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Abstract. General circulation models (GCMs) are the pri-
mary tools for evaluating the possible impacts of climate
change; however, their results are coarse in temporal and
spatial dimensions. In addition, they often show systematic
biases compared to observations. Downscaling and bias cor-
rection of climate model outputs is thus required for local
applications. Apart from the computationally intensive strat-
egy of dynamical downscaling, statistical downscaling offers
a relatively straightforward solution by establishing relation-
ships between small- and large-scale variables. This study
compares four statistical downscaling methods of bias cor-
rection (BC), the change factor of mean (CFM), quantile per-
turbation (QP) and an event-based weather generator (WG)
to assess climate change impact on drought by the end of
the 21st century (2071–2100) relative to a baseline period
of 1971–2000 for the weather station of Uccle located in
Belgium. A set of drought-related aspects is analysed, i.e.
dry day frequency, dry spell duration and total precipitation.
The downscaling is applied to a 28-member ensemble of
Coupled Model Intercomparison Project Phase 6 (CMIP6)
GCMs, each forced by four future scenarios of SSP1–2.6,
SSP2–4.5, SSP3–7.0 and SSP5–8.5. A 25-member ensemble
of CanESM5 GCM is also used to assess the significance
of the climate change signals in comparison to the inter-
nal variability in the climate. A performance comparison of
the downscaling methods reveals that the QP method outper-
forms the others in reproducing the magnitude and monthly
pattern of the observed indicators. While all methods show a
good agreement on downscaling total precipitation, their re-
sults differ quite largely for the frequency and length of dry
spells. Using the downscaling methods, dry day frequency
is projected to increase significantly in the summer months,

with a relative change of up to 19 % for SSP5–8.5. At the
same time, total precipitation is projected to decrease sig-
nificantly by up to 33 % in these months. Total precipitation
also significantly increases in winter, as it is driven by a sig-
nificant intensification of extreme precipitation rather than a
dry day frequency change. Lastly, extreme dry spells are pro-
jected to increase in length by up to 9 %.

1 Introduction

Our climate system is changing. Since the mid-20th century,
global warming has been observed (IPCC, 2014). The atmo-
sphere and oceans have warmed, ice and snow volumes have
diminished and the sea level has risen. Climate change is
linked to a variety of recent weather extremes worldwide.
We entered the current decade with Australia’s immense
bushfires empowered by severe droughts (Phillips, 2020) and
devastating mud slides triggered by extreme precipitation in
Brazil (Associated Press, 2020). Nature and human commu-
nities all over the world are feeling the impact of global
warming, which is projected to become more pronounced in
the future (Tabari, 2021). Projections of how global warming
will evolve in the coming decades and centuries would be ex-
tremely valuable to humankind in order to adapt efficiently.

Droughts are natural hazards that have an impact on eco-
logical systems and socioeconomic sectors such agriculture,
drinking water supply, waterborne transport, electricity pro-
duction (hydropower and cooling water) and recreation (Van
Loon, 2015; Xie et al., 2018). Quantification of the evolu-
tion of droughts on the local level is thus needed to take ad-
equate mitigation measures. The hydrological processes be-
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hind drought are complex, with varying spatial and temporal
scales. One of the aspects of drought is a lack of precipi-
tation. As the projected decrease in total precipitation does
not systematically correspond to an increase in dry days and
longest dry spell length (Tabari and Willems, 2018a), apart
from total precipitation, dry spells and its building blocks,
dry days, should be studied to evaluate the impact of climate
change on drought. It is clear that prolonged periods of con-
secutive dry days can play an important role, for example, in
replenishing groundwater levels in time for the dry summer
season (Raymond et al., 2019).

Based on observations of more than 5000 rain gauges in
the past 6 decades, Breinl et al. (2020) assessed the histor-
ical evolution of dry spells in the USA, Europe and Aus-
tralia. Both trends towards shorter and longer dry spells were
found, depending on the location. For Europe, extreme dry
spells have become shorter in the north (Scandinavia and
parts of Germany) and longer in the Netherlands and the cen-
tral parts of France and Spain. Benestad (2018) also showed
that the total area with 24 h precipitation between 50◦ S and
50◦ N has declined by 7 % over the period 1998–2016 us-
ing satellite-based Tropical Rainfall Measurement Mission
data. Using climate model data, Raymond et al. (2018, 2019)
found a future evolution towards longer dry spells and a
larger spatial extent of extreme dry spells in the Mediter-
ranean basin. For Belgium, Tabari et al. (2015) studied future
water availability and drought based on the difference be-
tween precipitation and evapotranspiration. Water availabil-
ity was projected to decrease during summer and to increase
during winter, suggesting drier summers and wetter winters
in the future.

General circulation models (GCMs) are the primary tools
for climate change impact assessment. However, they pro-
duce results at relatively large temporal and spatial scales,
the latter varying between 100 and 300 km, and are often
found to show systematic biases with regards to observed
data (Takayabu et al., 2016; Ahmed et al., 2019; Song et
al., 2020). The bias particularly originates from processes
that cannot be captured at the climate model’s coarse scales
(e.g. convective precipitation). These processes are therefore
simplified by means of parameterisation, leading to signif-
icant bias and uncertainty in the model (Tabari, 2019). In
order to work with these results on finer scales, which is
usually required for hydrological impact studies, a down-
scaling approach can be applied. Dynamical downscaling is
done by creating regional climate models that use the output
of a GCM as boundary conditions and work at much finer
scales (<50 km). This comes at a large computational cost
and does not necessarily account for bias correction (Maraun
et al., 2010). An alternative approach is statistical downscal-
ing, which derives statistical relationships between predic-
tor(s) and predictand, e.g. taking the large-scale historical
GCM output and small-scale observations from weather sta-
tions and using them to downscale GCM results with relative

ease to assess future local climate change impact (Ayar et al.,
2016).

To meet the demand of high spatiotemporal results for the
hydrological impact analysis of climate change, the use of
statistical downscaling methods has recently increased (e.g.
Sunyer et al., 2015; Onyutha et al., 2016; Gooré Bi et al.,
2017; Smid and Costa, 2018; Van Uytven, 2019; De Niel
et al., 2019; Hosseinzadehtalaei et al., 2020). The results
of statistical downscaling methods are, nevertheless, often
compromised with bias and limitations due to assumptions
and approximations made within each method (Trzaska and
Schnarr, 2014; Maraun et al., 2015). Some of these assump-
tions cast doubt on the reliability of downscaled projections
and may limit the suitability of downscaling methods for
some applications (Hall, 2014). As there is no single best
downscaling method for all applications and regions, though
some methods are superior for specific applications, the as-
sumptions that led to the final results for different methods
require evaluation. Therefore, end-users can select an appro-
priate method for each application based on the method’s
strengths and limitations, the information needs (e.g. desired
spatial and temporal resolutions) and the available resources
(data, expertise, computing resources and time frames).

This study evaluates the assumptions, strengths and weak-
nesses of four statistical downscaling methods by a climate
change impact analysis for the end of the 21st century (2071–
2100) relative to a baseline period of 1971–2000. The se-
lected statistical downscaling methods are a bias-correction
(BC) method, a change factor of mean (CFM) method,
a quantile perturbation (QP) method and an event-based
weather generator (WG). A set of drought-related aspects
is studied, i.e. dry day frequency, dry spell length and to-
tal precipitation. The downscaling is applied to a 28-member
ensemble of global climate models, each forced by the fol-
lowing four Coupled Model Intercomparison Project Phase
6 (CMIP6) climate change scenarios: SSP1–2.6, SSP2–4.5,
SSP3–7.0 and SSP5–8.5. The CMIP6 scenarios are an up-
date to the CMIP5 scenarios, called representative concen-
tration pathways (RCPs), that only project future greenhouse
gas emissions, expressed as a radiative forcing level in the
year 2100 (e.g. RCP8.5). The CMIP6 scenarios link these
radiative forcing levels to socioeconomic narratives (e.g. de-
mography, land use and energy use), called shared socioeco-
nomic pathways (SSPs; O’Neill et al., 2016). Historical ob-
servations from the Uccle weather station are used for the
calibration of the statistical downscaling methods. A total
of two cross-validation methods are applied to evaluate the
skill of the downscaling methods. A 25-member ensemble of
CanESM5 GCM is also used to test the significance of the
climate change signals.
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2 Data and methodology

2.1 Observed and simulated data

The statistical downscaling methods in this study use pre-
cipitation time series produced by GCMs as the sole predic-
tor. The predictand is also a precipitation time series but at
the local-point scale (scale of a weather station). The avail-
ability of a long and high-quality time series of observa-
tions from the Uccle weather station enables us to effec-
tively calibrate this relationship. The Uccle station is the
main weather station of Belgium, located in the heart of the
country (lat= 50.80◦, long= 4.35◦), and is run by the Royal
Meteorological Institute (RMI). Starting in May 1898, the
precipitation has been recorded at 10 min intervals with the
same instrument, making it one of the longest high-frequency
observation time series in the world (Demarée, 2003). In this
study, the 10 min observations are aggregated into daily pre-
cipitation values, which is the same temporal scale as the
considered GCMs. The information lost by this aggregation
is of low interest for studying drought.

Small samples are subject to “the law of small numbers”
(Kahneman, 2012) and can provide misleading results due to
their high sensitivity to the presence of strong random statis-
tical fluctuations (Benestad et al., 2017a, b; Hosseinzadehta-
laei et al., 2017). To obtain more robust results, daily precip-
itation simulations for the historical period 1971–2000 and
the future period 2071–2100 from a large ensemble of 28
CMIP6 GCMs are used in this study (Table 1). The data for
the grid cell covering Uccle are selected for every GCM us-
ing the nearest neighbour algorithm. To give the GCMs in
the ensemble an equal weight in the analysis, the one run per
model (1R1M) strategy (Tabari et al., 2019) is applied. For
one of the GCMs (CanESM5), 25 runs (r1–r25) are consid-
ered in order to allow for quantification of the internal vari-
ability in GCM output. To allow for intercomparison of pos-
sible futures, multiple scenarios are selected. The four tier
1 scenarios in ScenarioMIP (CMIP6) are chosen. This set
of scenarios covers a wide range of uncertainties in future
greenhouse gas forcings coupled to the corresponding so-
cioeconomic developments (O’Neill et al., 2016). On a prac-
tical note, the GCM runs for these four scenarios are widely
available since they are a basic requirement for participation
in CMIP6.

2.2 Statistical downscaling methods

In total, four statistical downscaling methods were selected
for this study based on their complexity and the way they
treat dry spells. Each method has a different take on the
downscaling of dry spells. This study aims at examining the
influence of these factors in the statistical downscaling using
four methods which are different in methodology and com-
plexity. While BC and CFM are considered to be simple and
computationally fast and straightforward methods that do not

modify dry spells in downscaling, QP and WG are more
advanced methods that adjust dry spells. BC applies a bias
correction to the selected statistics, whereas the other three
downscaling methods return a modified precipitation time
series. BC utilises a direct downscaling strategy by applying
the relative change factors directly to the dry-spell-related re-
search indicators. The other three methods opt for an indirect
downscaling strategy towards dry spells by integrating the
changes in dry days, which are downscaled directly into a co-
herent time series. For this reason, CFM solely relies on the
temporal (precipitation) structure present in the GCM time
series. QP, on the other hand, is expected to actively favour
clustering of dry days. Lastly, WG makes use of a probability
distribution to sample dry events from. While the precipita-
tion change factor methods (BC, CFM and QP) assume inde-
pendency between successive wet days and apply changes at
the daily timescale, which can be problematic when succes-
sive wet days are part of a longer lasting event, WG identifies
precipitation events and applies the same change factor to all
precipitation within that event.

2.2.1 Bias correction (BC) of statistics

The first statistical downscaling method applies a bias cor-
rection to the statistics that describe the precipitation time
series. Consequently, this method does not return a precipita-
tion time series, unlike the three other downscaling methods.
This method can be regarded as a BC method applied di-
rectly to statistics (indicators) instead of to a daily precipita-
tion time series. The BC factor is calculated as the ratio of the
observed indicator to the model indicator of historical simu-
lations, and then applied on the model indicator of scenario
simulations to derive projected indicator. The indicators used
in this study, to which the BC is applied, are discussed later
on in Sect. 2.4.

An important assumption of all BC methods is that the cli-
mate model precipitation bias is time invariant, which might
not be the case (Leander and Buishand, 2007). Furthermore,
BC methods assume that the temporal structure of wet and
dry days of the scenario-projected precipitation by the cli-
mate model is accurate. Successive days are also assumed to
be independent.

2.2.2 Change factor of mean (CFM) method

The change factor of mean method or delta change method
is frequently applied in the literature. The same simple ra-
tionale of the BC method can be applied by using a change
factor approach instead. Here, no correction is applied to
GCM precipitation projections. Instead, the relative change
between the historical and scenario simulations of the GCM
is used to calculate a change factor that can then be applied
to the observed time series (Sunyer et al., 2012, 2015). The
method applied to the precipitation P of day t in month m
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Table 1. Overview of the CMIP6 GCM ensemble used in this study (r – realisation or ensemble member; i – initialisation method; p –
physics; f – forcing). The r1i1p1f1 run is used for all the GCMs except five GCMs for which this run is not available, and so their r1i1p1f2
and r2i1p1f1 runs are used.

Model Resolution Variant label His. SSP1– SSP2– SSP3– SSP5–

Lat (◦) Long (◦) 2.6 4.5 7.0 8.5

ACCESS-CM2 1.3 1.9 r1i1p1f1 1 1 1 1 1

ACCESS-ESM1-5 1.3 1.9 r1i1p1f1 1 1 1 1 1

BCC-CSM2-MR 1.1 1.1 r1i1p1f1 1 1 1 1 1

CAMS-CSM1-0 1.1 1.1 r2i1p1f1 1 1 1 1 1

CanESM5 2.8 2.8 r1i1p1f1 –
r25i1p1f1 25 25 25 25 25

CESM2 0.9 1.3 r1i1p1f1 1 1 1 1 1

CESM2-WACCM 0.9 1.3 r1i1p1f1 1 1 1 1 1

CMCC-CM2-SR5 1.0 1.0 r1i1p1f1 1 1 1 1 1

CNRM-CM6-1 1.4 1.4 r1i1p1f2 1 1 1 1 1

CNRM-ESM2-1 1.4 1.4 r1i1p1f2 1 1 1 1 1

EC-Earth3 0.7 0.7 r1i1p1f1 1 1 1 1 1

EC-Earth3-Veg 0.7 0.7 r1i1p1f1 1 1 1 1 1

EC-Earth3-Veg-LR 1.1 1.1 r1i1p1f1 1 1 1 1 1

FGOALS-g3 2.0 2.0 r1i1p1f1 1 1 1 1 1

GFDL-ESM4 1.0 1.3 r1i1p1f1 1 1 1 1 1

IITM-ESM 1.9 1.9 r1i1p1f1 1 1 1 1 1

INM-CM4-8 1.5 2.0 r1i1p1f1 1 1 1 1 1

INM-CM5-0 1.5 2.0 r1i1p1f1 1 1 1 1 1

IPSL-CM6A-LR 1.3 2.5 r1i1p1f1 1 1 1 1 1

KACE-1-0-G 1.3 1.9 r1i1p1f1 1 1 1 1 1

MIROC6 1.4 1.4 r1i1p1f1 1 1 1 1 1

MIROC-ES2L 2.8 2.8 r1i1p1f2 1 1 1 1 1

MPI-ESM1-2-HR 0.9 0.9 r1i1p1f1 1 1 1 1 1

MPI-ESM1-2-LR 1.9 1.9 r1i1p1f1 1 1 1 1 1

MRI-ESM2-0 1.1 1.1 r1i1p1f1 1 1 1 1 1

NorESM2-LM 1.9 2.5 r1i1p1f1 1 1 1 1 1

NorESM2-MM 0.9 1.3 r1i1p1f1 1 1 1 1 1

UKESM1-0-LL 1.9 1.3 r1i1p1f2 1 1 1 1 1
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can be summarised by Eq. (1).

P
Proj
m, t = amP

Obs
m, t , (1a)

in which the following applies:

am =
P

GCMScen
m, ...

P
GCMHis
m, ...

. (1b)

In this notation, the precipitation is given for month m
and time step t in the observations (Obs), and GCMScen and
GCMHis refer to the scenario and historical simulations of
GCMs, respectively. For this implementation, the change fac-
tor is calculated per month.

CFM does not change the number of dry days directly.
However, since the change factor is applied to all precipita-
tion in a given month, days in the Uccle time series with pre-
cipitation values close to the wet day threshold (P<1.0 mm
– dry day; P ≥ 1.0 mm – wet day) can change the state, de-
pending on the change factor am. The Uccle precipitation
time series has a resolution of 0.1 mm. The wet days near-
est to the threshold have a value of 1.0 mm, while the closest
dry days have a value of 0.9 mm. Consequently, wet days are
changed into dry days for am<1.0, while a transformation of
dry days into wet days requires am> 1.0

0.9 = 1.11. In conclu-
sion, CFM is expected to show slight changes in terms of dry
days, with a bias towards rising the number of dry days and,
thus, the dry spells they compose. The mean monthly total
precipitation changes projected in this method can be used
as a reference for the other methods.

An important assumption made in all CF methods is that
the changes at the local (weather station) level are the same
as the changes described at the spatial, grid-averaged scale
of climate models. Different from the BC methods, the CF
methods assume the temporal structure of the observed time
series is preserved. Furthermore, it is assumed in the CFM
method that all precipitation in a given period (i.e. month
or season) is changed by the same factor, regardless of the
time step considered or the precipitation intensity observed.
In addition, the method assumes consecutive days are inde-
pendent.

2.2.3 Quantile perturbation (QP) method

QP methods form a more advanced approach to the appli-
cation of change factors. The core principle of the methods
is that the change factors are calculated and allocated based
on the exceedance probability of the precipitation intensi-
ties. More precisely, the observed daily precipitation with
exceedance probability p is modified by a change factor ob-
tained by comparing the scenario and historical simulations
of climate models for the same exceedance probability p.
This is opposed to the idea of applying the same change fac-
tor to observed precipitation amounts ranging from zero to
the most extreme values, as is done in CFM.

The QP version applied by Ntegeka et al. (2014) is used
here in which the empirical exceedance probabilities pk are
estimated by making use of the formula ( k

n+1 ) for Weibull
plotting positions, where k is the quantile rank (1 for the
highest), and n is the number of wet days. This approach can
change the exceedance probabilities strongly in comparison
to the linear interpolation of the cumulative density function
represented by ( k

n
), especially for extreme ranks. This ap-

proach was shown to be best suited for estimating return pe-
riods of extreme events (Makkonen, 2006).

In QP, the dry day frequency is perturbed by making use
of a two-step perturbation process. In a first step, change fac-
tors are calculated to determine the relative change in dry
day frequency between the scenario and historical simula-
tions of climate models. These determine whether dry days
in a given month should be converted to wet days or the other
way around. This is done randomly using a stochastic ap-
proach. However, the following assumption concerning the
clustering of dry days is made: only wet days preceded or fol-
lowed by a dry day are eligible for the conversion, or only dry
days both preceded and followed by a wet day can be con-
verted. After the wet/dry day perturbation step, the precipita-
tion intensity of remaining wet days is perturbed by change
factors derived from comparing the scenario and historical
simulations of climate models. Due to the randomness intro-
duced by the dry day perturbation step, multiple time series
are generated. A sensitivity analysis is executed by varying
the number of simulations (see Sect. S2 and Figs. S1–S3).
The selection of the best simulation is based on the following
four indicators that can be derived from a precipitation time
series: the mean (M), coefficient of variability (CV), skew-
ness (S) and average monthly autocorrelation coefficient for
a lag of 1 d (ρ1). Using these four indicators, the distance D
between the climate change signals of the generated series
and the GCM time series, for a given month m, is calculated
as follows:

Dm =
∑4

i=1

(
I
g
i,m

IObs
i,m

−
I

GCMScen
i,m

I
GCMHis
i,m

)2

, (2)

where g denotes the generated series for the indicator I, and
Obs, GCMScen and GCMHis have the same meaning as in
Eq. (1). The simulation corresponding to the smallest dis-
tance is selected as the best one.

The CF assumptions remain in place for the QP method
and the assumption regarding consecutive days as indepen-
dent. Unlike the CF method, it is now assumed that extreme
and non-extreme precipitation amounts can change with dif-
ferent factors. The temporal structure of the observed time
series is not explicitly changed. Furthermore, it is assumed
that the highest relative changes are applied to the days with
the highest daily precipitation. The method allows for an ex-
plicit perturbation of the temporal structure of the observed
time series.
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2.2.4 Event-based weather generator (WG)

The fourth selected statistical downscaling method in this
study is the stochastic and event-based approach developed
by Thorndahl et al. (2017), which is not directly based on
change factors but generates stochastic time series instead.
Consequently, it belongs to the category of the weather gen-
erators. The method constructs a stochastic time series by al-
ternating wet and dry events. Wet events are sampled from an
observed point precipitation time series. Observed dry event
durations are fitted to a two-component mixed exponential
distribution (three parameters, i.e. λa, λb and pa, in Eq. 3)
from which dry events durations (also called inter-event du-
rations; tie) are sampled. Both sampling operations are per-
formed for each season separately.

f (tie)= pa
[
λa, ie exp

(
−λa, ietie

)]
+ (1−pa)[

λa, ie exp
(
−λb, ietie

)]
, (3)

where λa, ie and λb, ie are the rate parameters for two popula-
tions, a and b, with different exponential distributions, and
pa is the weight of population a. More information about
the two-component mixed exponential distribution can be
found in the Supplement (Sect. S1). A popular way to fit
this type of distribution to data points is by applying iterative
expectation–maximisation algorithms (Yilmaz et al., 2015).
An implementation of this algorithm for fitting mixed expo-
nential distributions is included in the R package of Renext
(Deville and IRSN, 2016).

Figure 1 shows the two-component mixed exponential
density functions that are fitted to the empirical probabili-
ties of the observed (Uccle) dry event lengths. The fitted dis-
tributions underestimate the proportion of inter-events with
a duration of 1 d. This underestimation is countered when
sampling since the complete range [0, 1.5] of sampled dura-
tions is rounded to 1 d. Figure 2 shows the two-component
mixed exponential cumulative density functions that are fit-
ted to the seasonal empirical cumulative density functions
of observed (Uccle) daily precipitation intensities. The fitted
distributions are very close to simple exponential distribu-
tions since pa ≈ pb ≈ 0.5(pb = [1−pa]) and λa ≈ λb.

When the sampling processes are performed, the three pa-
rameters (λa, λb and pa) of the two-component mixed ex-
ponential distribution are converted into stochastic variables
(sampled from a uniform distribution) in order to accommo-
date for climate change. A similar approach is used for ex-
treme precipitation, requiring the sampling of two parame-
ters. In total, five parameters are sampled from uniform dis-
tributions for each season.

The stochastic nature of this method requires a large num-
ber of simulations. These are evaluated using several tar-
get variables and the corresponding change factors, which
are calculated using the GCM ensemble. For each climate
change scenario, one simulation is picked from the accepted
simulations as the best simulation based on the performance

it shows for different target variables. This method requires
making an arbitrary choice on several parameters, i.e. the
boundaries of the uniform sampling intervals, the number
of simulations, target variables and their weights. The sam-
pling boundaries for the dry spell parameters and the number
of simulations are the subject of a sensitivity analysis (see
Sect. S2 and Fig. S4). The other parameters are further dis-
cussed in detail hereafter.

Parameters for precipitation change factor function

The two parameters (slope α and intercept β) of a linear
change factor function (Eq. 4), used to alter event precipi-
tation amounts in function of its exceedance probability, are
sampled from uniform distributions.

c (i)= αF (i)+β, (4)

in which the following applies:

F (i)= pa
[
1− exp(λai)

]
+ (1−pa) [1− exp(λbi)], (5)

where c (i) is the change factor as a function of intensity i,
and F (i) is the probability of a given rainfall intensity i be-
ing less than or equal to i using the same two-component
mixed exponential distribution used for fitting the inter-event
durations (Eq. 3). λa and λb are the rate parameters for pop-
ulations a and b with different exponential distributions, and
pa is the weight of population a.

Thorndahl et al. (2017) specify that the sampling bound-
aries are empirically selected by executing the method for
very broad sampling ranges and iteratively narrowing them
down based on the simulations that are accepted. When ap-
plying this strategy, a test run comprising 50 000 simulations
did, however, not show clear boundaries for these parame-
ters. Instead, sampling ranges are chosen at 0.000–0.050 and
0.80–1.20 for α and β, respectively, for all seasons. These
values correspond well to the parameter ranges found by
Thorndahl et al. (2017) for the accepted runs in their study.

Target variables

The performance of a simulation is evaluated based on a
set of target variables. The target values for these variables
are determined by application of change factors to the corre-
sponding variables of the observed time series H . The value
for the target value i for the simulation j is denoted as Mi, j ,
and the climate change factor for target value i as cfi . The
performance P is then calculated using Eq. (6a). Assuming a
Gaussian distribution of the target variables, the acceptance
criterion Pcrit for each target variable is taken as its 95 % con-
fidence interval (Eq. 6b). A simulated time series j is ac-

Hydrol. Earth Syst. Sci., 25, 3493–3517, 2021 https://doi.org/10.5194/hess-25-3493-2021



H. Tabari et al.: Comparison of statistical downscaling methods for climate change impact analysis 3499

Figure 1. Fitted two-component mixed exponential distributions to seasonal empirical probabilities of observed (Uccle) dry event durations.
λa, ie and λb, ie are the rate parameters for populations a and b with different exponential distributions. pa is the weight of population a, and
pb is the complement of the weight of population a(pb = [1−pa]).

cepted when Pi, j>Pcrit, i for all target variables i.

Pi, j = 1−

∣∣cfi · Hi − Mi, j

∣∣
cfi · Hi

(6a)

Pcrit, i = 1−
2 · σcf, i

cfi
. (6b)

For all accepted simulations, the overall performance is cal-
culated as a weighed sum of all individual target variable
performances. For n target variables and weights wi , this be-
comes Pj =

∑n
i=1wiPi, j .

The set of target variables in the original implementation
is altered in order to fit the specific needs of this study bet-
ter. In total, two target variables relating to precipitation with
T = 2 years and T = 5 years are removed. Instead, five new
target variables are added, assuring the annual and seasonal
number of dry days is adequately reproduced in the accepted
simulations (Table 2). The weights, attributed to each target
variable for calculation of the overall performance, are at-
tributed in favour of the dry days target variables in order to
reflect their importance for this study. The largest weights are
assigned to the target variables that are expected to undergo

the largest changes, which are expected to be the hardest to
simulate.

Like the other statistical downscaling methods, some as-
sumptions are made in the WG method. It makes assump-
tions similar to change factor methods due to the selec-
tion procedure. The changes found for climate model grid-
averaged spatial scales are treated as targets for the stochas-
tic simulations. Furthermore, this weather generator assumes
wet event durations will not change, while dry event dura-
tions will. In addition, it is assumed that observed time steps
with larger precipitation amounts will have a relatively larger
increase in precipitation in comparison to time steps with
lower precipitation amounts.

2.3 Validation of statistical downscaling methods

All downscaling methods are prone to errors and require
a proper validation (Benestad, 2016). We validate the four
downscaling methods to assess how they reproduce dry day
frequency, dry spell duration and total precipitation. An
observation-based cross-validation is applied to evaluate the
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Table 2. Target variables used for evaluation of the simulations of
WG.

Target variable Abbr. Unit Weight

Annual number of dry days and – –

Seasonal number of dry days sndwi – 0.10
for winter

Seasonal number of dry days sndsp – 0.10
for spring

Seasonal number of dry days sndsu – 0.20
for summer

Seasonal number of dry days sndau – 0.10
for autumn

Annual precipitation ap mm –

Seasonal precipitation for winter spwi mm 0.03

Seasonal precipitation for spring spsp mm 0.06

Seasonal precipitation for summer spsu mm 0.15

Seasonal precipitation for autumn spau mm 0.06

Annual number of events above n10mm – 0.10
10 mm per day

Annual number of events above n20mm – 0.05
20 mm per day

Annual maximum daily mdp mm 0.05
precipitation

skill of CFM, QP and WG in terms of the relative error
metric. As the BC method cannot be validated based on
the observation-based cross-validation, it is evaluated using
an inter-model cross-validation (Räty et al., 2014; Schmith
et al., 2021). In the observation-based cross-validation, also
called the holdout method (Piani et al., 2010; Dosio and
Paruolo, 2011) and perfect predictor experiment (Maraun et
al., 2019a, b), observations are regarded as being pseudo-
climate model data. The validation period is defined from
1971 to 2000, which is the same as the historical period of
the GCMs. As the dominant modes of internal variability
in mid-latitudes have cycles of several decades (Schlesinger
and Ramankutty, 1994; Tabari and Willems, 2018b), a large
temporal distance between calibration and validation peri-
ods is required to acquire stable approximations of forced
changes (Maraun and Widmann, 2018). A period in the far
past (1900–1929; the first 30 year period in Uccle observa-
tions) is thus selected as the calibration period.

In the inter-model cross-validation, each of the 28 GCMs
employed in this study are, by turns, considered as being
pseudo-observations. The historical simulation (1971–2000)
of the pseudo-observations (verifying GCM) is used for the
calibration of the remaining GCMs (projecting GCMs), and
the scenario simulation (2071–2100) of the verifying GCM is

Table 3. Overview of the considered research indicators.

Research indicators No.

Mean monthly number of dry days 12
Number of dry spells per class 5
Mean length of very long dry spells 1
Mean monthly precipitation 12
Maximum monthly precipitation 12

42

utilised for the validation of projecting GCMs. The relative
error for each indicator is computed as the absolute differ-
ence between the projected indicator from projecting GCMs
and the validation indicator from the verifying GCM for the
end of the 21st century (2071–2100) divided by the valida-
tion indicator. For the 28 GCMs (N = 28), 756 combinations
(N ×[N − 1]) are obtained to validate the BC method, also
providing confidence intervals for the relative error.

2.4 Research indicators

In order to compare climate change scenarios and statisti-
cal downscaling methods, five types of research indicators
are used in this study (Table 3). The most important indica-
tors for this study are related to dry days, dry spells and to-
tal precipitation. A typical threshold used for separating wet
and dry days is 0.1 mm (Pérez-Sánchez et al., 2018; Breinl
et al., 2020). This value corresponds to the standard resolu-
tion used for precipitation observations. However, in recent
climate change projection studies this threshold is often cho-
sen to be higher, at 1 mm (Raymond et al., 2018; Tabari and
Willems, 2018a; Kendon et al., 2019; Han et al., 2019). This
is done to counter the tendency of coarse climate models
(GCMs) to overestimate the number of days with low pre-
cipitation (Tabari and Willems, 2018a), also known as the
so-called drizzle problem (Moon et al., 2018).

Following the definition used in the climate change study
by Raymond et al. (2018), a dry spell is defined as consec-
utive dry days with less than 1 mm of precipitation. Further-
more, they define several classes of dry spell lengths (Ta-
ble 4), based on the percentiles of dry spell length calculated
using the historical period of the study. Dry spells are not
to be confused with the terms dry events (Willems, 2013;
Willems and Vrac, 2011) or inter-events (Sørup et al., 2017;
Thorndahl et al., 2017) used in the statistical downscaling
methods. This is due to the definition of dry spells compris-
ing consecutive dry days (≥ 2 d). In the discussed method im-
plementations, dry events and inter-events, respectively, have
minimum lengths of 1 d and even shorter than 1 d.

The number of dry days is considered on a monthly ba-
sis. To assess changes in dry spell patterns, the classification
discussed in the literature review by Raymond et al. (2018)
is followed. For each of the five classes based on dry spell
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Table 4. Classification of dry spells based on their length along with
the limits for each class derived from observed time series.

Class name Percentiles Limits [days]

Very short dry spell <20th [2, 7]
Short dry spell 20th–40th [8, 13]
Medium dry spell 40th–60th [14, 19]
Long dry spell 60th–80th [20, 25]
Very long dry spell >80th [26,∞]

lengths, the number of dry spells is calculated. An additional
indicator gives more information on the class containing the
longest dry spells, i.e. very long dry spells. Here, the mean
length of very long dry spells is used as an indicator. The
indicators related to dry spells are calculated over the entire
30 year period to prevent splitting dry spells up. The last in-
dicator used in this research for drought assessment is the
mean monthly precipitation.

An additional precipitation indicator describes the extreme
precipitation in a given monthm and allows for a rough com-
parison in terms of extreme precipitation, which is useful for
comparing how the different statistical downscaling methods
handle extreme precipitation. This indicator is defined as the
monthly maximum daily precipitation averaged over the 30-
year period.

2.5 Significance testing of climate change signals

The projected research indicators found after statistical
downscaling can be compared to those found in the observed
time series. For research indicator i with value I , this cli-
mate change signal (CCSi) is defined as IProj

i divided by
IObs
i . Something can be said about the significance of the pro-

jected CCS in the GCM ensemble by comparing it with the
internal variability of one climate model. A significance test
is executed based on the Z score (Tabari et al., 2019). Here,
the stochastic variable X represents CCSi . The null hypoth-
esis of the Z test corresponds to a situation without climate
change, where the mean of CCSi is equal to 1 (H0: µ= 1).
The standard deviation σ can be estimated by the standard
deviation of CCSi found over the 25 CanESM5 runs, de-
noted as si, 25. The difference between these GCM runs is
that they are initialised using different starting conditions,
i.e. points in the preindustrial control run. The differences
in CCS for these 25 runs can thus be attributed to the inter-
nal variability in the climate system, which is regarded as
noise. Consequently, the CCS is said to be significant if the
signal-to-noise ratio (S2N), here equal to |Z|, is sufficiently
large. Similar to Tabari et al. (2019), the Z test is applied to
the median CCSiover the 28-member GCM ensemble. For
a confidence level of 95 %, the null hypothesis is rejected if
|Z| =8

(
1− 0.05

2

)
> 1.96. The 10 % and 20 % significance

levels correspond to Z = 1.64 and 1.28, respectively. An im-

portant assumption in this approach is that si, 25 is a repre-
sentative description for all climate models within the GCM
ensemble.

3 Results

Before using the statistical downscaling methods for project-
ing the drought-related indicators, their skill is validated in
terms of the relative error metric (Figs. 3 and 4). For total
precipitation, QP and CFM with a relative error of <4 % for
different months outperform WG and BC. The distribution
of the relative error for total precipitation adjusted by BC is
generally shifted towards higher values for higher level sce-
narios. For the number of dry days, QP with a relative error
of' 1 % for all months is clearly the best performed method,
followed by WG for January to May and by either WG or
CFM for the remaining months. BC is the worst method for
the number of dry days, for which the relative error increases
with scenario level. As for dry spells, QP can be considered
the best method for the number of very short to large dry
spells. The difference between the skills of the four methods
is small for the number of very short and short dry spells,
while it becomes bigger as the spells become longer. For all
the methods, the relative error enlarges for longer spells.

Once the downscaling methods are evaluated, the future
projections for the drought-related indicators are derived
from the methods. Figure 5 shows the projections for the
number of dry days per month with and without statistical
downscaling. The results are characterised by the median of
the CMIP6 GCM ensemble, and the changes can be seen by
comparing the projected indicator and the observed one at
Uccle station. For BC, CFM and QP, each member of the en-
semble is downscaled separately. As a consequence, the vari-
ation within the downscaled ensemble can also be looked at.
This is not possible for WG since it downscales the ensem-
ble as a whole. The median indicator values for BC, CFM
and QP show a similar pattern. Across the four scenarios, the
number of dry days increases between June and September
in comparison to the Uccle observations. As expected, the
increase becomes larger for higher-level scenarios. The num-
ber of dry days remains about the same for the other months.
WG projects a lower number of dry days during the sum-
mer months. The inter-model variation for dry day number
projections tends to be the largest for BC, closely followed
by QP. CFM shows a considerably smaller inter-model vari-
ation. The results for the CMIP6 GCMs without downscal-
ing differ quite largely from the downscaled series during the
winter months, and the difference becomes smaller towards
summer.

To analyse the dry-spell-related indicators, dry spells are
categorised by the quantiles of dry spell lengths in the ob-
served (Uccle) time series. Table 4 gives an overview of
the limits for each dry spell class. The projections for the
number of dry spell indicators (the number per class over a
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Figure 2. Fitted two-component mixed exponential distributions compared to empirical cumulative density functions of seasonal observed
(Uccle) daily precipitation intensities. λa, ie and λb, ie are the rate parameters for populations a and b with different exponential distributions.
pa is the weight of population a, and pb is the complement of the weight of population a(pb = [1−pa]).

30-year period) are shown in Fig. 6. Results not only vary
strongly between statistical downscaling methods but also
between CMIP6 scenarios. The results generally point to an
increase in the number of medium, large and very large dry
spells in comparison to the observations. The magnitude of
the changes is found to increase with scenario level for all
the methods except WG, which shows no clear pattern. Even
the sign of the WG-derived changes for extreme lengths of
dry spells (very short and very long) alters between positive
and negative among scenarios. The increase in the number of
medium, large and very large dry spells for BC and CFM is
at the expense of a decrease in the number of short and very
short dry spells. Without downscaling, the CMIP6 GCMs
generally show a lower number of dry spells than the down-
scaled results across all classes and a higher value for the dry
spell length indicator. Next to very long dry spells, the dry
spell length (mean length of very long dry spells), which is
a characteristic of the most extreme dry spells, is also anal-

ysed (Fig. 6). In comparison to the historical observations,
the general trend is towards an increase in dry spell length.
The magnitude of the increase in dry spell length rises with
scenario level. The inter-model spread of the number and the
length of dry spells for the methods follows a similar pattern
to the number of dry days, which is large, medium and small
spreads for BC, QP and CFM, respectively.

The results for mean monthly precipitation are given in
Fig. 7. Compared to the historical situation, the clearest
changes appear in the summer months (June–September),
where precipitation decreases according to all methods ex-
cept WG. WG shows a decrease between June and August
for higher-end scenarios (SSP3–7.0 and SSP5–8.5). Between
October and May, BC, CFM and QP projections show a
precipitation increase, although it is less pronounced than
the decrease in the summer months. In terms of the inter-
model variability, BC, CFM and QP show a similar spread.
The CMIP6 GCM ensemble without downscaling indicates
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Figure 3. Relative error of the observation-based cross-validation
for the drought-related indicators (Ptot – monthly precipitation;
NDD – number of dry days; dry spell number). Each colour rep-
resents a downscaling method. VSDS, SDS, MDS, LDS and VLDS
denote the very short, short, medium, long and very long dry spells
defined in Table 4, respectively.

higher values for the winter season and lower values for sum-
mer season in comparison to the downscaled series.

The second series of research indicators related to pre-
cipitation is monthly maximum daily precipitation. As men-
tioned earlier, this research indicator does not attribute to-
wards the drought investigation that is the main objective of
this study. Rather, this indicator is used to gain further insight
into the way the selected statistical downscaling methods
work, as many statistical downscaling methods are originally
developed for extreme precipitation studies. The maximum
daily precipitation on a monthly basis, and averaged over the
30 year period, is given in Fig. 8. An interesting observation
is that the downscaling methods project a very similar and
relatively slight increase during winter season, while for the
summer season the results vary greatly. The largest changes
in comparison to the historical period are given by CFM,
where a considerable decrease is found during the summer
months. The results of WG are again less similar to the re-
sults of the other downscaling methods in terms of the change
in magnitude, while it provides the same change in direction.

When comparing the CMIP6 GCM projections before and
after downscaling, they shows relatively similar results dur-
ing the winter months, while the downscaled projections for
the summer months are lower.

The assessment of the significance of the results is based
on the relative changes in comparison to the historical obser-
vations. In this study, this relative change is defined as the
climate change signal. The median climate change signal of
the GCM ensemble is given in Tables 5 and 6 for the differ-
ent scenarios, statistical downscaling methods and research
indicators. Based on the variation in climate change signals
within the 25 CanESM5 runs (after downscaling), the sig-
nificance of the median climate change signal of the ensem-
ble can also be indicated. This is not possible for WG as it
does not downscale each member of the ensemble separately.
The number of dry days and total precipitation mainly show
significance for the medium- to high-level scenarios during
the summer months and to a lesser extent during the win-
ter months. There is an agreement between the downscal-
ing methods for the significance of the changes for the num-
ber of dry days and total precipitation. The significance of
the changes in maximum daily precipitation is only found
for CFM during the summer months and for all methods in
December. Summer precipitation extremes in Belgium are,
however, convective in nature, which are not well represented
by coarse-resolution GCMs (Kendon et al., 2017), necessi-
tating the use of convection-permitting climate models (grid
spacing of ≤ 4 km) for their simulations (Tabari et al., 2016).
The changes in dry spell length are significant for CFM and
QP under almost all scenarios, while none of the BC-derived
changes are statistically significant. In contrast, BC is the
method with the largest number of significant changes in
the number of dry spells. That is, all changes in the num-
ber of medium and long dry spells for all scenarios obtained
from BC are significant. The changes in these classes of dry
spell number for higher-level scenarios are also significant
by CFM. While the QP-derived changes for these classes are
not significant, QP identifies some significant changes in ex-
treme classes (very small and very long) of dry spells.

4 Discussion

4.1 Statistical downscaling methods

From the results, it is clear that the statistical downscal-
ing methods can act quite differently. By uncovering where
these differences stem from, the performance of the statistical
downscaling methods for drought research can be quantified.
Hence, the results for the four statistical downscaling meth-
ods are discussed and linked to the methods’ strengths and
weaknesses.
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Figure 4. Relative error of the inter-model cross-validation of the BC method for the drought-related indicators (Ptot – monthly precipitation;
NDD – number of dry days; dry spell number). VSDS, SDS, MDS, LDS and VLDS denote the very short, short, medium, long and very
long dry spells defined in Table 4, respectively. The top and bottom of the box show the 75th and 25th percentiles of the relative error,
respectively. The top and bottom of the whiskers show the 5th and 95th percentiles, respectively. The horizontal black line in the middle of
the box represents the median.

4.1.1 BC method

The first method, BC, applies a bias correction directly to the
research indicators. This means no underlying time series is
created. A first consequence is that not all projections are
necessarily compatible with each other if the indicators are
interdependent. This is the case for a number of dry spells

since there are only a limited number of dry days to be dis-
tributed over the different classes of dry spells.

Second, the number of extreme events, such as long
and very long dry spells, is limited. In the 30-year pe-
riod of observations in Uccle, only 20 and 11 long and
very long dry spells occurred, respectively, while the num-
ber of these events varies substantially among CMIP6 pro-
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Figure 5. Graphical representation of results for the number of dry days under different future scenarios. Coloured lines represent me-
dian values of the ensemble, and shades represent the variation within the ensemble (10 %–90 % quantiles). CMIP6 GCM projections (not
downscaled; dashed line) and Uccle observations (solid line) are given as a reference.
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Figure 6. Box plot representation of results for number of dry spells and dry spell length under different future scenarios. WG downscales
the ensemble as a whole, resulting in only one data point. CMIP6 GCM projections (not downscaled; dashed line) and Uccle observations
(solid line) are given as a reference. VSDS, SDS, MDS, LDS and VLDS denote the very short, short, medium, long and very long dry spells,
respectively. The top and bottom of the box show the 75th and 25th percentiles, respectively. The top and bottom of the whiskers show the
5th and 95th percentiles, respectively. The horizontal black line in the middle of the box represents the median.

jections (15–100 and 11–88 under SSP5–8.5). This leads
to very large bias-correction factors, which in turn lead to
(over)spectacular results after downscaling (see Fig. 6). The
same problem holds true for the dry spell length indicator.
An absolute bias correction approach instead of a relative
one might be more appropriate. In the same spirit, Raymond
et al. (2019) discuss changes in extreme dry spell lengths in
absolute terms (days) rather than percentages.

Note that these concerns do not take away from this
method’s ability to qualitatively downscale indicators such
as number of dry days or total precipitation. These indicators
are often projected by making use of relative change factors,
as is also the case for the other statistical downscaling meth-
ods.
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Figure 7. Graphical representation of results for total precipitation under different future scenarios. Coloured lines represent median values
of the ensemble, and shades represent the variation within the ensemble (10 %–90 % quantiles). CMIP6 GCM projections (not downscaled;
dashed line) and Uccle observations (solid line) are given as a reference.
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Figure 8. Graphical representation of results for maximum daily precipitation under different future scenarios. Coloured lines represent
median values of the ensemble, shades represent the variation within the ensemble (10 %–90 % quantiles). CMIP6 GCM projections (not
downscaled; dashed line) and Uccle observations (solid line) are given as a reference.
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Table 5. Climate change signals and the corresponding significance for BC and CFM. Climate change signal is the change relative to
the historical observations (1971–2000). Numbers in italic, bold and bold italic denote significant changes at 20 %, 10 % and 5 % levels,
respectively.

Research indicator Obs. BC CFM

SSP1– SSP2– SSP3– SSP5– SSP1– SSP2– SSP3– SSP5–
2.6 4.5 7.0 8.5 2.6 4.5 7.0 8.5

Dry spell length 27 4.7 % 7.5 % 4.9 % 10.5 % 2.3 % 2.8 % 2.8 % 3.2 %

No. of dry Very short 795 6.8 % 5.3 % 1.9 % −1.6 % −0.6 % –1.3 % –1.3 % –1.6 %
spells Short 219 6.2 % 8.0 % 8.1 % 7.6 % −1.1 % −1.2 % −1.7 % –2.3 %

Medium 68 27.9 % 47.9 % 48.5 % 50.7 % 3.2 % 3.3 % 4.4 % 5.2 %
Long 20 60.9 % 77.5 % 90.1 % 86.6 % 5.0 % 10.5 % 13.0 % 20.2 %
Very long 11 6.8 % 5.3 % 1.9 % −1.6 % 1.6 % 3.9 % 10.7 % 10.4 %

No. of Jan 18 −4.6 % −0.9 % −2.5 % −5.5 % −1.4 % −1.6 % –2.3 % –3.0 %
dry days Feb 18 −1.3 % −0.6 % −0.5 % −2.4 % 0.1 % −0.5 % −0.5 % −1.8 %

Mar 18 −4.7 % −3.2 % −1.2 % −3.0 % −0.6 % −0.6 % −0.6 % −1.2 %
Apr 19 −2.6 % −1.3 % 0.9 % −0.9 % −0.5 % −0.5 % −0.1 % −1.0 %
May 20 1.4 % 2.6 % 7.1 % 9.5 % 0.9 % 0.9 % 1.7 % 2.1 %
Jun 18 4.5 % 8.2 % 13.3 % 18.0 % 1.1 % 1.9 % 3.4 % 4.9 %
Jul 21 5.9 % 10.3 % 15.0 % 19.3 % 1.5 % 2.5 % 3.8 % 5.3 %
Aug 22 5.2 % 9.6 % 14.9 % 17.5 % 1.5 % 2.7 % 4.2 % 5.5 %
Sep 21 4.1 % 7.6 % 10.3 % 13.6 % 1.2 % 1.8 % 3.0 % 3.6 %
Oct 21 1.4 % 5.7 % 5.2 % 6.2 % −0.2 % 0.2 % −0.1 % −0.2 %
Nov 17 2.5 % 3.2 % 1.3 % 1.5 % 0.6 % 0.5 % −0.1 % −0.5 %
Dec 18 −3.6 % −6.1 % −3.7 % −6.1 % −0.3 % −0.8 % −1.2 % −2.1 %

Total Jan 71.2 11.4 % 12.9 % 17.8 % 23.1 % 11.4 % 12.9 % 17.8 % 23.1 %
precipitation Feb 53.1 5.2 % 7.5 % 9.8 % 17.1 % 5.3 % 7.5 % 9.8 % 17.2 %

Mar 72 14.0 % 12.6 % 13.3 % 20.0 % 13.9 % 12.6 % 13.3 % 20.0 %
Apr 54.7 9.6 % 9.7 % 8.6 % 12.3 % 9.6 % 9.7 % 8.6 % 12.2 %
May 69.7 3.1 % 4.6 % −1.6 % −2.6 % 3.1 % 4.6 % −1.6 % −2.6 %
Jun 77.1 0.7 % −5.9 % −14.0 % –22.2 % 0.7 % −5.9 % −14.0 % –22.2 %
Jul 68.9 −7.3 % –14.0 % –23.2 % –31.7 % −7.3 % –14.0 % –23.2 % –31.7 %
Aug 64.4 −8.5 % −16.5 % –27.1 % –32.8 % −8.5 % −16.5 % –27.2 % –32.8 %
Sep 62.1 −3.1 % −8.4 % –15.6 % –19.3 % −3.1 % −8.4 % –15.6 % –19.3 %
Oct 68.8 4.4 % 0.7 % 2.3 % 5.0 % 4.4 % 0.7 % 2.3 % 5.0 %
Nov 79.6 4.2 % 6.1 % 10.2 % 13.4 % 4.2 % 6.1 % 10.2 % 13.4 %
Dec 78.7 9.8 % 14.2 % 17.9 % 24.5 % 9.8 % 14.2 % 17.9 % 24.5 %

Maximum daily Jan 13.5 12.0 % 17.4 % 21.5 % 25.3 % 11.4 % 12.9 % 17.8 % 23.1 %
precipitation Feb 12.4 4.0 % 7.6 % 11.3 % 17.7 % 5.3 % 7.5 % 9.8 % 17.2 %

Mar 14.2 11.6 % 13.9 % 15.8 % 22.5 % 13.9 % 12.6 % 13.3 % 20.0 %
Apr 12.3 8.4 % 12.2 % 12.1 % 15.3 % 9.6 % 9.7 % 8.6 % 12.2 %
May 16.6 5.3 % 9.6 % 8.3 % 12.9 % 3.1 % 4.6 % −1.6 % −2.6 %
Jun 19.3 8.1 % 4.5 % 2.1 % −1.2 % 0.7 % −5.9 % −14.0 % –22.2 %
Jul 16.9 0.5 % 0.9 % −4.4 % −12.5 % −7.3 % –14.0 % –23.2 % –31.7 %
Aug 18.7 0.0 % −3.8 % −9.4 % −12.9 % −8.5 % −16.5 % –27.1 % –32.8 %
Sep 15.7 6.4 % 6.5 % 3.1 % 4.0 % −3.1 % −8.4 % –15.6 % –19.3 %
Oct 17.2 11.2 % 10.7 % 14.4 % 20.3 % 4.4 % 0.7 % 2.3 % 5.0 %
Nov 16.6 8.9 % 11.2 % 17.0 % 23.7 % 4.2 % 6.1 % 10.2 % 13.4 %
Dec 15.8 8.2 % 13.1 % 19.7 % 26.6 % 9.8 % 14.2 % 17.9 % 24.5 %

4.1.2 CFM method

CFM does not account directly for changes in the number of
dry days. This method applies a change factor to the observed

time series in order to match the changes in total precipi-
tation. For this specific research indicator, the result should
consequently be no different than the one obtained using BC.
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Table 6. Climate change signals for QP and WG and the corresponding significance for QP. Significance testing is not possible for WG as it
does not downscale each member of the ensemble separately. The climate change signal is the change relative to the historical observations
(1971–2000). Numbers in italic, bold and bold italic denote significant changes at 20 %, 10 % and 5 % levels, respectively.

Research indicator Obs. QP WG

SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP5–8.5 SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP5–8.5

Dry spell length 27 4.9 % 5.6 % 6.5 % 8.7 % 19.0 % 9.8 % 11.3 % 16.8 %

No. of Very short 795 5.5 % 4.8 % 2.0 % 1.4 % 3.4 % −2.0 % −5.4 % 6.0 %
dry spells Short 219 −1.6 % −1.4 % 0.0 % −1.2 % 3.7 % 12.8 % 18.7 % 5.9 %

Medium 68 −4.3 % 2.5 % 6.5 % 6.6 % −17.6 % −10.3 % −8.8 % −7.4 %
Long 20 3.6 % 5.4 % 16.1 % 21.4 % 20.0 % 0.0 % 15.0 % 5.0 %
Very long 11 3.9 % 18.5 % 43.8 % 62.7 % −36.4 % 63.6 % 36.4 % −27.3 %

No. of Jan 18 −2.6 % −0.7 % −1.8 % −3.4 % 8.2 % 2.4 % 5.9 % 0.7 %
dry days Feb 18 −0.2 % 0.1 % 0.1 % −1.0 % −6.9 % 3.8 % −6.5 % −0.9 %

Mar 18 −3.6 % −2.9 % −1.2 % −2.5 % 1.1 % 9.8 % 11.3 % 8.5 %
Apr 19 −1.6 % −0.5 % 0.7 % −0.3 % −3.8 % 1.6 % −2.8 % 2.1 %
May 20 1.8 % 2.4 % 6.1 % 7.6 % −0.3 % 1.3 % 7.0 % −4.3 %
Jun 18 4.1 % 8.0 % 12.9 % 18.0 % 13.8 % 13.2 % 15.6 % 13.2 %
Jul 21 5.7 % 9.0 % 13.1 % 16.6 % −1.7 % 3.7 % 0.5 % 3.1 %
Aug 22 4.8 % 8.1 % 12.8 % 14.7 % −5.9 % −3.8 % 0.6 % −6.0 %
Sep 21 4.3 % 6.9 % 9.5 % 11.8 % −2.3 % −3.7 % −8.1 % −1.0 %
Oct 21 0.7 % 3.6 % 3.1 % 4.0 % −5.3 % 0.5 % 3.5 % 1.9 %
Nov 17 1.9 % 2.2 % 0.6 % 0.7 % 9.5 % 15.9 % 19.2 % 11.4 %
Dec 18 −1.1 % −2.7 % −1.8 % −3.4 % 5.5 % 9.7 % 8.0 % 7.4 %

Total Jan 71.2 11.5 % 13.3 % 18.1 % 23.3 % −2.6 % 6.8 % 15.1 % 18.5 %
precipitation Feb 53.1 5.5 % 7.8 % 10.4 % 17.7 % 42.0 % −0.7 % 41.3 % 16.8 %

Mar 72 14.3 % 13.1 % 13.8 % 21.1 % 14.1 % 1.2 % −7.1 % 5.6 %
Apr 54.7 10.4 % 10.8 % 9.7 % 13.5 % 22.6 % 31.1 % 35.5 % 32.4 %
May 69.7 4.6 % 5.9 % 0.1 % −0.8 % −1.8 % 3.0 % −10.3 % 8.7 %
Jun 77.1 1.6 % −5.1 % −13.4 % –21.1 % −24.3 % −22.1 % −20.5 % −32.6 %
Jul 68.9 −6.6 % −13.7 % –23.3 % –31.3 % −0.2 % −10.7 % −4.5 % −27.0 %
Aug 64.4 −7.0 % −14.7 % –25.5 % –32.2 % 11.9 % −0.6 % −22.3 % −9.7 %
Sep 62.1 −2.4 % −7.3 % −14.4 % –18.0 % 6.2 % 13.0 % 42.9 % 24.0 %
Oct 68.8 5.1 % 1.5 % 2.8 % 6.1 % 16.6 % 2.8 % 15.4 % 4.9 %
Nov 79.6 4.8 % 6.5 % 10.6 % 14.0 % −13.2 % −10.2 % −15.4 % −1.9 %
Dec 78.7 10.1 % 14.6 % 18.5 % 25.3 % 4.1 % −4.9 % 7.1 % 3.3 %

Maximum Jan 13.5 13.5 % 17.0 % 21.3 % 26.2 % 20.2 % 30.4 % 35.6 % 26.1 %
daily Feb 12.4 6.2 % 9.9 % 13.7 % 20.9 % 44.1 % 25.6 % 51.4 % 22.4 %
precipitation Mar 14.2 14.4 % 14.8 % 18.1 % 25.3 % 31.8 % 51.5 % 22.3 % 30.5 %

Apr 12.3 11.9 % 14.2 % 14.5 % 17.5 % 23.6 % 51.5 % 52.9 % 58.2 %
May 16.6 8.1 % 12.8 % 12.8 % 16.2 % −1.6 % 2.1 % 6.3 % 7.0 %
Jun 19.3 11.8 % 8.3 % 6.8 % 2.8 % −16.9 % −17.5 % −2.8 % −17.2 %
Jul 16.9 3.5 % 4.6 % −1.4 % −5.2 % 20.9 % 15.2 % 16.6 % −25.0 %
Aug 18.7 4.6 % 0.9 % −2.6 % −9.4 % 11.9 % −9.9 % −20.1 % −19.3 %
Sep 15.7 6.8 % 6.8 % 1.6 % 3.5 % 26.9 % 9.2 % 43.6 % 34.5 %
Oct 17.2 10.6 % 10.8 % 12.7 % 21.4 % 11.0 % 5.8 % 22.8 % 18.8 %
Nov 16.6 10.5 % 11.8 % 16.8 % 21.6 % 1.1 % 15.4 % 18.0 % 20.1 %
Dec 15.8 10.8 % 14.9 % 22.2 % 28.9 % 20.8 % 19.8 % 23.2 % 10.7 %

The slight differences between these methods in Fig. 7 might
be attributed to rounding differences.

The rationale behind the application of this method for as-
sessing changes in drought finds its roots in the definition of
the dry day threshold at 1 mm. As mentioned earlier, this is

done to counter the so-called drizzle problem that GCMs are
affected by, meaning that they overestimate the number of
days with low numbers of precipitation. Consequently, days
with precipitation amounts just below this threshold are clas-
sified as dry, while they might very well be lifted above this
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threshold in months where total precipitation is increased by
the statistical downscaling method. Inversely, the wet days
with precipitation just over the limit might convert to dry
days in months with a decreasing total precipitation. Fig-
ure 7 shows this effect quite clearly for the summer months,
where total precipitation is projected to decrease. The relative
change in the number of dry days under the SSP5–8.5 sce-
nario (+5.5 % in August) remains, however, rather small in
comparison to BC (+17.5 %) or QP (+14.7 %), which both
account for the number of dry days directly. The relative er-
ror of the drought-related indicators obtained here for CFM
is far smaller than that reported for extreme precipitation in
the mid-Europe region (Schmith et al., 2021).

The most interesting aspect in applying CFM, however, is
the lack of vital assumptions as to how changing the number
of dry days affect the dry spells. All required information is
contained within the time series created by the GCM. In this
light, the general trends for the number of dry days and dry
spell length indicators as projected by QP are interesting to
examine, while keeping in mind that the underlying changes
in the number of dry days are considerably smaller than one
would find through a direct change factor approach.

4.1.3 QP method

An important aspect for drought assessment in the QP
method is in the form of the separate dry day perturbation
step. Here, the time series is perturbed to match the pro-
jections of the number of dry days. Consequently, the QP
method should be equal to BC in terms of the number of
dry days projections. This is not exactly true, as shown in
Fig. 5, but the differences are small enough to attribute them
to rounding off the results differently. As dry days are the
building blocks of dry spells, a solid downscaling approach
towards the number of dry days is vital for downscaling the
number of dry spells and dry spell length. Out of the four
methods considered in this study, QP is the best-performing
method in downscaling the number of dry days.

4.1.4 WG method

In several ways, WG seems to be the odd one out among
the considered statistical downscaling methods. The origi-
nal implementation of this method (Thorndahl et al., 2017)
does, for instance, not downscale each member of the CMIP6
GCM ensemble separately as is the case for the other meth-
ods. Instead, WG aims to create one time series that corre-
sponds well to the mean of the ensemble, at least in terms
of the selected target variables. In theory, an implementation
that downscales each member of the GCM ensemble sepa-
rately is possible. Tests executed in this direction uncovered
a practical problem related to the sampling boundaries for
parameters governing the dry event duration distribution. As
shown in the sensitivity analysis (see Sect. S2), WG struggles
to deal with large changes in the number of dry days, e.g. un-

der SSP5–8.5. While the changes in the sensitivity analysis
are averaged out over the GCM ensemble, they are not when
downscaling each ensemble member separately. The much
larger changes that would have to be tackled by the WG
would require much larger sampling boundaries. The largest
change found in the GCM ensemble (one of the CanESM5
runs under SSP5–8.5) is a decrease of 40 % in the number
of dry days. To accommodate this change, sampling bound-
aries upwards of 70 % are required in theory. It is expected
that an even larger sampling range is needed, in combination
with large numbers of simulations, to generate a comfortable
number of accepted simulations. Testing at 40 % and 30 000
simulations showed that, for many members in the GCM en-
semble, no accepted simulations could be generated. This is
especially true for the SSP5–8.5 scenario.

For the monthly indicators, the number of dry days and to-
tal precipitation, BC, CFM and QP more or less match the
temporal structure found in the Uccle observations. This is
not, however, the case for WG. In total, two reasons can be
identified for this. First, the method is implemented on a sea-
sonal basis, following the original implementation (Thorn-
dahl et al., 2017). Therefore, the method does not try to
match changes in the number of dry days or total precipi-
tation for every month but rather for the season as a whole. A
comparison between a seasonal and a monthly implementa-
tion might be interesting to further investigate this method. A
monthly implementation is expected to require larger num-
bers of simulations in order to achieve similar numbers of
accepted simulations. This is due to the larger number of re-
search indicators present (monthly instead of seasonal). Sec-
ond, the downscaled time series do not necessarily match the
mean of the GCM ensemble exactly for each research in-
dicator. On the contrary, the method accepts all simulated
time series that remain within the maximum deviation for
each target variable (Table 7). These maximum deviations
can be very large, e.g. ' 48 % for extreme precipitation and
'15 % for total precipitation in summer (both under SSP5–
8.5). Consequently, simulations that are far from the mean
projections for some of the key research indicators (e.g. num-
ber of dry days) enter into the pool of accepted simulations
and might be selected as the best simulation due to the high
performance of the simulation for other target variables. This
explains the difference of WG for the number of dry days
(Fig. 5) and total precipitation (Fig. 7) in comparison to the
downscaling methods that accurately downscale these in-
dicators, even when grouping the results per season (DJF
– December–February; MAM – March–May; JJA – June–
August; SON – September–November).

The inaccurate simulation of the number of dry days af-
fects the dry-spell-related indicators. It was concluded ear-
lier that this is also the case for CFM. An additional concern
for this downscaling method is that only one data point (best
simulation) is available for comparison in Fig. 6, instead of
the 28 data points (size of the ensemble) for the other down-
scaling methods. While this concern also holds true for the
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Table 7. Maximum deviation relative to the mean change factor projected by the CMIP6 ensemble allowed for acceptance for each target
variable in WG. These deviations correspond to a 95 % confidence interval of the distribution of each target variable projection within the
GCM ensemble.

Target variable Abbr. Weight SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP5–8.5

Dry days Annual and 0 3.43 % 3.22 % 4.15 % 4.40 %
Winter sndwi 0.1 5.21 % 6.89 % 7.18 % 8.15 %
Spring sndsp 0.1 6.33 % 4.85 % 5.78 % 7.15 %
Summer sndsu 0.2 5.86 % 6.05 % 8.14 % 8.24 %
Autumn sndau 0.1 4.62 % 3.75 % 5.75 % 5.58 %

Total Annual and 0 4.35 % 5.07 % 6.24 % 6.46 %
precipitation Winter sndwi 0.03 6.60 % 7.72 % 8.61 % 10.64 %

Spring sndsp 0.06 10.00 % 9.54 % 10.44 % 12.38 %
Summer sndsu 0.15 11.95 % 10.98 % 14.68 % 14.87 %
Autumn sndau 0.06 7.20 % 6.82 % 7.47 % 8.21 %

Extreme 10 mm n10mm 0.1 8.49 % 12.08 % 13.62 % 15.01 %
precipitation 20 mm n20mm 0.05 27.59 % 35.70 % 36.61 % 48.14 %

Max mdp 0.05 7.42 % 11.32 % 11.39 % 13.29 %

other indicators, it is mitigated by using these indicators (or
similar) as target variables. In order to prevent the problems
encountered with a relative bias correction applied directly
to the dry spell indicators (see BC), this strategy cannot be
followed for dry-spell-related indicators.

4.2 Significance of climate change signals

The significance of the results is initially introduced to evalu-
ate how the signal (median climate change signal) compares
to the noise present in the CMIP6 GCM output before down-
scaling. These results are implicitly formulated in Table 5
since they have the same as the BC results. As discussed ear-
lier, only a limited number of research indicators are found
to be significant, even at a relatively low significance level
of 20 %. The main takeaway from these results is that the
increasing number of dry days (up to 19 % for SSP5–8.5)
and the decreasing total precipitation (up to 33 % for SSP5–
8.5) in the summer months are found to be significant. Total
precipitation in January and December also significantly in-
creases due to a significant increase in precipitation intensity
as the changes in the number of dry days (or wet days) are
not significant. Furthermore, a significant lengthening of dry
spells up to 9 % and a significant increase in the number of
medium and larger dry spells as high as 90 % are found. Our
results suggest wetter winters and drier summers for Bel-
gium, consistent with the results obtained from the CMIP5
GCMs (Tabari et al., 2015). An increase in the length of ex-
treme dry spells (Breinl et al., 2020) and in aridity conditions
(Tabari, 2020) was also found for western Europe.

The same methodology is followed to assess the signifi-
cance of the results after downscaling. From the discussion
on the different downscaling methods, it is clear that not all
indicators are necessarily downscaled accurately. The results
should thus be interpreted with care. As mentioned earlier,

the main concern for BC is the direct downscaling of the
dry-spell-related indicators, due to the small sample size and
the lack of coherence between the projections for the differ-
ent dry spell classes. As a consequence, the 90 % increase for
long dry spell is interpreted as an inaccurate result rather than
a significant one. For CFM, it is observed that total precipi-
tation is downscaled most accurately. The significant results
for maximum daily precipitation during the summer months
should thus be considered as inaccurate. QP, on the other
hand, shows some interesting results. This method down-
scales the monthly indicators (number of dry days, total pre-
cipitation and maximum precipitation) accurately. Dry spells
are not downscaled directly but by randomly integrating the
number of dry days changes in the original time series. This
assures the dry-spell-related indicators are coherent. As such,
the significant 8.7 % increase at the 5 % level for dry spell
length under SSP5–8.5 is the most interesting result across
all downscaling methods.

4.3 Research indicators

In total, five different types of research indicators are selected
for this research. This subsection shortly evaluates the value
of these indicators for this research.

The number of dry days and total precipitation are both
straightforward indicators that are widely used in the litera-
ture for drought assessment (e.g. Tabari and Willems, 2018a;
Hänsel et al., 2019). Both have proven to be useful for com-
paring statistical downscaling methods (e.g. Ali et al., 2019)
and gaining insight in these methods, since they often rely
directly on them. For example, CFM is governed solely by
total precipitation, while WG directly considers number of
dry days and QP method both through its target variables. In
this study, both indicators were structured on a monthly ba-
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sis. It is believed that a seasonal structure could also form a
successful alternative.

As for the dry spell indicators, the number of dry-spell-
related indicators offer interesting insights into the changes
that occur within the dry spell household. The system intro-
duced by Raymond et al. (2018) offers a straightforward but
decent classification. Beside the different dry spell class indi-
cators, the dry spell length indicator is introduced in order to
gain further insight into the longest and most important dry
spell class, and it fulfils this role adequately. An indicator de-
scribing the most extreme dry spell within the 30-year period
could make for an interesting addition in future research.

Last is the maximum daily precipitation per month aver-
aged over the 30-year period. This indicator does not capture
all nuances of extreme precipitation but gives a rough im-
pression of extreme precipitation changes. In this research,
the maximum daily precipitation indicator merely functions
as a simple illustration on how the statistical downscaling
methods process extreme precipitation differently. It is not a
relevant indicator for drought research.

5 Conclusions and recommendations

In total, four statistical downscaling methods were applied
to the CMIP6 GCM ensemble for climate change impact as-
sessment on drought. The main difference is how they treat
the downscaling of dry spells. BC uses a bias correction ap-
plied directly to the dry spell research indicators, while the
other downscaling methods approach dry spell downscaling
indirectly by changing dry day frequency in the precipitation
time series. CFM uses the information available in the time
series (drizzle) to convert the state (wet or dry) of days that
are just below or over the wet day threshold (1 mm per day).
QP applies changes in dry day frequency at random places in
the time series. WG samples dry event lengths from a mixed
exponential distribution. Other indicators, the number of dry
days and total precipitation, are downscaled directly across
all methods, except for CFM which only takes total precipi-
tation into account.

The results for BC mirror the relative changes found in
the CMIP6 GCM ensemble. While this seems to be a good
approach for the number of dry days and total precipitation,
the dry-spell-related indicators seem to be inflated due to the
relative change being applied to indicators with low occur-
rences, e.g. only 11 dry spells with a length over 25 d are
observed in the Uccle precipitation time series. CFM fails to
project the number of dry days correctly. While this might
have been expected as the number of dry days is not taken
into account during downscaling, this method is tested to see
what dry spell patterns are hidden into the original time se-
ries. Due to the poor projections of dry day frequency, this
method is not fit for evaluating dry spell changes.

Similar to BC, QP downscales the number of dry days di-
rectly using the change factors found in the CMIP6 GCM

ensemble. By altering the time series at random to match the
dry day frequency, the dry spells are altered indirectly. Out of
the four statistical downscaling methods used in this study,
QP has the overall best performance in reproducing the mag-
nitude and monthly pattern of the observed indicators. Lastly,
the event-based weather generator (WG) is a complex but po-
tent method. This method uses the relative changes found in
the CMIP6 GCM ensemble as targets for the number of dry
days and total precipitation. A rather large deviation from
these projections is, however, allowed. This results in a poor
downscaling of the changes in dry day frequency and conse-
quently in dry spells, despite the interesting approach it offers
towards dry spells (mixed exponential distribution). Stricter
selection criteria and more optimised target variables should
improve this method’s performance, likely at a larger com-
putational cost.

Considering the significance of the changes and the con-
sistency among the downscaling methods, dry day frequency
significantly increases in the summer months by up to 19 %
for SSP5–8.5. This dry day frequency increase may lead to
a total precipitation decrease by up to 33 %, as precipitation
intensity remains unchanged or insignificantly decreases. To-
tal precipitation is also projected to significantly increase in
the winter months, as a result of a significant intensification
of extreme precipitation. Furthermore, extreme dry spells are
projected to be longer by up to 9 %.

WG offers ample opportunity for further improvement.
The method could be structured per month instead of per
season to capture month-to-month variation to match the
other methods. Application of the method to each GCM in
the ensemble would create more data points, allowing the
quantification of the significance of the results found by us-
ing this method. Furthermore, alterations could be made to
the acceptance criterion in order to lower the allowed de-
viations from the changes projected by the GCMs. This is
especially important for accurate simulations of the number
of dry days. With the same goal in mind, the mix of target
variables and their corresponding weights could be changed
(e.g. only target variables related to dry days). Furthermore,
different dry event duration distributions (e.g. Weibull, ex-
ponential, gamma and generalised Pareto) can be considered
beside the mixed exponential distribution that is used in this
research.

There is also room for new downscaling methods that are
optimised to deal with dry spells. For example, a method that
uses quantile mapping to assess dry spell changes (similar to
precipitation downscaling in the QP method) could make for
an interesting comparison to the other methods. In addition, a
method that applies absolute changes to the dry spell indica-
tors could be studied. The probabilities of dry spells, such as
the parameters of the probability density function (PDF), can
also be downscaled. Because the statistics of dry spell lengths
tend to follow a binomial distribution (Wilby et al., 1998;
Semenov et al., 1998; Wilks, 1999; Mathlouthi and Lebdi,
2009), the probability p that it rains on a specific day is es-
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timated as p = 1 /mean spell length. A similar method was
used for the downscaling of heatwaves in India (Benestad et
al., 2018).

Several research indicators can be used to assess the statis-
tical downscaling methods for the impact analysis of climate
change on drought. In combination with total precipitation
(water supply), one could consider evapotranspiration (wa-
ter demand) to assess dryness (Greve et al., 2019; Tabari,
2020) and water availability (Tabari et al., 2015; Konapala
et al., 2020). Furthermore, additional indicators can be used
to study dry spells. Beside the mean length of very long dry
spells, the maximum dry spell length over a certain period
can also be of interest. Furthermore, the temporal behaviour
of dry spells could be studied, for example, based on their
starting, ending or middle day. This might be especially use-
ful for assessing the impact of dry spells during the wet sea-
son when water tables have to be replenished in order to
bridge the dry summer season.
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