Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought
Hossein Tabari
CORRESPONDING AUTHOR
Department of Civil Engineering, KU Leuven, Leuven, Belgium
Santiago Mendoza Paz
Department of Civil Engineering, KU Leuven, Leuven, Belgium
Daan Buekenhout
Department of Civil Engineering, KU Leuven, Leuven, Belgium
Patrick Willems
Department of Civil Engineering, KU Leuven, Leuven, Belgium
Department of Hydrology and Hydraulic
Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Related authors
No articles found.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Łukasz Gruss, Patrick Willems, Paweł Tomczyk, Jaroslav Pollert Jr., Jaroslav Pollert Sr., Christoph Märtner, Stanisław Czaban, and Mirosław Wiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-860, https://doi.org/10.5194/egusphere-2025-860, 2025
Short summary
Short summary
A new extension of the generalized extreme value distribution, namely the dual gamma generalized extreme value distribution developed by Nascimento, Bourguignony, and Leão (2016), displays superior performance in fitting most samples and is sensitive to trends, especially under non-stationary conditions such as climate change.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Cited articles
Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., and Chung, E.-S.: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics, Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, 2019.
Ali, S., Eum, H. I., Cho, J., Dan, L., Khan, F., Dairaku, K., Shrestha, M. L., Hwang, S., Nasim, W., Khan, I. A., and Fahad, S.: Assessment of climate extremes in future projections
downscaled by multiple statistical downscaling methods over Pakistan, Atmos.
Res., 222, 114–133, https://doi.org/10.1016/j.atmosres.2019.02.009, 2019.
Associated Press: Scores dead as heavy rains bring landslides and
evacuations in brazil, available at: https://www.theguardian.com/world/2020/jan/27/heavyrain-landslides-flooding-mass-evacuations-brazil, last access: 14 August 2020.
Ayar, P. V., Vrac, M., Bastin, S., Carreau, J., Déqué, M., and
Gallardo, C.: Intercomparison of statistical and dynamical downscaling
models under the EURO-and MED-CORDEX initiative framework: present climate
evaluations, Clim. Dynam., 46, 1301–1329, https://doi.org/10.1007/s00382-015-2647-5,
2016.
Benestad, R.: Downscaling Climate Information. Oxford Research Encyclopedia
of Climate Science, Oxford University Press, New York, https://doi.org/10.1093/acrefore/9780190228620.013.27, 2016.
Benestad, R.: Implications of a decrease in the precipitation area for the
past and the future, Environ. Res. Lett., 13, 044022, https://doi.org/10.1088/1748-9326/aab375, 2018.
Benestad, R., Parding, K., Dobler, A., and Mezghani, A.: A strategy to
effectively make use of large volumes of climate data for climate change
adaptation, Climate Services, 6, 48–54, https://doi.org/10.1016/j.cliser.2017.06.013,
2017a.
Benestad, R., Sillmann, J., Thorarinsdottir, T. L., Guttorp, P., Mesquita, M. D. S., Tye, M. R., Uotila, P., Maule, C. F., Thejll, P., Drews, M., and Parding, K. M.: New vigour involving statisticians to overcome
ensemble fatigue, Nat. Clim. Change, 7, 697–703,
https://doi.org/10.1038/nclimate3393, 2017b.
Benestad, R. E., Oort, B. V., Justino, F., Stordal, F., Parding, K. M., Mezghani, A., Erlandsen, H. B., Sillmann, J., and Pereira-Flores, M. E.: Downscaling probability of long heatwaves based on
seasonal mean daily maximum temperatures, Adv. Stat. Climat. Meteorol.
Ocean., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, 2018.
Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D., and Vico, G.: Extreme dry and wet spells face changes in their duration and timing, Environ. Res. Lett., 15, 074040, https://doi.org/10.1088/1748-9326/ab7d05, 2020.
Demarée, G. R.: Le pluviographe centenaire du plateau d'Uccle: Son
histoire, ses données et ses applications, Houille Blanche, 4, 95–102, 2003.
De Niel, J., Van Uytven, E., and Willems, P.: Uncertainty analysis of
climate change impact on river flow extremes based on a large multi-model
ensemble, Water Resour. Manage., 33, 4319–4333,
https://doi.org/10.1007/s11269-019-02370-0, 2019.
Deville, Y. and IRSN: Renext: Renewal Method for Extreme Values
Extrapolation, R package version 3.1-0, available at: https://cran.r-project.org/web/packages/Renext/index.html (last access: 9 April 2020), 2016.
Dosio, A. and Paruolo, P.: Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Evaluation on the present climate, J. Geophys. Res.-Atmos., 116, 2011.
Earth System Grid Federation (ESGF): CMIP6 GCM data, available at: https://esgf-index1.ceda.ac.uk (last access: 20 November 2019), 2021.
Gooré Bi, E., Gachon, P., Vrac, M., and Monette, F.: Which downscaled
rainfall data for climate change impact studies in urban areas? Review of
current approaches and trends, Theor. Appl. Climatol., 127, 685–699,
https://doi.org/10.1007/s00704-015-1656-y, 2017.
Greve, P., Roderick, M. L., Ukkola, A. M., and Wada, Y.: The aridity index
under global warming, Environ. Res. Lett., 14, 124006,
https://doi.org/10.1088/1748-9326/ab5046, 2019.
Hall, A.: Projecting regional change, Science, 346, 1461–1462, https://doi.org/10.1126/science.aaa0629, 2014.
Han, F., Cook, K. H., and Vizy, E. K.: Changes in intense rainfall events
and dry periods across Africa in the twenty-first century, Clim. Dynam.,
53, 2757–2777, https://doi.org/10.1007/s00382-019-04653-z, 2019.
Hänsel, S., Ustrnul, Z., Łupikasza, E., and Skalak, P.: Assessing
seasonal drought variations and trends over Central Europe, Adv. Water
Resour., 127, 53–75, https://doi.org/10.1016/j.advwatres.2019.03.005, 2019.
Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Uncertainty assessment
for climate change impact on intense precipitation: how many model runs do
we need?, Int. J. Climatol., 37, 1105–1117, https://doi.org/10.1002/joc.5069, 2017.
Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Climate change impact
on short-duration extreme precipitation and intensity–duration–frequency
curves over Europe, J. Hydrol., 590, 125249,
https://doi.org/10.1016/j.jhydrol.2020.125249, 2020.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., 1–151, IPCC, Geneva, Switzerland, 2014.
Kahneman, D.: Thinking, Fast and Slow, Penguin, London, 2012.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate
models improve projections of future precipitation change?, B. Am.
Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S.,
Rowell, D. P., and Senior, C. A.: Enhanced future changes in wet and dry
extremes over Africa at convection-permitting scale, Nat. Commun., 10,
1794, https://doi.org/10.1038/s41467-019-09776-9, 2019.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will
affect global water availability through compounding changes in seasonal
precipitation and evaporation, Nat. Commun., 11, 3044,
https://doi.org/10.1038/s41467-020-16757-w, 2020.
Leander, R. and Buishand, T. A.: Resampling of regional climate model output
for the simulation of extreme river flows, J. Hydrol., 332, 487–496,
https://doi.org/10.1016/j.jhydrol.2006.08.006, 2007.
Makkonen, L.: Plotting positions in extreme value analysis, J. Appl. Meteor.
Climatol., 45, 334–340, https://doi.org/10.1175/JAM2349.1, 2006.
Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., and Venema, V. K. C.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E., Wibig, J., Huth, R., and Wilcke, R. A.: VALUE: A framework to validate downscaling approaches
for climate change studies, Earth's Future, 3, 1–14,
https://doi.org/10.1002/2014EF000259, 2015.
Maraun, D., Huth, R., Gutiérrez, J. M., Martín, D. S., Dubrovsky, M., Fischer, A., Hertig, E., Soares, P. M., Bartholy, J., Pongrácz, R., and Widmann, M.: The VALUE perfect predictor experiment: evaluation of
temporal variability, Int. J. Climatol., 39, 3786–3818,
https://doi.org/10.1002/joc.5222, 2019a.
Maraun, D., Widmann, M., and Gutiérrez, J. M.: Statistical downscaling
skill under present climate conditions: A synthesis of the VALUE perfect
predictor experiment, Int. J. Climatol., 39, 3692–3703,
https://doi.org/10.1002/joc.5877, 2019b.
Mathlouthi, M. and Lebdi, F.: Statistical analysis of dry events in a
northern Tunisian basin, Hydrol. Sci. J., 54, 422–455,
https://doi.org/10.1623/hysj.54.3.442, 2009.
Moon, H., Gudmundsson, L., and Seneviratne, S. I.: Drought persistence
errors in global climate models, J. Geophys. Res.-Atmos., 123,
3483–3496, https://doi.org/10.1002/2017JD027577, 2018.
Ntegeka, V., Baguis, P., Roulin, E., and Willems, P.: Developing tailored
climate change scenarios for hydrological impact assessments, J. Hydrol.,
508, 307–321, https://doi.org/10.1016/j.jhydrol.2013.11.001, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Onyutha, C., Tabari, H., Rutkowska, A., Nyeko-Ogiramoi, P., and Willems, P.:
Comparison of different statistical downscaling methods for climate change
rainfall projections over the Lake Victoria basin considering CMIP3 and
CMIP5, J. Hydro.-Environ. Res., 12, 31–45,
https://doi.org/10.1016/j.jher.2016.03.001, 2016.
Pérez-Sánchez, J., and Senent-Aparicio, J.: Analysis of
meteorological droughts and dry spells in semiarid regions: a comparative
analysis of probability distribution functions in the Segura Basin (SE
Spain), Theor. Appli. Climatol., 133, 1061–1074,
https://doi.org/10.1007/s00704-017-2239-x, 2018.
Phillips, N.: Climate change made Australia's devastating fire season 30 %
more likely, available at: https://www.nature.com/articles/d41586-020-00627-y, last access: 14 August 2020.
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for
daily precipitation in regional climate models over Europe, Theor. Appl.
Climatol., 99, 187–192, https://doi.org/10.1007/s00704-009-0134-9, 2010.
Räty, O., Räisänen, J., and Ylhäisi, J. S.: Evaluation of
delta change and bias correction methods for future daily precipitation:
intermodel cross-validation using ENSEMBLES simulations, Clim. Dynam.,
42, 2287–2303, https://doi.org/10.1007/s00382-014-2130-8, 2014.
Raymond, F., Drobinski, P., Ullmann, A., and Camberlin, P.: Extreme dry
spells over the Mediterranean Basin during the wet season: Assessment of
HyMeX/Med-CORDEX regional climate simulations (1979–2009), Int. J.
Climatol., 38, 3090–3105, https://doi.org/10.1002/joc.5487, 2018.
Raymond, F., Ullmann, A., Tramblay, Y., Drobinski, P., and Camberlin, P.:
Evolution of Mediterranean extreme dry spells during the wet season under
climate change, Reg. Environ. Change, 19, 2339–2351,
https://doi.org/10.1007/s10113-019-01526-3, 2019.
Royal Meteorological Institute (RMI) of Belgium: Uccle historical precipitation time
series, available at https://www.meteo.be/ (last access: 2 October 2019), 2021.
Schlesinger, M. and Ramankutty, N.: An oscillation in the global climate
system of period 65–70 years, Nature, 367, 723–726, https://doi.org/10.1038/367723a0,
1994.
Schmith, T., Thejll, P., Berg, P., Boberg, F., Christensen, O. B., Christiansen, B., Christensen, J. H., Madsen, M. S., and Steger, C.: Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting, Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, 2021.
Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.:
Comparison of the WGEN and LARS-WG stochastic weather generators for diverse
climates, Clim. Res., 10, 95–107, 1998.
Smid, M. and Costa, A. C.: Climate projections and downscaling techniques:
a discussion for impact studies in urban systems, Int. J. Urban Sci., 22,
277–307, https://doi.org/10.1080/12265934.2017.1409132, 2018.
Song, J. H., Her, Y., Shin, S., Cho, J., Paudel, R., Khare, Y. P., Obeysekera, J., and Martinez, C. J.: Evaluating the performance of climate models in
reproducing the hydrological characteristics of rainfall events, Hydrol.
Sci. J., 65, 1490–1511, https://doi.org/10.1080/02626667.2020.1750616, 2020.
Sørup, H. J. D., Georgiadis, S., Gregersen, I. B., and Arnbjerg-Nielsen, K.: Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes, Hydrol. Earth Syst. Sci., 21, 345–355, https://doi.org/10.5194/hess-21-345-2017, 2017.
Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of different
regional climate models and statistical downscaling methods for extreme
rainfall estimation under climate change, Atmos. Res., 103, 119–128,
https://doi.org/10.1016/j.atmosres.2011.06.011, 2012.
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., Kriaučiūnienė, J., Loukas, A., Osuch, M., and Yücel, I.: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe, Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, 2015.
Tabari, H.: Statistical analysis and stochastic modelling of hydrological
extremes, Water, 11, 1–11, https://doi.org/10.3390/w11091861, 2019.
Tabari, H.: Climate change impact on flood and extreme precipitation
increases with water availability, Sci. Rep., 10, 13768,
https://doi.org/10.1038/s41598-020-70816-2, 2020.
Tabari, H.: Extreme value analysis dilemma for climate change impact
assessment on global flood and extreme precipitation, J. Hydrol.,
593, 125932, https://doi.org/10.1016/j.jhydrol.2020.125932, 2021.
Tabari, H. and Willems, P.: More prolonged droughts by the end of the century in the Middle East, Environ. Res. Lett., 13, 104005, https://doi.org/10.1088/1748-9326/aae09c, 2018a.
Tabari, H. and Willems, P.: Lagged influence of Atlantic and Pacific
climate patterns on European extreme precipitation, Sci. Rep., 8, 5748,
https://doi.org/10.1038/s41598-018-24069-9, 2018b.
Tabari, H., Taye, M. T., and Willems, P.: Water availability change in
central Belgium for the late 21st century, Global Planet. Change, 131,
115–123, https://doi.org/10.1016/j.gloplacha.2015.05.012, 2015.
Tabari, H., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Saeed, S., Brisson, E., Van Lipzig, N., and Willems, P.: Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?, Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016, 2016.
Tabari, H., Hosseinzadehtalaei, P., Aghakouchak, A., and Willems, P.: Latitudinal heterogeneity and hotspots of uncertainty in projected extreme precipitation, Environ. Res. Lett., 14, 124032, https://doi.org/10.1088/1748-9326/ab55fd, 2019.
Takayabu, I., Kanamaru, H., Dairaku, K., Benestad, R., von Storch, H., and
Christensen, J. H.: Reconsidering the quality and utility of downscaling, J.
Meteorol. Soc. JPN., 94A, 31–45, https://doi.org/10.2151/jmsj.2015-042, 2016.
Thorndahl, S., Andersen, A. K., and Larsen, A. B.: Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series, Hydrol. Earth Syst. Sci., 21, 4433–4448, https://doi.org/10.5194/hess-21-4433-2017, 2017.
Trzaska, S. and Schnarr, E.: A review of downscaling methods for climate
change projections, United States Agency for International Development by
Tetra Tech ARD, Pasadena, CA, USA, 1–42, 2014.
Van Loon, A. F.: Hydrological drought explained, WIRES Water, 2,
359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Uytven, E.: Evaluation of statistical downscaling methods for climate
change impact analysis on hydrological extremes, PhD thesis, KU Leuven,
2019.
Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C.,
Main, J., and Wilks, D. S.: Statistical downscaling of general circulation
model output: A comparison of methods, Water Resour. Res., 34,
2995–3008, https://doi.org/10.1029/98WR02577, 1998.
Wilks, D. S.: Interannual variability and extreme-value characteristics of
several stochastic daily precipitation models, Agr. For. Meteor., 93,
153–169, https://doi.org/10.1016/S0168-1923(98)00125-7, 1999.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for
small-scale hydrological impact investigations of climate change, J.
Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Willems, P.: Revision of urban drainage design rules after assessment of
climate change impacts on precipitation extremes at Uccle, Belgium, J.
Hydrol., 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013.
Xie, W., Xiong, W., Pan, J., Ali, T., Cui, Q., Guan, D., Meng, J., Mueller,
N. D., Lin, E., and Davis, S. J.: Decreases in global beer supply due to
extreme drought and heat, Nat. Plants, 4, 964–973,
https://doi.org/10.1038/s41477-018-0263-1, 2018.
Yilmaz, M. and Buyum, B.: Parameter estimation methods for two-component
mixed exponential distributions, ISTATISTIK: J. Turk. Stat. Assoc.,
8, 51–59, 2015.