Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Jun Li
School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
Zhaoli Wang
School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
Guangdong Engineering Technology Research Center of Safety and Greenization for Water Conservancy Project, Guangzhou 510641, China
Xushu Wu
CORRESPONDING AUTHOR
School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
Guangdong Engineering Technology Research Center of Safety and Greenization for Water Conservancy Project, Guangzhou 510641, China
Jakob Zscheischler
Climate and Environmental Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Shenglian Guo
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Xiaohong Chen
Center for Water Resource and Environment, Sun Yat-Sen University, Guangzhou 510275, China
Related authors
No articles found.
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
Geosci. Model Dev., 18, 5781–5799, https://doi.org/10.5194/gmd-18-5781-2025, https://doi.org/10.5194/gmd-18-5781-2025, 2025
Short summary
Short summary
The recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts. In this paper, we present an explicit extension to binary forecasts of hydroclimatic extremes. Seventeen verification metrics for binary forecasts are employed, and scorecards are generated to showcase the predictive performance. The extension facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast applications.
Lily-belle Sweet, Christoph Müller, Jonas Jägermeyr, and Jakob Zscheischler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3006, https://doi.org/10.5194/egusphere-2025-3006, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study presents a method to identify climate drivers of an impact, such as agricultural yield failure, from high-resolution weather data. The approach systematically generates, selects and combines predictors that generalise across different environments. Tested on crop model simulations, the identified drivers are used to create parsimonious models that achieve high predictive performance over long time horizons, offering a more interpretable alternative to black-box models.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450, https://doi.org/10.5194/essd-2024-450, 2025
Preprint under review for ESSD
Short summary
Short summary
Data availability is central to hydrological science. It is the basis for advancing our understanding of hydrological processes, building prediction models, and anticipatory water management. We present a data-driven daily runoff reconstruction product for natural streamflow. We name it EARLS: European aggregated reconstruction for large-sample studies. The reconstructions represent daily simulations of natural streamflow across Europe and cover the period from 1953 to 2020.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Derrick Muheki, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery
Earth Syst. Dynam., 15, 429–466, https://doi.org/10.5194/esd-15-429-2024, https://doi.org/10.5194/esd-15-429-2024, 2024
Short summary
Short summary
Climate change affects the interaction, dependence, and joint occurrence of climate extremes. Here we investigate the joint occurrence of pairs of river floods, droughts, heatwaves, crop failures, wildfires, and tropical cyclones in East Africa under past and future climate conditions. Our results show that, across all future warming scenarios, the frequency and spatial extent of these co-occurring extremes will increase in this region, particularly in areas close to the Nile and Congo rivers.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Hailong Wang, Kai Duan, Bingjun Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 4741–4758, https://doi.org/10.5194/hess-25-4741-2021, https://doi.org/10.5194/hess-25-4741-2021, 2021
Short summary
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop requirements, Irrig.
Drain. Pap. No. 56, FAO, https://doi.org/10.1016/j.eja.2010.12.001, 1998.
Ayantobo, O. O., Li, Y., Song, S., Javed, T., and Yao, N.: Probabilistic
modelling of drought events in China via 2-dimensional joint copula, J.
Hydrol., 559, 373–391, https://doi.org/10.1016/j.jhydrol.2018.02.022, 2018.
Abramovitz, M. and Stegun, I. A.: Handbook of Mathematical
Functions with Formulas, Graphs and Mathematical Tables, J. R. Stat. Soc.
Ser. A, 128, 593–594, https://doi.org/10.2307/2343473, 1965.
Bi, H., Ma, J., Zheng, W., and Zeng, J.: Comparison of soil moisture in GLDAS
model simulations and in situ observations over the Tibetan Plateau, J. Geophys. Res.-Atmos., 121, 2658–2678, https://doi.org/10.1002/2015JD024131, 2016.
Chen, L., Chen, X., Cheng, L., Zhou, P., and Liu, Z.: Compound hot droughts
over China: Identification, risk patterns and variations, Atmos. Res.,
227, 210–219, https://doi.org/10.1016/j.atmosres.2019.05.009, 2019.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is
approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019–1022,
https://doi.org/10.1038/nclimate3092, 2016.
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020.
Hansen, J., Sato, M., and Ruedy, R.: Perception of climate change.
P. Natl. Acad. Sci. USA, 109, E2415–E2423, 2012.
Hao, Z., Hao, F., Singh, V. P., Xia, Y., Shi, C., and Zhang, X.: A
multivariate approach for statistical assessments of compound extremes, J.
Hydrol., 565, 87–94, https://doi.org/10.1016/j.jhydrol.2018.08.025, 2018a.
Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Quantifying the relationship
between compound dry and hot events and El Niño–southern Oscillation
(ENSO) at the global scale, J. Hydrol., 567, 332–338,
https://doi.org/10.1016/j.jhydrol.2018.10.022, 2018b.
Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Statistical prediction of the
severity of compound dry-hot events based on El Niño-Southern
Oscillation, J. Hydrol., 572, 243–250, https://doi.org/10.1016/j.jhydrol.2019.03.001,
2019.
Haqiqi, I., Grogan, D. S., Hertel, T. W., and Schlenker, W.: Quantifying the impacts of compound extremes on agriculture, Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, 2021.
Herr, H. D. and Krzysztofowicz, R.: Generic probability distribution of
rainfall in space: The bivariate model, J. Hydrol., 306, 234–263, 2005.
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher,
A. L.: The development and evaluation of a soil moisture index. Int. J.
Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009.
Jiang, D., Tian, Z., and Lang, X.: Reliability of climate models for China
through the IPCC Third to Fifth Assessment Reports, Int. J. Climatol.,
36, 1114–1133, https://doi.org/10.1002/joc.4406, 2016.
Kirono, D. G. C., Hennessy, K. J., and Grose, M. R.: Increasing risk of
months with low rainfall and high temperature in southeast Australia for the
past 150 years, Clim. Risk Manag., 16, 10–21, https://doi.org/10.1016/j.crm.2017.04.001, 2017.
Koster, R. D., Schubert, S. D., Wang, H., Mahanama, S. P., and Deangelis, A.
M.: Flash drought as captured by reanalysis data: Disentangling the
contributions of precipitation deficit and excess evapotranspiration, J.
Hydrometeorol., 20, 1241–1258, https://doi.org/10.1175/JHM-D-18-0242.1, 2019.
Li, C., Singh, V. P., and Mishra, A. K.: A bivariate mixed
distribution with a heavy-tailed component and its application to
single-site daily rainfall simulation, Water Resour. Res., 49,
767–789, 2013.
Li, B., Beaudoing, H., and Rodell, M.: NASA/GSFC/HSL, GLDAS Catchment Land Surface Model L4 daily 0.25 × 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/LYHA9088MFWQ, 2018.
Li, J., Wang, Z., Wu, X., Chen, J., Guo, S., and Zhang, Z.: A new framework
for tracking flash drought events in space and time, Catena, 194, 104763, https://doi.org/10.1016/j.catena.2020.104763,
2020a.
Li, J., Wang, Z., Wu, X., Xu, C.-Y., Guo, S., and Chen, X.: Toward Monitoring
Short-Term Droughts Using a Novel Daily-Scale, Standardized Antecedent
Precipitation Evapotranspiration Index, J. Hydrometeorol., 21, 891–908,
https://doi.org/10.1175/jhm-d-19-0298.1, 2020b.
Li, J., Wang, Z., Wu, X., Guo, S., and Chen, X.: Flash droughts in the Pearl
River Basin, China: Observed characteristics and future changes, Sci. Total
Environ., 707, 136074, https://doi.org/10.1016/j.scitotenv.2019.136074, 2020c.
Lin, W., Wen, C., Wen, Z., and Gang, H.: Drought in Southwest China: A
Review, Atmos. Ocean. Sci. Lett., 8, 339–344, https://doi.org/10.3878/AOSL20150043,
2015.
Liu, Y., Zhu, Y., Ren, L., Singh, V. P., Yang, X., and Yuan, F.: A
multiscalar Palmer drought severity index, Geophys. Res. Lett., 44,
6850–6858, https://doi.org/10.1002/2017GL073871, 2017.
Liu, Y., Zhu, Y., Ren, L., Yong, B., Singh, V. P., Yuan, F., Jiang, S., and
Yang, X.: On the mechanisms of two composite methods for construction of
multivariate drought indices, Sci. Total Environ., 647, 981–991,
https://doi.org/10.1016/j.scitotenv.2018.07.273, 2019.
Liu, Y., Zhu, Y., Zhang, L., Ren, L., Yuan, F., Yang, X. and Jiang, S.:
Flash droughts characterization over China: From a perspective of the rapid
intensification rate, Sci. Total Environ., 704, 135373,
https://doi.org/10.1016/j.scitotenv.2019.135373, 2020.
Liu, Z., Wang, Y., Shao, M., Jia, X., and Li, X.: Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China, J.
Hydrol., 534, 281–299, https://doi.org/10.1016/j.jhydrol.2016.01.003, 2016.
Lu, E., Cai, W., Jiang, Z., Zhang, Q., Zhang, C., Higgins, R. W., and
Halpert, M. S.: The day-to-day monitoring of the 2011 severe drought in
China, Clim. Dynam., 43, 1–9, https://doi.org/10.1007/s00382-013-1987-2, 2014.
Luan, X. and Vico, G.: Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis, Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, 2021.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006, https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent
droughts and heatwaves in the United States, P. Natl. Acad. Sci. USA, 112, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology, 17, 179–183, 1993.
Mo, K. C. and Lettenmaier, D. P.: Heat wave flash droughts in decline,
Geophys. Res. Lett., 42, 2823–2829, https://doi.org/10.1002/2015GL064018, 2015.
Mo, K. C. and Lettenmaier, D. P.: Precipitation deficit flash droughts over
the United States, J. Hydrometeorol., 17, 1169–1184, https://doi.org/10.1175/JHM-D-15-0158.1, 2016.
Osman, M., Zaitchik, B. F., Badr, H. S., Christian, J. I., Tadesse, T., Otkin, J. A., and Anderson, M. C.: Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions, Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, 2021.
Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., and
Svoboda, M.: Examining rapid onset drought development using the thermal
infrared-based evaporative stress index, J. Hydrometeorol., 14, 1057–1074,
https://doi.org/10.1175/JHM-D-12-0144.1, 2013.
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain,
C., and Basara, J. B.: Flash droughts: A review and assessment of the
challenges imposed by rapid-onset droughts in the United States, B. Am.
Meteorol. Soc., 99, 911–919, https://doi.org/10.1175/BAMS-D-17-0149.1, 2018.
Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A.,
AghaKouchak, A., and Woodhouse, C. A.: Flash droughts present a new challenge
for subseasonal-to-seasonal prediction. Nat. Clim. Change, 10, 191–199, 2020.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Do Hong, X., Bador, M.,
and Zscheischler, J.: Global hotspots for the occurrence of compound events,
Nat. Commun., 11, 1–10, 2020.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381,
2004.
Russo, A., Gouveia, C. M., Dutra, E., Soares, P. M. M., and Trigo, R. M.: The synergy between drought and extremely hot summers in the Mediterranean, Environ. Res. Lett., 14, 014011, https://doi.org/10.1088/1748-9326/aaf09e, 2019.
Schumacher, D. L., Keune, J., van Heerwaarden, C. C., Vilà-Guerau de
Arellano, J., Teuling, A. J., and Miralles, D. G.: Amplification of
mega-heatwaves through heat torrents fuelled by upwind drought, Nat.
Geosci., 12, 712–717, https://doi.org/10.1038/s41561-019-0431-6, 2019.
Sedlmeier, K., Feldmann, H., and Schädler, G.: Compound summer
temperature and precipitation extremes over central Europe, Theor. Appl.
Climatol., 131, 1493–1501, https://doi.org/10.1007/s00704-017-2061-5, 2018.
Sun, C. X., Huang, G. H., Fan, Y., Zhou, X., Lu, C., and Wang, X. Q.: Drought
Occurring With Hot Extremes: Changes Under Future Climate Change on Loess
Plateau, China, Earths Future, 7, 587–604, https://doi.org/10.1029/2018EF001103,
2019.
Swain, D. L., Langenbrunner, B., Neelin, J. D., and Hall, A.: Increasing
precipitation volatility in twenty-first-century California, Nat. Clim.
Change, 8, 427–433, https://doi.org/10.1038/s41558-018-0140-y, 2018.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012 (data available at: https://esgf-node.llnl.gov/search/cmip5, last access: 3 January 2021).
Terzi, S., Torresan, S., Schneiderbauer, S., Critto, A., Zebisch, M., and
Marcomini, A.: Multi-risk assessment in mountain regions: A review of
modelling approaches for climate change adaptation, J. Environ. Manage.,
232, 759–771, https://doi.org/10.1016/j.jenvman.2018.11.100, 2019.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: The standardized
precipitation evapotranspiration index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Villalobos-Herrera, R., Bevacqua, E., Ribeiro, A. F. S., Auld, G., Crocetti, L., Mircheva, B., Ha, M., Zscheischler, J., and De Michele, C.: Towards a compound event-oriented climate model evaluation: A decomposition of the underlying biases in multivariate fire and heat stress hazards, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2020-383, in review, 2020.
Wang, L., Yuan, X., Xie, Z., Wu, P., and Li, Y.: Increasing flash droughts
over China during the recent global warming hiatus, Sci. Rep.-UK, 6, 1–8,
https://doi.org/10.1038/srep30571, 2016.
Wang, W., Wang, W. J., Li, J. S., Wu, H., Xu, C., and Liu, T.: The impact of
sustained drought on vegetation ecosystem in southwest China based on remote
sensing, Procedia Environ. Sci., 2, 1679–1691, 2010.
Werner, A. T. and Cannon, A. J.: Hydrologic extremes – an intercomparison of multiple gridded statistical downscaling methods, Hydrol. Earth Syst. Sci., 20, 1483–1508, https://doi.org/10.5194/hess-20-1483-2016, 2016.
Wu, J., Chen, X., Yao, H., Liu, Z., and Zhang, D.: Hydrological Drought
Instantaneous Propagation Speed Based on the Variable Motion Relationship of
Speed-Time Process, Water Resour. Res., 54, 9549–9565, https://doi.org/10.1029/2018WR023120, 2018.
Wu, X., Hao, Z., Hao, F., and Zhang, X.: Variations of compound precipitation
and temperature extremes in China during 1961–2014, Sci. Total Environ.,
663, 731–737, https://doi.org/10.1016/j.scitotenv.2019.01.366, 2019.
Wu, X., Hao, Z., Zhang, X., Li, C., and Hao, F.: Evaluation of severity
changes of compound dry and hot events in China based on a multivariate
multi-index approach, J. Hydrol., 583, 124580,
https://doi.org/10.1016/j.jhydrol.2020.124580, 2020.
Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y.: Spatio-temporal
variation of drought in China during 1961–2012: A climatic perspective, J.
Hydrol., 526, 253–264, https://doi.org/10.1016/j.jhydrol.2014.09.047, 2015.
Yang, Y., Bai, L., Wang, B., Wu, J., and Fu, S.: Reliability of the global
climate models during 1961–1999 in arid and semiarid regions of China, Sci.
Total Environ., 667, 271–286, https://doi.org/10.1016/j.scitotenv.2019.02.188, 2019.
Yeo, I. N. K. and Johnson, R. A.: A new family of power transformations to
improve normality or symmetry, Biometrika, 87, 954–959,
https://doi.org/10.1093/biomet/87.4.954, 2000.
Yu, H., Zhang, Q., Xu, C. Y., Du, J., Sun, P., and Hu, P.: Modified palmer drought severity index: model improvement and application, Environ. Int., 130, 104951, https://doi.org/10.1016/j.envint.2019.104951, 2019 (data available at: http://data.cma.cn/, last access: 10 February 2021).
Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., and Zhang, M.:
Anthropogenic shift towards higher risk of flash drought over China, Nat.
Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-12692-7, 2019.
Zhang, W. J., Lu, Q. F., Gao, Z. Q., and Peng, J.: Response of remotely
sensed normalized difference water deviation index to the 2006 drought of
eastern Sichuan Basin, Sci. China Ser. D, 51, 748–758,
https://doi.org/10.1007/s11430-008-0037-0, 2008.
Zhang, Y., You, Q., Mao, G., Chen, C., and Ye, Z.: Short-term concurrent
drought and heatwave frequency with 1.5 and 2.0 ∘C global warming
in humid subtropical basins: a case study in the Gan River Basin, China,
Clim. Dynam., 52, 4621–4641, https://doi.org/10.1007/s00382-018-4398-6, 2019.
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., and Wu, X.: Drought
monitoring utility of satellite-based precipitation products across mainland
China, J. Hydrol., 568, 343–359, https://doi.org/10.1016/j.jhydrol.2018.10.072, 2019a.
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and
dry 2018 growing season in Germany, Weather Clim. Ext., 29,
100270, https://doi.org/10.1016/j.wace.2020.100270, 2020.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Sci. Adv., 3, 1–11,
https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., and Zeng, N.:
Impact of large-scale climate extremes on biospheric carbon fluxes: An
intercomparison based on MsTMIP data, Global Biogeochem. Cy., 28,
585–600, https://doi.org/10.1002/2014GB004826, 2014.
Zscheischler, J., Orth, R., and Seneviratne, S. I.: Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields, Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, 2017.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E. and Raymond, C.: A
typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347,
https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
We introduce a daily-scale index, termed the standardized compound drought and heat index...