Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1849-2021
https://doi.org/10.5194/hess-25-1849-2021
Research article
 | Highlight paper
 | 
09 Apr 2021
Research article | Highlight paper |  | 09 Apr 2021

Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology

Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro

Related authors

Retrieval and validation of total seasonal liquid water amounts in the percolation zone of the Greenland ice sheet using L-band radiometry
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
The Cryosphere, 19, 4237–4258, https://doi.org/10.5194/tc-19-4237-2025,https://doi.org/10.5194/tc-19-4237-2025, 2025
Short summary
Emerging global freshwater challenges unveiled through observation-constrained projections
Fei Huo, Yanping Li, and Zhenhua Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-4720,https://doi.org/10.5194/egusphere-2025-4720, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Multi-scale water balance analysis of a thawing boreal peatland complex near the southern permafrost limit in northwestern Canada
Alexandre Lhosmot, Gabriel Hould Gosselin, Manuel Helbig, Julien Fouché, Youngryel Ryu, Matteo Detto, Ryan Connon, William Quinton, Tim Moore, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 29, 4871–4892, https://doi.org/10.5194/hess-29-4871-2025,https://doi.org/10.5194/hess-29-4871-2025, 2025
Short summary
Improved permafrost modelling in mountain environments by including air convection in a hydrological model
Gerardo Zegers, Masaki Hayashi, and Rodrigo Pérez-Illanes
The Cryosphere, 19, 4091–4112, https://doi.org/10.5194/tc-19-4091-2025,https://doi.org/10.5194/tc-19-4091-2025, 2025
Short summary
Modelling sun-induced chlorophyll fluorescence (SIF) in evergreen conifer forests with a terrestrial biosphere model
Tea Thum, Javier Pacheco-Labrador, Mika Aurela, Alan Barr, Marika Honkanen, Bruce Johnson, Hannakaisa Lindqvist, Troy Magney, Mirco Migliavacca, Zoe Amie Pierrat, Tristan Quaife, Jochen Stutz, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4432,https://doi.org/10.5194/egusphere-2025-4432, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary

Cited articles

Aksamit, N. O. and Pomeroy, J. W.: Scale Interactions in Turbulence for Mountain Blowing Snow, J. Hydrometeorol., 19, 305–320, https://doi.org/10.1175/JHM-D-17-0179.1, 2018. 
Aksamit, N. O. and Pomeroy, J. W.: Warm-air entrainment and advection during alpine blowing snow events, The Cryosphere, 14, 2795–2807, https://doi.org/10.5194/tc-14-2795-2020, 2020. 
Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L., McGuire, K. J., Meixner, T., and Reaney, S. M.: Towards a unified threshold-based hydrological theory: necessary components and recurring challenges, Hydrol. Process., 27, 313–318, https://doi.org/10.1002/hyp.9560, 2013. 
Anderson, E. R.: Modelling changes in multi-decadal streamflow contributions – Bologna Glacier, Selwyn Mountains, NWT, Canada, MSc Thesis, University of Saskatchewan, Centre for Hydrology, Saskatoon, p. 162, 2017. 
Anochikwa, C. I., van der Kamp, G., and Barbour, S. L.: Interpreting pore-water pressure changes induced by water table fluctuations and mechanical loading due to soil moisture changes, Can. Geotech. J., 49, 357–366, https://doi.org/10.1139/t11-106, 2012. 
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Share