester City (NJ, U.S.), we find that frequent events can cause rare (1 %) flood levels due to their spatio-temporal characteristics. Including these factors is key for accurate flood hazard estimates.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, Sönke Dangendorf, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1557, https://doi.org/10.5194/egusphere-2025-1557, 2025
Short summary
Short summary
Compound flooding occurs when multiple drivers, such as heavy rain and storm surge, occur simultaneously. Comprehensive compound flood risk assessments require simulating a many storm events using flood models, but such historical data are limited. To address this, we developed a statistical framework to generate large numbers of synthetic yet realistic storm events for use in flood modeling.
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025, https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
Short summary
It is hard to access long-time series and high-resolution meteorological data for past years. In this paper, we propose the Geopotential-guided Attention Network (GeoAN) for downscaling which can produce high-resolution data using given low-resolution data. Quantitative and visual comparisons reveal our GeoAN produces better results with regard to most metrics. Using GeoAN, a historical meteorological dataset called MDG625 has been produced daily for the period since 1940.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Xinlong Zhang, Jiayi Fang, Yue Qin, Weiping Wang, and Ping Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3799, https://doi.org/10.5194/egusphere-2024-3799, 2025
Short summary
Short summary
Compound coastal extreme weather like strong winds and heavy rain can induce sea level rise. We studied global data and found that these extreme weather events are linked especially in colder regions. They happen more often and with greater impact than thought. The increased sea levels during these events heighten the risk of coastal flooding. Our research predicts these conditions will worsen throughout this century, emphasizing the need to prepare for more frequent and severe coastal weather.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Jing Tian, Wentao Yang, Jian Fang, and Chong Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2786, https://doi.org/10.5194/egusphere-2024-2786, 2024
Preprint archived
Short summary
Short summary
Shadows in optical images will deteriorate deformation measures in the pixel offset tracking method. We proposed a simple method to correct mismatches in deformation time series between Sentinel-2 and Landsat 8. We found high temperatures accelerated the landslide deformation in summers 2017/18, because rising temperatures weakened the ice strength on the sliding plane. Climate warming will result in more similar hazard chains in deglaciating mountains.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Wentao Yang, Jian Fang, and Jing Liu-Zeng
Earth Surf. Dynam., 9, 1251–1262, https://doi.org/10.5194/esurf-9-1251-2021, https://doi.org/10.5194/esurf-9-1251-2021, 2021
Short summary
Short summary
The eastern Tibetan Plateau is an ideal place to study interactions among different geomorphic drivers. We report the impacts of two 2018 landslide-lake outburst floods up to 100 km distance downstream of the Jinsha River. By using remote sensing images, we found that the 2018 floods caused many hillslopes to slump during the prolonged period afterwards. The finding could help us to obtain a holistic picture of LLF impacts and improve geomorphic models of landscape evolution.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Yingzhao Ma, Xun Sun, Haonan Chen, Yang Hong, and Yinsheng Zhang
Hydrol. Earth Syst. Sci., 25, 359–374, https://doi.org/10.5194/hess-25-359-2021, https://doi.org/10.5194/hess-25-359-2021, 2021
Short summary
Short summary
A two-stage blending approach is proposed for the data fusion of multiple satellite precipitation estimates (SPEs), which firstly reduces the systematic errors of original SPEs based on a Bayesian correction model and then merges the bias-corrected SPEs with a Bayesian weighting model. The model is evaluated in the warm season of 2010–2014 in the northeastern Tibetan Plateau. Results show that the blended SPE is greatly improved compared with the original SPEs, even in heavy rainfall events.
Wentao Yang, Wenwen Qi, and Jian Fang
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-106, https://doi.org/10.5194/esurf-2020-106, 2020
Preprint withdrawn
Short summary
Short summary
Major mountain earthquakes often trigger numerous co-seismic landslides. Vegetation dynamics on landslides can be used to indicate post-seismic landslide activity. We used thousands of remote sensing images and possible influencing factors to uncover the spatial pattern and drivers of vegetation recovery on landslides after the great 2008 Sichuan earthquake. Detailed pattern for the entire region is revealed and three paramount influencing factors were determined.
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Cited articles
Arns, A., Wahl, T., Haigh, I. D., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: a comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020.
Buchanan, M. K., Oppenheimer, M. and Kopp, R. E.: Amplification of flood
frequencies with local sea level rise and emerging flood regimes,
Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, [data set], NOAA National Centers for
Environmental Information, https://doi.org/10.7289/V5V40S7W, 2015.
Chen, W. B. and Liu, W. C.: Modeling flood inundation induced by river flow
and storm surges over a river basin, Water, 6, 3182–3199, https://doi.org/10.3390/w6103182, 2014.
Cheng X.: Flood Risk and Flood Management Policies in China, in: Annual Report on China's Response to Climate Change (2017), Research Series on the Chinese Dream and China's Development Path, edited by: Wang, W. and Liu, Y., Springer, Singapore, 2020.
China Meteorological Data Service Centre: http://data.cma.cn/, last access: 1 July 2018.
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to
statistical modeling of extreme values, in: Vol. 208, Springer, London, 2001.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., and
Brönnimann, S.: The twentieth century reanalysis project, Q. J. Roy. Meteorol. Soc., 137, 1–28, 2011.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D.,
Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale,
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Ding, X. L., Zheng, D. W., Chen, Y. Q., and Huang, C.: Sea level change in Hong Kong from tide gauge records, J. Geospat. Eng., 4, 41–50, 2002.
Du, S., He, C., Huang, Q., and Shi, P.: How did the urban land in floodplains distribute and expand in China from 1992–2015?, Environ. Res. Lett., 13, 034018, https://doi.org/10.1088/1748-9326/aaac07, 2018.
Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius,
H. C., and Ward, P. J.: The effect of surge on riverine flood hazard and impact in deltas globally, Environ. Res. Lett., 15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6, 2020.
Fang, J., Liu, W., Yang, S., Brown, S., Nicholls, R. J., Hinkel, J., Shi, X., and Shi, P.: Spatial-temporal changes of coastal and marine disasters risks
and impacts in Mainland China, Ocean Coast. Manage., 139, 125–140, https://doi.org/10.1016/j.ocecoaman.2017.02.003, 2017.
Fang, J., Lincke, D., Brown, S., Nicholls, R. J., Wolff, C., Merkens, J. L.,
Hinkel, J., Vafeidis, A. T., Shi, P., and Liu, M.: Coastal flood risks in
China through the 21st century – An application of DIVA, Sci. Total Environ., 704, 135311, https://doi.org/10.1016/j.scitotenv.2019.135311, 2020.
Fang, J., Wahl, T., Zhang, Q., Muis, S., Hu, P., Fang, J., Du, S., Dou, T., and Shi, P.: Extreme sea levels along coastal China: uncertainties and
implications, Stoch. Environ. Res. Risk A., 35, 405–418, https://doi.org/10.1007/s00477-020-01964-0, 2021.
Fang, Y., Du, S., Scussolini, P., Wen, J., He, C., Huang, Q., and Gao, J.: Rapid Population Growth in Chinese Floodplains from 1990 to 2015, Int. J. Environ. Res. Publ. Health, 15, 1–11, https://doi.org/10.3390/ijerph15081602, 2018.
Feng, J., von Storch, H., Jiang, W., and Weisse, R.: Assessing changes in extreme sea levels along the coast of China, J. Geophys. Res.-Oceans, 120, 8039–8051, https://doi.org/10.1002/ 2015JC011336, 2015.
Feng, J., Li, D., Wang, T., Liu, Q., Deng, L., and Zhao, L.: Acceleration of
the Extreme Sea Level Rise Along the Chinese Coast, Earth Space Sci., 6, 1942–1956, https://doi.org/10.1029/2019EA000653, 2019.
Feng, X. and Tsimplis, M. N.: Sea level extremes at the coasts of China, J.
Geophys. Res.-Oceans, 119, 1593–1608, https://doi.org/10.1002/2013JC009607, 2014.
Ganguli, P. and Merz, B.: Trends in compound flooding in northwestern Europe
during 1901–2014, Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019GL084220, 2019.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018, Remote Sens. Environ., 236, 111510, https://doi.org/10.1016/j.rse.2019.111510, 2019.
Hao, Z., Singh, V. P., and Hao, F.: Compound extremes in hydroclimatology: a
review, Water, 10, 718, https://doi.org/10.3390/w10060718, 2018.
He, H., Yang, J., Gong, D., Mao, R., Wang, Y., and Gao, M.: Decadal changes
in tropical cyclone activity over the western North Pacific in the late 1990s, Clim. Dynam., 45, 3317–3329, https://doi.org/10.1007/s00382-015-2541-1, 2015.
He, H., Yang, J., Wu, L., Gong, D., Wang, B., and Gao, M.: Unusual growth in
intense typhoon occurrences over the Philippine Sea in September after the
mid-2000s, Clim. Dynam., 48, 1893–1910, https://doi.org/10.1007/s00382-016-3181-9, 2016.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Hu, P., Zhang, Q., Shi, P., Chen, B., and Fang, J.: Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors, Sci. Total Environ., 643, 171–182, https://doi.org/10.1016/j.scitotenv.2018.06.197, 2018.
Jiang, T., Su, B., Huang, J., Zhai, J., Xia, J., Tao, H., Wang, Y., Sun, H., Luo, Y., Zhang, L., and Wang, G.: Each 0.5 ∘C of warming increases annual flood losses in China by more than 60 billion USD, B. Am. Meteorol. Soc., 101, E1464–E1474, https://doi.org/10.1175/BAMS-D-19-0182.1, 2020.
Khanal, S., Ridder, N., Terink, W., and Hurk, B. V. D.: Storm surge and extreme river discharge: a compound event analysis using ensemble impact modelling, Front. Earth Sci., 7, 224, https://doi.org/10.3389/feart.2019.00224, 2019.
Kojadinovic, I. and Yan, J.: Modeling multivariate distributions with continuous margins using the copula R package, J. Stat. Softw., 34, 1–20, 2010.
Kundzewicz, Z. W., Su, B., Wang, Y., Xia, J., Huang, J., and Jiang, T.: Flood
risk and its reduction in China, Adv. Water Resour., 130, 37–45, https://doi.org/10.1016/j.advwatres.2019.05.020, 2019.
Lai, Y., Li, J., Gu, X., Chen, Y. D., Kong, D., Gan, T. Y., Liu, M., Li, Q., and Wu, G.: Greater flood risks in response to slowdown of tropical cyclones over the coast of China, P. Natl. Acad. Sci. USA, 117, 14751, https://doi.org/10.1073/pnas.1918987117, 2020.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, Wiley Interdisciplin. Rev.: Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Lian, J. J., Xu, K., and Ma, C.: Joint impact of rainfall and tidal level on
flood risk in a coastal city with a complex river network:a case study of Fuzhou City, China, Hydrol. Earth Syst. Sci., 17, 679–689,
https://doi.org/10.5194/hess-17-679-2013, 2013.
Liu, J., Wen, J., Huang, Y., Shi, M., Meng, Q., Ding, J., and Xu, H.: Human settlement and regional development in the context of climate change: a spatial analysis of low elevation coastal zones in China, Mitig. Adapt. Strat. Global Change, 20, 527–546, https://doi.org/10.1007/s11027-013-9506-7, 2015.
Liu, Z., Cheng, L., Hao, Z., Li, J., Thorstensen, A., and Gao, H.: A Framework for Exploring Joint Effects of Conditional Factors on Compound Floods, Water Resour. Res., 54, 2681–2696, https://doi.org/10.1002/2017WR021662, 2018.
Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Le Cozannet, G., and Amores, A.: Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves, Geophys. Res. Lett., 46, 4356–4364, https://doi.org/10.1029/2019GL082599, 2019.
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding,
P. Natl. Acad. Sci. USA, 114, 9785–9790, https://doi.org/10.1073/pnas.1620325114, 2017.
NOAA: Twentieth Century Reanalysis (V2): Summary, [data set], available at: http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html, last access: 1 December 2019.
Paprotny, D., Vousdoukas, M. I., Morales-Nápoles, O., Jonkman, S. N., and Feyen, L.: Compound flood potential in Europe, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2018-132, 2018.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2002.
Petroliagkis, T. I., Voukouvalas, E., Disperati, J., and Bidlot, J.: Joint
probabilities of storm surge, significant wave height and river discharge
components of coastal flooding events, JRC Technical Reports, European Commission, Italy, ISBN 978-92-79-57665-2, https://doi.org/10.2788/677778, 2016.
Qin, H. P., Li, Z. X., and Fu, G.: The effects of low impact development on urban flooding under different rainfall characteristics, J. Environ. Manage., 577–585, https://doi.org/10.1016/j.jenvman.2013.08.026, 2013.
Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Petrella, L.: A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities, Water Resour. Res., 52, 3701–3721, https://doi.org/10.1002/2015WR017225, 2016.
Shi, P., Ye, T., Wang, Y., Zhou, T., Xu, W., Du, J., Li, N., Huang, C., Liu, L., Chen, B., and Su, Y.: Disaster Risk Science: A Geographical Perspective and a Research Framework, Int. J. Disast. Risk Sci., 11, 1–15, https://doi.org/10.1007/s13753-020-00296-5, 2020.
Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river
flow and precipitation in eastern Britain, Int. J. Climatol., 22, 1149–1168, https://doi.org/10.1002/joc.794, 2002.
Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and precipitation in south and west Britain, Hydrol. Earth Syst. Sci., 8, 973–992, https://doi.org/10.5194/hess-8-973-2004, 2004.
Urban Planning & Design Institute of Shenzhen: Detailed Planning for Reclaimed Water and Stormwater Utilization in Guang-ming New District in Shenzhen, China, 2008.
van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K. J., and
Gooijer, J.: Analysis of a compounding surge and precipitation event in the
Netherlands, Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001, 2015.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Change, 5, 1093, https://doi.org/10.1038/nclimate2736, 2015.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
Veldkamp, T. I., Winsemius, H. C., and Wahl, T.: Dependence between high
sea-level and high river discharge increases flood hazard in global deltas
and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Wu, L., Wang, B., and Geng, S.: Growing typhoon influence on east Asia, Geophys. Res. Lett., 32, 109–127, https://doi.org/10.1029/2005GL022937, 2005.
Wu, S., Feng, A., Gao, J., Chen, M., Li, Y., and Wang, L.: Shortening the recurrence periods of extreme water levels under future sea-level rise, Stoch. Environ. Res. Risk A., 31, 2573–2584, https://doi.org/10.1007/s00477-016-1327-2, 2017.
Wu, W., and Leonard, M.: Impact of ENSO on dependence between extreme rainfall and storm surge, Environ. Res. Lett., 14, 124043, https://doi.org/10.1088/1748-9326/ab59c2, 2019.
Wu, W., McInnes, K., O'grady, J., Hoeke, R., Leonard, M., and Westra, S.:
Mapping dependence between extreme rainfall and storm surge, J. Geophys. Res.-Oceans, 123, 2461–2474, https://doi.org/10.1002/2017JC013472, 2018.
Xing, Z., Yan, D., Zhang, C., Wang, G., and Zhang, D.: Spatial Characterization and Bivariate Frequency Analysis of Precipitation and
Runoff in the Upper Huai River Basin, China, Water Resour. Manage., 29, 3291–3304, https://doi.org/10.1007/s11269-015-0997-8, 2015.
Xu, H., Xu, K., Lian, J., and Ma, C.: Compound effects of rainfall and storm 33, 1249–1261, https://doi.org/10.1007/s00477-019-01695-x, 2019.
Xu, K., Ma, C., Lian, J., and Bin, L.: Joint probability analysis of extreme
precipitation and storm tide in a coastal city under changing environment,
PloS One, 9, e109341, https://doi.org/10.1371/journal.pone.0109341, 2014.
Yap, W., Lee, Y., Gouramanis, C., Switzer, A. D., Yu, F., Lau, A. Y. A., and
Terry, J. P.: A historical typhoon database for the southern and eastern
Chinese coastal regions, 1951 to 2012, Ocean Coast. Manage., 108, 109–115, https://doi.org/10.1016/j.ocecoaman.2014.05.024, 2015.
Ye, Y. and Fang, W.: Estimation of the compound hazard severity of tropical
cyclones over coastal China during 1949–2011 with copula function, Nat.
Hazards, 93, 887–903, https://doi.org/10.1007/s11069-018-3329-5, 2018.
Zhai, P., Zhang, X., Wan, H., and Pan, X.: Trends in total precipitation and
frequency of daily precipitation extremes over China, J. Climate, 18, 1096–1108, https://doi.org/10.1175/JCLI-3318.1, 2005.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505, 172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence
between extreme rainfall and storm surge to estimate coastal flooding risk,
Water Resour. Res., 50, 2050–2071, https://doi.org/10.1002/2013WR014616, 2014.
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
A comprehensive assessment of compound flooding potential is missing for China. We investigate...