Articles | Volume 22, issue 9
Hydrol. Earth Syst. Sci., 22, 4959–4980, 2018
https://doi.org/10.5194/hess-22-4959-2018

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 4959–4980, 2018
https://doi.org/10.5194/hess-22-4959-2018

Research article 27 Sep 2018

Research article | 27 Sep 2018

Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation

Albert I. J. M. van Dijk et al.

Related authors

Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at global scale
Jiawei Hou, Albert van Dijk, Hylke Beck, Luigi Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-350,https://doi.org/10.5194/hess-2021-350, 2021
Preprint under review for HESS
Short summary
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021,https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020,https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing
Jiawei Hou, Albert I. J. M. van Dijk, Luigi J. Renzullo, Robert A. Vertessy, and Norman Mueller
Earth Syst. Sci. Data, 11, 1003–1015, https://doi.org/10.5194/essd-11-1003-2019,https://doi.org/10.5194/essd-11-1003-2019, 2019
Short summary
Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response
Siyuan Tian, Luigi J. Renzullo, Albert I. J. M. van Dijk, Paul Tregoning, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 1067–1081, https://doi.org/10.5194/hess-23-1067-2019,https://doi.org/10.5194/hess-23-1067-2019, 2019

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021,https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Global component analysis of errors in three satellite-only global precipitation estimates
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021,https://doi.org/10.5194/hess-25-3087-2021, 2021
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Alka Singh, John Thomas Reager, and Ali Behrangi
Hydrol. Earth Syst. Sci., 25, 511–526, https://doi.org/10.5194/hess-25-511-2021,https://doi.org/10.5194/hess-25-511-2021, 2021
Short summary
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021,https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020,https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary

Cited articles

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, Food and Agricultural Organisation of the United Nations, Rome, 1998. 
Anderson, M., Hain, C., Gao, F., Kustas, W., Yang, Y., Sun, L., Yang, Y., Holmes, T., and Dulaney, W.: Mapping evapotranspiration at multiple scales using multi-sensor data fusion, Int. Geosci. Remote Se., 226–229, 2016. 
Bauer-Gottwein, P., Gondwe, B. R. N., Charvet, G., Marín, L. E., Rebolledo-Vieyra, M., and Merediz-Alonso, G.: Review: The Yucatán Peninsula karst aquifer, Mexico, Hydrogeol. J., 19, 507–524, https://doi.org/10.1007/s10040-010-0699-5, 2011. 
Beck, H. E., de Roo, A., and van Dijk, A. I. J. M.: Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments, J. Hydrometeorol., 16, 1478–1501, https://doi.org/10.1175/JHM-D-14-0155.1, 2015. 
Download
Short summary
Evaporation from wetlands, lakes and irrigation areas needs to be measured to understand water scarcity. So far, this has only been possible for small regions. Here, we develop a solution that can be applied at a very high resolution globally by making use of satellite observations. Our results show that 16% of global water resources evaporate before reaching the ocean, mostly from surface water. Irrigation water use is less than 1% globally but is a very large water user in several dry basins.