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Abstract. A portion of globally generated surface and
groundwater resources evaporates from wetlands, waterbod-
ies and irrigated areas. This secondary evaporation of “blue”
water directly affects the remaining water resources available
for ecosystems and human use. At the global scale, a lack of
detailed water balance studies and direct observations lim-
its our understanding of the magnitude and spatial and tem-
poral distribution of secondary evaporation. Here, we pro-
pose a methodology to assimilate satellite-derived informa-
tion into the landscape hydrological model W3 at an unprece-
dented 0.05◦, or ca. 5 km resolution globally. The assimi-
lated data are all derived from MODIS observations, includ-
ing surface water extent, surface albedo, vegetation cover,
leaf area index, canopy conductance and land surface tem-
perature (LST). The information from these products is im-
parted on the model in a simple but efficient manner, through
a combination of direct insertion of the surface water extent,
an evaporation flux adjustment based on LST and parameter
nudging for the other observations. The resulting water bal-
ance estimates were evaluated against river basin discharge
records and the water balance of closed basins and demon-
strably improved water balance estimates compared to ignor-
ing secondary evaporation (e.g., bias improved from +38 to
+2 mm yr−1). The evaporation estimates derived from as-
similation were combined with global mapping of irriga-
tion crops to derive a minimum estimate of irrigation water
requirements (I0), representative of optimal irrigation effi-
ciency. Our I0 estimates were lower than published country-

level estimates of irrigation water use produced by alternative
estimation methods, for reasons that are discussed. We esti-
mate that 16 % of globally generated water resources evap-
orate before reaching the oceans, enhancing total terrestrial
evaporation by 6.1× 1012 m3 yr−1 or 8.8 %. Of this volume,
5 % is evaporated from irrigation areas, 58 % from terrestrial
waterbodies and 37 % from other surfaces. Model-data as-
similation at even higher spatial resolutions can achieve a fur-
ther reduction in uncertainty but will require more accurate
and detailed mapping of surface water dynamics and areas
equipped for irrigation.

1 Introduction

The generation of surface and groundwater resources is com-
monly conceptualized one-dimensionally as the net differ-
ence between precipitation, evaporation (including transpi-
ration) and soil storage change. However, some part of the
generated “blue” water (Falkenmark and Rockström, 2004)
subsequently inundates floodplains, accumulates in wetlands
and freshwater bodies or is extracted for irrigation. A frac-
tion of that water will evaporate in this second instance. This
“secondary evaporation” directly reduces the remaining blue
water resources available for ecosystems and economic uses
downstream but also increases the use of water by terres-
trial ecosystems before discharging into the oceans. At the
global scale, our understanding of the magnitude and spa-
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tiotemporal distribution of secondary evaporation is limited
by a lack of detailed water balance studies and direct ob-
servations. Until recently, land surface models have ignored
lateral water transport and secondary evaporation altogether
or provide a rudimentary description. This is understandable,
given the complexity and computational challenge in simu-
lating the lateral redistribution and secondary evaporation of
water at the global scale. However, it is increasingly clear that
the lateral redistribution of water cannot be ignored in global
water resources analyses (Oki and Kanae, 2006; Alcamo et
al., 2003), carbon cycle analyses (Melton et al., 2013) and
regional and global climate studies (e.g., Thiery et al., 2017).

Even approximate numbers on the importance of sec-
ondary evaporation in the global water cycle are not avail-
able. Oki and Kanae (2006) derived global bulk estimates of
gross evaporation from lakes, wetlands and irrigation (com-
bined 10.1× 1012 m3 yr−1) but their estimate was based on
modelling only and included both primary and secondary
evaporation. There have been some studies estimating irriga-
tion water requirements at the global scale (Döll and Siebert,
2002; Wada et al., 2014; Siebert and Döll, 2010), but these
studies were based on idealized modelling, did not attempt
to separate between primary and secondary evaporation and
did not consider other sources of secondary evaporation.

There have been attempts to use satellite observations to
estimate the importance of secondary evaporation at a re-
gional scale. For example, Doody et al. (2017) used MODIS-
based evaporation estimates (Guerschman et al., 2009) over
Australia to delineate areas receiving lateral inflows. They
used ancillary data to attribute these to surface water in-
undation, irrigation and groundwater-dependent ecosystems.
At the global scale, Wang-Erlandsson et al. (2016) used
satellite-based evaporation estimates from several sources to
infer rooting depth, which provided some insight into the
spatial distribution of surface and groundwater-dependent
ecosystems.

Historically, three contrasting approaches have been fol-
lowed to estimate evaporation. These are water balance mod-
elling, inferencing from land surface temperature (LST) re-
mote sensing and estimating based on the remote sensing of
vegetation. All three approaches rely on meteorological data
and effectively involve a land surface model of some descrip-
tion, albeit of variable complexity. Hybrids between the three
approaches have also been developed over time to mitigate
respective weaknesses (Glenn et al., 2011). For example, the
dynamic simulation of the soil water balance can provide a
valuable constraint on satellite-based evaporation estimates
in water-limited environments, provided that precipitation is
the only source of water for evaporation and accurate precip-
itation estimates are available (Glenn et al., 2011; Miralles
et al., 2016). However, where there are additional sources of
water or unexpected soil moisture dynamics, applying this
constraint can degrade evaporation estimates.

Beyond dynamic hydrological models, evaporation prod-
ucts based more closely on the remote sensing of vegetation

implicitly account for the effect of lateral water redistribu-
tion on transpiration but often do not account for open wa-
ter evaporation (Yebra et al., 2013; Zhang et al., 2016), with
exceptions (Guerschman et al., 2009; Miralles et al., 2016).
Satellite-observed LST has a direct, physical connection to
the surface heat balance and through the overall surface water
and energy balance can provide a constraint on evaporation
estimates. Several techniques have been developed to infer
evaporation from LST, and many successful applications at
local scale have been documented (Kalma et al., 2008). Over
larger areas, the application of LST-based methods is com-
plicated by the need for the time-of-overpass estimates of
radiation components, air temperature and aerodynamic con-
ductance (Kalma et al., 2008; Van Niel et al., 2011). There
are promising developments that can overcome some of these
challenges (Anderson et al., 2016), although they are yet to
be fully evaluated.

Arguably, the most promising approach to evaporation es-
timation is to combine water balance modelling, LST remote
sensing and the remote sensing of vegetation within a model-
data fusion framework. Such an approach still involves mod-
elling and the assumptions inherent to it, but the greater use
of observations should mitigate errors arising from the mod-
elling. This prospect motivated the present study.

1.1 Aim

Our objective was to develop a methodology to assimilate
optical and thermal observations by the MODIS satellite in-
struments into a 0.05◦ resolution global hydrological model
to estimate evaporation and to evaluate the quality and quan-
titative accuracy of the resulting estimates as much as possi-
ble. Based on the resulting estimates, we wished to answer
the following questions:

– What is the magnitude of secondary evaporation of sur-
face and groundwater resources in the global and re-
gional water cycle?

– What is the magnitude of irrigation evaporation and how
does it relate to the total agricultural water withdrawals?

– What are the contributions of secondary evaporation
from irrigation, permanent waterbodies, ephemeral wa-
terbodies and other surfaces?

– Is secondary evaporation likely to have a noticeable im-
pact on the global carbon cycle and climate system?

2 Materials and methods

The methodology of our experiment includes two mostly
separate components (Fig. 1). The assimilation component
integrates various MODIS products into the global hydro-
logical model to estimate the dryland water balance and sec-
ondary evaporation. Subsequently, in an offline analysis, the
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Figure 1. Illustration showing the processing steps and data used in
each step. Acronyms relate to the input data that are described in
the text.

estimates of secondary evaporation were combined with the
mapping of irrigated crops to estimate a minimum irrigation
requirement. Explained below are details on the model, the
data assimilation procedure, the estimation of irrigation wa-
ter use and the different ways in which the results were eval-
uated. Details on the data used in the analysis can be found
in the supplement to this article.

2.1 Global water balance model description

The World-Wide Water model (W3) version 2 is an evolution
of the AWRA-L and W3RA group of models. The AWRA-
L model is used operationally for water balance estimation
across Australia at 0.05◦ resolution by the Bureau of Me-
teorology. An overview of the operational AWRA-L model
(version 5) can be found in Frost et al. (2016b) with details
on the scientific basis in Van Dijk (2010). Very briefly, the
model operates at daily time step and is grid-based. Each cell
is conceptualized to represent several parallel, small, identi-
cal catchments. The soil column is conceptualized as a three-
layer unsaturated zone overlaying an unconfined groundwa-
ter store, from which capillary rise can occur. The unsatu-
rated soil water balance and corresponding water and energy
fluxes can be simulated separately for hydrological response
units (HRUs) that each occupy a fraction of the grid cell.
The surface energy and water balance is simulated using the
Penman–Monteith model. The evaporative fluxes from tran-
spiration, unsaturated soil, saturated soil and surface water

are simulated subject to the overall constraint of potential
evaporation E0 within the same Penman–Monteith frame-
work. Wet canopy evaporation is simulated outside this con-
straint for reasons described in Van Dijk et al. (2015), using a
dynamic canopy version of the event-based Gash model (Van
Dijk and Bruijnzeel, 2001; Wallace et al., 2013). Sub-grid
parameterizations are applied to simulate the area fractions
with surface water, groundwater saturation and root water ac-
cess to groundwater dynamically, based on the hypsometric
curves (i.e., the cumulative distribution function of elevation)
for each grid cell (Peeters et al., 2013).

The W3 (version 2) model is a global implementation of
AWRA-L (version 5) at the same 0.05◦ resolution. Impor-
tant differences are as follows. Separate HRUs were not con-
sidered, however the water balance of permanent waterbod-
ies is calculated separately. Global gridded climate time se-
ries and surface, vegetation and soil parameterization data
were used, including MSWEP v1.1 (Beck et al., 2017) pre-
cipitation estimates and other meteorological data from the
WFDEI v1 dataset (Weedon et al., 2014). Monthly precipi-
tation and air temperature climatology data at 30′′ from the
WorldClim dataset (Hijmans et al., 2005) were resampled to
0.05 and 0.25◦. Subsequently, the ratio and difference be-
tween the data at the finer and coarser resolution, respec-
tively, were applied to the forcing data. Global datasets were
also used to parameterize the distribution of different land
surface types (Bicheron et al., 2008) and the properties of
vegetation (Simard et al., 2011), soil (Shangguan et al., 2014)
and aquifers (Gleeson et al., 2014; Beck et al., 2015). We
used the cumulative distribution function of Height Above
Nearest Drainage (HAND; Nobre et al., 2015) for each grid
cell instead of hypsometric curves, which we derived from
high-resolution global digital elevation models.

Five model parameters that were both relatively uncertain
and influential were calibrated and regionalized by climate
and land cover type class, using large global data sets of site
measurements evaporation, near-surface soil moisture and a
global dataset of catchment streamflow records (the parame-
ters represent proportional adjustments to initial estimates of,
respectively, maximum canopy conductance, relative canopy
rainfall evaporation rate, soil evaporation, saturated soil con-
ductivity and soil conductivity decay with depth). Differ-
ences less relevant here include the addition of a snow–water
balance model with parameters from Beck et al. (2016) and
grid-based river routing using a flow direction based on Hy-
droSheds (Lehner et al., 2008) where available, and HYDRO
1k elsewhere. A range of W3-simulated water and energy
balance terms has been made publicly available as part of
“Tier-2” of the EartH2Observe project (Schellekens et al.,
2017). The AWRA-L and W3 models have received exten-
sive evaluation, demonstrating realistic estimates of evapora-
tion, soil moisture, deep drainage, streamflow and total water
storage (e.g., for more recent implementations, Tian et al.,
2017; Frost et al., 2016a; Beck et al., 2016; Holgate et al.,
2016).
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The W3 model used here is not the only suitable modelling
framework for the approach described. A similar method
could be applied with other local or global models. The
main requirements are that the model has a coupled water
and energy balance model that simulates LST, and that it is
amenable to data assimilation.

2.2 Data assimilation

All data assimilated here were derived from NASA’s Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instru-
ments. The data included albedo, reflectance, the leaf area in-
dex (LAI) and LST. We followed the following steps, except
in the case of the LST. First, the MODIS band reflectances
(product MCD43C4.005) were used to estimate the veg-
etation cover fraction and canopy conductance following
Yebra et al. (2015, 2013). The surface water extent was es-
timated following Van Dijk et al. (2016). MODIS albedo
(MCD43C3.005), the snow cover fraction (MCD43C4.005)
and MODIS GLASS LAI product (Xiao et al., 2014) were
used in their original form. Next, seven model states were
updated using a simple nudging scheme. For each state, the
observation and model error estimates were based on an as-
sessment of the noise in the observational data, the expected
dynamic rate of change and the expected skill of the model.
The resulting “gain” factors (i.e., the relative weight of ob-
servations) varied from 0.5 for the LAI and snow fraction to
0.99 for surface water fraction (reflecting the low skill in the
model to accurately predict surface water extent changes at
0.05◦ resolution). The updated states were also used dynam-
ically to update six related parameters of diagnostic model
equations, including a parameter relating vegetation cover
fraction to canopy conductance, another relating vegetation
cover to LAI and four parameters relating the surface state to
the albedo.

The approach to assimilate LST observations was differ-
ent. In this case, the dynamic model was run one time step
forward to produce a background estimate of the surface en-
ergy balance and evaporation flux. The corresponding aver-
age daytime LST (Ts, K) was estimated from the average
daytime sensible heat flux (H , W m−2) as

Ts = Ta+
H

ρacpga,
(1)

where Ta is air temperature (K), ρa air density (kg m−3), cp
specific heat capacity (J kg−1 K−1) and ga(u) aerodynamic
conductance (mm s−1). The latter is a function of wind speed
scaled by the wind speed measurement and vegetation height,
respectively, following Thom (1975).

The poor characterization of spatial gradients in radiative
exposure, air temperature and wind speed in areas with relief
can cause a poor relationship between the observed and mod-
elled LST (Kalma et al., 2008). Fortunately, secondary evap-
oration primarily occurs in regions with low relief. There-
fore, data assimilation was only attempted for areas with an

average slope of less than 3 % (calculated from the higher-
resolution DEM). This threshold was empirically found to
include a large majority of observed surface water inunda-
tion and mapped irrigation areas.

A second challenge relates to the inconsistency be-
tween the observation time-of-overpass LST and the model-
predicted mean daytime LST. We assumed that the time-of-
overpass and mean daytime LSTs will have different spatial
averages but share a near-identical spatial pattern of devia-
tions from the spatial averages. This assumption also helps to
remove systematic bias, which is the largest source of error in
the MODIS LST estimates used here (MOD11C1.006; Wan,
2015). Previous assessments report errors in MODIS that are
within 0.7 K under conducive atmospheric conditions but can
increase to 3 or 4 K due to errors in atmospheric correction
that tend to cause a similar level of bias over a larger area
(Wan et al., 2004; Wan, 2008; Wan and Li, 2008; Hulley et
al., 2012).

In the assimilation step, first the median observed and the
modelled LST were calculated for all low-relief grid cells
within a spatial window of 15◦ latitude and longitude and
were subtracted from the respective gridded LST values to
remove systematic bias. Subsequently, we calculated the dif-
ference between resulting observed and modelled LST val-
ues. The calculated difference was reduced by up to 1 K to
conservatively allow for uncertainty in the assumptions and
errors in the observations. Next, the model LST was updated
with the remaining difference towards the MODIS-observed
LST. An updated latent heat flux (λE′ in W m−2, the prime
indicating the updated variable) can be calculated from an
inverted version of the energy balance equation as

λE′ = A−H ′ = A− ρacpga
(
T ′s − Ta

)
(2)

where A is available energy (W m−2). To ensure physical
consistency within the model context, λE′ was constrained
to positive values below or equal to E0. Temporal consis-
tency was ensured by recording the ratio λE′ / λE and using
it to adjust simulated λE for subsequent days until a new LST
observation was available. Finally, E was calculated through
division by the latent heat of vaporization λ. A fundamental
assumption in this approach is that the partitioning between
λE andH can be improved with information on LST but that
the estimate of available energy A is correct.

To illustrate the data assimilation, a time series of obser-
vations and model results for a 0.05◦ grid cell in the Nile
delta in Egypt are shown in Fig. 2. This grid cell was cho-
sen because it represents one of comparatively few grid cells
worldwide deemed to be 100 % equipped for irrigation in
global mapping (although the annual maximum NDVI de-
rived from Landsat suggests that only 80 %–81 % of the area
is in fact irrigated; see Fig. 2a). The processing steps are il-
lustrated by a comparison of observed, background and anal-
ysis LST estimates for the year 2002 (Fig. 2b), the resulting
sensible heat flux (Fig. 2c) and daily evaporation (Fig. 2d).
Corresponding temporal patterns in the evaporative fraction
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(E /E0) show that data assimilation brings the temporal pat-
tern of the evaporative fraction in close agreement with the
satellite-observed vegetation cover fraction (Fig. 2e), which
provides a largely independent consistency test.

2.3 Irrigation water use estimation

For irrigated areas, the long-term average difference between
precipitation and total evaporation derived from data assim-
ilation provides an estimate of the importance of additional
water inputs. However, it cannot be interpreted directly as
an estimate of irrigation water requirements, much less as an
estimate of water withdrawals. This is because precipitation
and crop water requirements are both unevenly distributed in
time, and there is limited water storage capacity in the crop
root zone. Additional water is lost from the root zone through
drainage and runoff, which will need to be compensated by
additional irrigation inputs. This field-level irrigation ineffi-
ciency does not necessarily change the long-term net water
balance, since provided that total precipitation and evapora-
tion do not change, the additional inputs will equal the addi-
tional runoff and drainage. However, such inefficiencies do
need to be accounted for when estimating the total amount
of irrigation water required (Siebert and Döll, 2010).

The estimation of total field-level irrigation water require-
ments is sensitive to assumptions about the capacity for
added water to remain stored in the root zone and about ir-
rigation strategies (e.g., pursuing a stable low or high soil
moisture or paddy water level, suboptimal or soil moisture
deficit irrigation, flood irrigation or partial drip irrigation and
so on). Here, we estimated a minimum field-level irrigation
requirement (I0 in mm), which can be taken as a conserva-
tively low estimate of irrigation that represents highly effi-
cient irrigation practices. The estimation of I0 was done af-
ter and entirely separate from the data assimilation process.
Therefore, what follows had no bearing on the estimation of
secondary evaporation.

We used global mapping by crop type to estimate I0 us-
ing a plausible range of published assumptions about water
storage capacity. It was assumed that irrigation is just suf-
ficient to replenish lost water without any direct drainage
or runoff losses. That is, losses only occur when precipi-
tation exceeds available storage capacity. Following Siebert
and Döll (2010), we estimate the available root zone storage
capacity (Smax in mm) for the irrigated crop type N = 1.26
from the estimated harvested area (Ai in ha) of each as con-
tained in the MIRCA2000 dataset (Portmann et al., 2010).
These numbers are combined with assumed rooting depth
(zi) and the allowable fraction depletion of available soil wa-
ter pi (Allen et al., 1998) for each crop type as proposed by
Siebert and Döll (2010). The plant available water content
(θa) was estimated using global soil property data (Shang-
guan et al., 2014), calculated as the difference between θ at
field capacity and the permanent wilting point assumed to
correspond to water potential values of −3.3 and −150 m,

respectively. This is represented by the procedure

Smax =

∑
Aizipi∑
Ai

θafirr, (3)

where firr is the fraction of the grid cell area that is equipped
for irrigation (Portmann et al., 2010). This method produced
a global average root zone storage of 51 mm per unit of irri-
gated land, with 90 % of values between 10–85 mm and val-
ues depending primarily on the value of zi .

Because we have observation-based estimates of evapora-
tion, we do not simulate the influence of soil water status on
evaporation. Instead, we propagate a simple water balance
model forced with evaporation estimates. In other words, the
change in soil moisture storage from one day (St ) to the next
(St+1) is the net result of gross rainfall onto the irrigated area
(Pirr), evaporation from the irrigated area (Eirr), the mini-
mum irrigation water application required (I0) and drainage
(D), with storage and cumulative daily fluxes in mm. This is
represented by the equation

St+1 = St +Pirr−Eirr+ I0−D. (4a)

Partial rainfall (Pirr) is proportional to the irrigation fraction
and grid cell rainfall (P), such that

Pirr = firrP. (4b)

It is assumed that any increase in the estimate of evaporation
(E′−E) from data assimilation is due to irrigation, where
this occurs. Therefore, Eirr is given by

Eirr = firrE+
(
E′−E

)
. (4c)

Any soil water additions exceeding the maximum storage ca-
pacity (Smax) are assumed to become drainage, and irrigation
is assumed to be just enough to prevent S < 0, such that

I0 =max(Et −Pirr− St ,0) ; (4d)

D =max(St +Pirr−Et − Smax,0) . (4e)

Rainfall interception losses are included in E. Surface runoff
and residual drainage are assumed negligible when S < Smax.
This is an important simplification but is consistent with the
definition of a minimum irrigation requirement estimate that
reflects optimal efficiency. The daily water balance model
was evaluated with an initial state of S = Smax and prop-
agated from 2000 to 2014. The first year was not used in
subsequent calculations to allow for artefacts from the initial
state chosen.

2.4 Evaluation of basin water balance

One test of the accuracy of secondary evaporation estimates
is to evaluate whether their inclusion in the basin water bal-
ance improves agreement with observations. The difference
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Figure 2. Illustration of method to assimilate MODIS land surface temperature observations. Data shown are for 2002, for a 0.05◦ grid
cell in the Nile River delta, Egypt (centred 31.075◦ N, 30.325◦ E) and panels represent the following: (a) Maximum normalized difference
vegetation index (NDVI) derived from Landsat imagery provided by Google Earth Engine, suggesting that effectively 81 % and 80 % of
the grid cell was cropped in 1998 and 2014, respectively; (b) Land surface temperature, with background (Ts, grey line), observed (Ts,obs,
circles) and analysis (T ′s , red line) estimates for the grid cell with average bias across the 15◦ window removed; (c) Sensible heat flux, with
background (H , grey) and analysis (H ′, red) estimates along with net radiation (Rn, blue); (d) Evaporation, with background (E, grey) and
analysis (E′, red) estimates and potential evaporation (E0, blue) and (e) Evaporative fraction, with background (E /E0, grey) and analysis
(E′ /E0, red) and, for comparison, vegetation cover fraction derived from MODIS NDVI (fveg, green).

between the E′ derived from data assimilation and the back-
ground estimate E is interpreted to be derived from lateral
inflows and can be represented by

Elat = E
′
−E. (5a)

For any basin, the total net amount of discharge from the
basin (Qn) is the result of the gross amount of streamflow

generated in all tributaries (Qg)minus secondary evaporation
of flows downstream (Elat) and the change in storage derived
from those flows (1Slat), represented by

Qn =Qg−Elat−1Slat. (5b)

Natural storage variations in soil and groundwater and river
channel storage are explicitly simulated by the model and are
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not included in 1Slat. Storage changes in other surface wa-
terbodies (e.g., lakes and reservoirs), river–groundwater ex-
changes and induced soil or groundwater storage changes di-
rectly related to inundation or irrigation (including pumping)
would affect 1Slat. It is assumed here that the magnitude of
1Slat is negligible compared to the other terms if fluxes are
averaged over the period 2001–2014. This needs to be con-
sidered when interpreting results for individual basins.

We used discharge data for large basins to evaluate
whether our estimates of Elat improved the overall agree-
ment between the modelled and observed Qn. The river dis-
charge data used were drawn from the global database of
end-of-river discharge records compiled by Dai et al. (2009).
This includes data for 925 rivers worldwide. Out of these,
we considered only basins for which more than five years
of data were available during 1995–2014. This longer pe-
riod was adopted because few basins had sufficient measure-
ments after 2000. To avoid errors arising from differences in
the delineation of basins, we rejected basins with a catch-
ment area of less than 100 000 km2 and those with a reported
drainage area that was more than 25 % different from the
DEM-derived basin area at the river mouth. For the remain-
ing 38 large basins the temporal and area-average discharge
was calculated and compared to the modelledQn andQg (all
in mm yr−1).

Closed or endorheic basins represent a special case where
Qn = 0 and can also be used to construct a water balance.
The 0.05◦ flow direction grid was used to delineate all inter-
nally draining basins located between 72◦ N and 60◦ S (fur-
ther towards the poles, the DEM is affected by land ice).
Adjoining endorheic basins were merged into contiguous re-
gions to avoid incorrect basin delineation. From the resulting
regions, all those with a surface area greater than 50 000 km2

were extracted, resulting in 13 contiguous regions. For these
regions, Eq. (5b) was evaluated and compared to the expected
Qn = 0.

The LST data assimilation changes evaporation without
adjusting other water balance terms and hence does not con-
serve mass balance. In both open and closed basins, this can
produce a positive or negativeQn from Eq. (5b). A difference
between the estimated and observed Qn can occur for four
reasons; Qg is underestimated, Elat overestimated, 1Slat is
non-negligible or (for discharging basins only) the recorded
Qn is in error.

2.5 Evaluation of apparent irrigation water use

Evaluating estimates of secondary evaporation due to irriga-
tion is challenging. Direct observations of evaporation from
irrigated land are not widely available, represent point ob-
servations and include primary evaporation. At the basin or
country level, estimates of irrigation water use can be cat-
egorized as “bottom-up” or “top-down” estimates. Bottom-
up estimates require the scaling of the estimated crop wa-
ter use to field-level irrigation requirements. Top-down esti-

mates involve estimating large-scale withdrawals (e.g., by the
differencing of discharge measurements along a river reach
or measured bulk diversions) and accounting for “project”
or scheme losses along the distribution network (Bos and
Nugteren, 1990). Both approaches have large uncertainties
but provide estimates of the order of magnitude of irrigation
water use.

Bottom-up estimates of irrigation water use at the global
scale and for individual countries are available from previ-
ous studies (Siebert et al., 2010; Wada et al., 2014; Siebert
and Döll, 2010). They involve soil-vegetation water balance
modelling. Similar to the approach used here, these meth-
ods require assumptions about root zone storage capacity,
the rate of drainage of water from the root zone, the permis-
sible range of root zone soil moisture and the efficiency of
irrigation. Unlike the approach used here, they furthermore
require assumptions about evaporation, usually following
FAO’s crop factor approach (Allen et al., 1998) to model crop
water use. The resulting one-dimensional irrigation water re-
quirement estimates are subsequently extrapolated spatially
with mapping of areas equipped for irrigation (e.g., Portmann
et al., 2010), using assumptions about the number of crop
rotations and the area factually irrigated. Each of these as-
sumptions introduces errors and uncertainties. Nonetheless,
a comparison with these studies should provide insight into
the method developed here.

An important source of uncertainty in our estimation of
the large-scale I0 is due to the diffuse spatial distribution of
irrigated areas, which is further amplified in current mapping
products. The mapping of areas equipped for irrigation con-
tained in the MIRCA2000 dataset (Portmann et al., 2010)
was done at 0.08◦ grid resolution and linearly interpolated to
0.05◦ resolution in this study. Even at this high resolution, a
large proportion of total irrigable land occupies only a small
fraction of a grid cell (Fig. 3).

The degree of concentration differs between countries for
two reasons. Firstly, the true distribution of irrigation land
varies. For example, irrigation tends to be concentrated in
large surface water irrigation schemes (e.g., the Nile delta
and Indus floodplains) but can be highly distributed where
supplementary irrigation water is drawn from unregulated
streams or groundwater. Secondly, the quality, resolution
and predictive value of information related to irrigation area
varies widely, which affects the accuracy of mapping (Port-
mann et al., 2010). The distribution of irrigation land intro-
duces uncertainty in the attribution ofE′ in grid cells of small
fractions of irrigated land. We expect that the fraction of a
grid cell that needs to be irrigated to create a measurable LST
signal may be around 10 % but will vary spatially depend-
ing on the LST contrast between irrigated and non-irrigated
land. To account for this uncertainty, we calculated the mean
I0 (Eq. 4) per unit irrigation area for all grid cells with more
than 1, 2, 5, 10 and 25 % of the area equipped for irriga-
tion. These estimates were subsequently multiplied with the
total area equipped for irrigation in each country. The coef-
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Figure 3. Cumulative distribution curve or quantile plot describ-
ing the degree to which the global irrigable area is concentrated. It
shows that at 0.05◦ grid resolution, almost half of the total global
irrigable area occupies less than 25 % of a grid cell.

ficients of variation among the five estimates was calculated
as a measure of estimation uncertainty.

The AQUASTAT database (FAO, 2017) provides country-
level estimates of agricultural water withdrawal (W
in km3 yr−1) from the surface and groundwater. (Domestic
and industrial withdrawals are not considered because a large
fraction of these withdrawals is not evaporated but returned
to the environment.) The estimates are derived by differ-
ent methods for different countries and likely include both
bottom-up and top-down techniques. Estimates also relate to
different periods or years. Despite these uncertainties, they
currently represent official international statistics for each
country. Any comparison of field-level irrigation water ap-
plication (I0) and large-scale water withdrawal (W) needs
to account for inefficiencies in the entire water distribution
network, both on- and off-farm. These include evaporation,
leakage and return flow. ‘Project efficiencies’ that express the
ratio of I0 over W can be estimated in principle, but this re-
quires detailed ancillary data (Bos and Nugteren, 1990). In
their global modelling study, Siebert and Döll (2010) pro-
posed ratios range from 0.25 for irrigation dominated by
paddy rice to 0.70 for efficient crop irrigation methods in
Canada, Northern Africa and Oceania. We did not assume
values but instead calculated an ‘apparent’ bulk project ef-
ficiency for each country, by dividing the ratio of the mod-
elled I0 over W reported in AQUASTAT. The plausibility of
the resulting values was subsequently interpreted within the
framework developed by Bos and Nugteren (1990).

2.6 Secondary evaporation and the global water cycle

Total secondary evaporation was estimated as the sum of
open water evaporation plus the differenceE′−E , represent-
ing the difference between the modelled primary evaporation
E for a situation where precipitation is the only source of
water (the background estimate) and the total evaporation E′

resulting from LST assimilation (the analysis estimate). The
resulting estimate of total secondary evaporation is a hypo-
thetical, model-based quantity. Evaporation in the absence of
lateral flows is counterfactual and not necessarily accurately
estimated by the model, particularly in humid environments.
Furthermore, all open water evaporation was included in sec-
ondary evaporation; we did not attempt to estimate the evap-
oration that might have occurred from the surface had it not
been covered by water.

The difference E′−E was distributed dynamically in pro-
portion to the magnitude of each of three evaporation terms
(i.e., transpiration, soil evaporation and open water evapora-
tion; wet canopy evaporation was left unchanged). A compo-
nent of secondary evaporation was attributed to irrigation fol-
lowing the method described earlier. The remainder could be
attributed to permanent waterbodies, ephemeral waterbodies
and a residual component that includes any evaporation from
replenished wetlands and floodplains as well as any use of
groundwater sources beyond those simulated by the model
to occur from shallow groundwater (Peeters et al., 2013).

3 Results

3.1 Basin water balance

The combined surface area of the 51 basins used in
evaluation (38 ocean-draining and 13 closed basins) was
63 million km2 or 47 % of the ice-free land surface area
(Fig. 4). For each region, the period-average measured dis-
charge (zero in the case of closed basins) was compared with
the modelled Qg and Qn (Fig. 5, Table 1). Overall, account-
ing for secondary evaporation produced a very small im-
provement in the correlation between observed and estimated
discharge (Fig. 5a, b). However, the largest error contribution
was from basins with high discharge rates, where secondary
evaporation represents a small fraction of Qg. A clearer im-
provement in the agreement was found for basins with less
than 300 mm yr−1 net discharge (Fig. 5c, d). The explained
variance (R2) increased from 0.67 to 0.71, and there was a re-
duction of the bias from +38 to +2 mm yr−1. Water balance
estimates were improved considerably for several basins, in-
cluding the Indus river (“I” in Fig. 5c, d), Nile river, the Great
Basin in the USA and the African Rift valley (Table 1). The
agreement could not improve where Qg estimates were al-
ready lower than observed, such as the Paraná and Fitzroy
Rivers (“P” and “F” in Fig. 5c, d). Water balance estimates
for some closed basins were also degraded, evident from neg-
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Table 1. Area-average discharge (mm yr−1) for selected basins as
observed and estimated by the model in the presence (Qn) and ab-
sence (Qg) of secondary evaporation, respectively. Listed data for
basins with discharge less than 300 mm yr−1 only (cf. Fig. 5c, d).

Area-average basin discharge Estimated
(mm yr−1) Observed Qn Qg

Closed river basins

Great Basin, US – 1 42
Guzmán, North America – −6 3
Mayran–Viesca, Mexico – −15 7
Patagonia, South America – 5 10
Titicaca–Chiquita, South America – −19 38
North Interior, Africa – −4 4
South Interior, Africa – −71 12
Rukwa, Africa – −56 115
Rift Valley, Africa – 35 107
Jordan – –1 8
Arabian peninsula – 0 1
Central Asia – 57 80
Central Australia – −20 8

Ocean-reaching rivers

Nile, Africa 0 13 96
Murray, Australia 1 −5 17
Orange/Senqu, Africa 7 −9 4
Colorado, US 23 33 46
Huanghe, China 24 61 73
Burdekin, Australia 48 70 82
Parnaíba, Brazil 76 94 113
Brazos, US 57 64 76
Fitzroy, Australia 54 6 26
Indus, Asia 58 172 228
São Francisco, Brazil 105 97 146
Niger/Issa Ber, Africa 88 78 92
Nelson, Canada 85 52 129
Paraná, South America 255 163 228
Elbe/Labe, Europe 172 224 243
Mississippi, US 204 198 225

ativeQn values (e.g., the South Interior and Rukwa basins in
southern Africa), implying that Qg was underestimated, sec-
ondary evaporation overestimated, or both (Table 1).

3.2 Irrigation water requirements

Spatiotemporal estimates of I0 at 0.05◦ and daily time step
were aggregated to country-level estimates in km3 yr−1 (Ta-
ble 2). Also calculated were the coefficient of variation in
I0 estimates (CVI0) caused by the treatment of “mixed pix-
els” in irrigation mapping, FAO-reported annual W and the
apparent project irrigation efficiency. Global I0 for 2001–
2014 was 680 km3 yr−1 (standard deviation 110 km3 yr−1).
This value is lower than estimates of contemporary irriga-
tion water use reported in the literature of 1092 km3 yr−1

Table 2. Irrigation water withdrawal (W) as reported to FAO for the
20 countries with largest agricultural withdrawals, along with the
estimated minimum field-level irrigation requirement (I0), the co-
efficient of variation in I0 estimates (CVI0) and the apparent project
efficiency (I0 /W).

Country W I0 CVI0 I0 /W

km3 yr−1 km3 yr−1 – –
India 688 152 0.07 0.22
China 392 105 0.13 0.27
United States of America 175 48 0.20 0.27
Pakistan 172 49 0.01 0.28
Indonesia 93 14 0.10 0.15
Iran 86 5 0.22 0.06
Vietnam 78 15 0.05 0.19
Philippines 67 5 0.16 0.07
Egypt 67 30 0.02 0.44
Mexico 62 19 0.22 0.31
Japan 54 4 0.23 0.07
Iraq 52 5 0.19 0.10
Thailand 52 16 0.09 0.32
Uzbekistan 50 11 0.02 0.21
Brazil 45 16 0.39 0.36
Turkey 34 6 0.36 0.16
Bangladesh 32 20 0.08 0.63
Myanmar 30 13 0.21 0.43
Chile 29 2 0.22 0.07
Argentina 28 5 0.47 0.17
Global 2767 680 0.16 0.25

(Döll and Siebert, 2002), 1180 km3 yr−1 (Siebert and Döll,
2010) and 994–1179 km3 yr−1 (Wada et al., 2014). Estimates
of I0 listed for seven countries by Döll and Siebert (2002)
were all higher than those found here (Table 2) and even
more than double for the USA (112 vs. 48 km3 yr−1) and
Spain (21 vs. 5.1 km3 yr−1). Quoted independent estimates
were 113 km3 yr−1 for the USA (Solley et al., 1998) and
15 km3 yr−1 for Spain (J. A. Ortiz cited in Döll and Siebert,
2002).

The I0 explains 96 % of the variance in W by country
(Fig. 6a), but total variance is dominated by only four coun-
tries, and the area equipped for irrigation explains already ex-
plains 86 % of the variance. Volumes were divided by the to-
tal area equipped for irrigation to normalize for these effects.
The normalized I0 explained 38 % of the variance in the nor-
malized W (Fig. 6b). A high correlation between the two is
not necessarily to be expected, as country-average project
efficiencies will vary (represented by the lines in Fig. 6b).
For example, a low efficiency is inferred and would be ex-
pected in the Philippines, where irrigation is dominated by
paddy rice agriculture, whereas higher efficiencies would be
expected in large schemes in arid countries such as Egypt
and Mauritania. Nonetheless, apparent efficiencies are gen-
erally lower than would be expected based on benchmark es-
timates provided by Bos and Nugteren (1990). For example,
using global volumes of I0 and W , a project efficiency of
0.25 is calculated. This is lower than estimates of 0.36–0.43
assumed in previous studies (Döll and Siebert, 2002; Wada
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Figure 4. Extent and area-average annual discharge for the 38 ocean-draining (orange to blue) and 13 closed basins (dark orange) used in
the evaluation. The two darkest blue colours indicate a discharge in excess of 300 mm yr−1.

et al., 2014; Siebert and Döll, 2010). Physically impossible
or implausible project efficiencies were also calculated for
some countries, including Cambodia (I0 /W > 1) and the
United Arab Emirates and Chile (I0 /W < 0.1) (Fig. 6b).
Possible explanations for this will be discussed.

3.3 Secondary evaporation and the global water cycle

We estimate that secondary evaporation contributed
41.2 mm yr−1 or 8.1 % to the total evaporation from the
global land area during 2001–2014 (Table 3), equivalent to
5.4 % of terrestrial precipitation (759 mm yr−1) and 16 %
of generated streamflow (258 mm yr−1). Globally, only a
very small percentage of all secondary evaporation (5 %)
was due to irrigation. Overall more important pathways for
secondary evaporation were evaporation from permanent
waterbodies (48 %), enhanced transpiration associated with
wetland vegetation or greater-than-predicted groundwater
uptake (27 %), soil evaporation (11 %) and evaporation from
ephemeral waterbodies (10 %). Surface and groundwater
inputs enhance global plant transpiration by an estimated
12.1 mm yr−1, representing a 4.4 % increase. Of this
increase, 10 % can be attributed to irrigation.

The spatial distribution of evaporation from irrigation ar-
eas (Fig. 7a) and permanent waterbodies (Fig. 7b) largely re-
flects the irrigation and water mapping input data, respec-
tively. The spatial distribution of other sources of secondary
evaporation provides some new insights (Fig. 7c). Globally,
some areas with the greatest secondary evaporation volumes

include receiving floodplains in tropical monsoonal regions.
The main regions in South America include the Gran Chaco
and Pantanal plains and the Amazon floodplains (Fig. 8).
The main regions in Africa the Southern Interior basin in
Botswana and surrounding countries (including the Oka-
vango delta and other wetlands) and the floodplains of the
White Nile river in South Sudan and the Inner Niger delta
(Fig. 9). Other areas with high secondary evaporation rates
include the Yucatán peninsula in Mexico (Fig. 8), the boreal
wetlands and ephemeral lakes of Canada and Scandinavia
(Figs. 8 and 9, respectively) and the salt lakes and floodplains
of inland Australia (Fig. 10).

There is a pronounced seasonal cycle in secondary evap-
oration at the global scale (Fig. 11). The rate of secondary
evaporation is more than 2 times higher in the northern sum-
mer than in northern winter. This is primarily due to the
greater rate of evaporation from the many surface waterbod-
ies in formerly glaciated regions, including the American
Great Lakes, as well as a higher rate of evaporation from the
Caspian Sea. By contrast, secondary evaporation in regions
located wholly or partially in the Southern Hemisphere show
a much less pronounced seasonal cycle and a greater influ-
ence of water availability. Averaged over time, each of the
regions considered makes a similarly sized contribution to
secondary evaporation globally (10 %–24 %) with the excep-
tion of Antarctica (0.4 %).
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Figure 5. Comparison of observed basin-average discharge (mm yr−1) for large basins that are internally draining (i.e., zero discharge)
or have adequate station discharge data, respectively, with model estimates of (a) net discharge (Qn), that is, gross discharge (Qg) minus
secondary evaporation and (b)Qg only. Panels (c) and (d) represent data for discharge below 300 mm yr−1 only (cf. Table 1). Letters indicate
the Indus (I), Paraná (P) and Fitzroy (F) River.

Figure 6. Comparison of country-level agricultural water withdrawal (W) (FAO, 2017) and estimated minimum irrigation requirement (I0)
expressed as (a) total volume and (b) depth per unit area of area equipped for irrigation for countries with > 1 km3 yr−1 withdrawals
(N = 91). Dotted lines show apparent project efficiencies between the two quantities. Countries indicated in (a) are Egypt (EG), Pakistan
(PK), United States (US), China (CN) and India (IN), and in (b) Cambodia (KH), Senegal (SN), Mauritania (MR), United Arab Emirates
(AE), Chile (CL) and the Philippines (PH).
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Figure 7. Spatial distribution of estimated secondary evaporation losses derived from (a) irrigation, (b) permanent waterbodies and (c) other
sources, including wetlands and floodplains.
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Figure 8. Spatial distribution of secondary evaporation losses in the Americas.
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Figure 9. Spatial distribution of secondary evaporation losses in Eurasia and Africa.
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Figure 10. Spatial distribution of secondary evaporation losses in eastern Asia and Oceania.
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Table 3. Estimates of annual primary and secondary evaporation (E in mm yr−1) components for 2001–2014 expressed as water depths
across the global terrestrial area (149× 106 km2).

Primary E Secondary E Total Irrigation only

wet canopy E 81.3 – 81.3 –
transpiration 278.7 12.1 290.8 1.2
soil E 107.0 4.9 111.9 0.5
E from ephemeral water – 4.6 4.6 0.3
E from permanent water – 19.6 19.6 –
Total 467.0 41.2 508.2 2.0

Figure 11. Average (2001–2012) seasonal cycle of secondary evap-
oration at the global scale (black line) and the contribution from
different regions (colours corresponding to the map). All rates are
expressed in mm d−1 for the global land area.

4 Discussion

4.1 Uncertainties in evaporation estimation

The uncertainty in estimates of secondary evaporation arises
from three main sources: (1) estimation of “background”
evaporation E; (2) estimation of surface water evaporation;
and (3) estimation of total evaporation E′ by LST assimila-
tion. A formal assessment of error in each of these terms is
not possible for lack of observations and will vary in space
and time. Below we discuss what we expect to be the main
sources of uncertainty in each component.

An error in background model E may be compensated
by data assimilation, but still leads to an error in the esti-
mated secondary evaporation, calculated asE′−E. The main
sources of error inE vary as a function of environmental con-
ditions and the quality and density of the measurements on
which the meteorological forcing data are based. In water-
limited environments, the most likely sources of error in E
are errors in precipitation estimates and the simulation of wa-
ter availability in the root zone. The quality of precipitation
estimates is relatively poor in many of the world’s dry regions
(Beck et al., 2017). Information on the ability of vegetation

to access deeper soil moisture and groundwater is important,
particularly in ephemerally wet systems, but is not available
at the global scale. In humid environments, the most likely
sources of error in E are in the estimation of rainfall inter-
ception losses, the net available energy for evaporation and
surface conductance. As part of earlier model development,
background E was compared with estimates derived from
flux tower observations and compared with alternative ET es-
timation methods (Yebra et al., 2013; and supplement to this
article). These evaluations showed no systematic bias in E
and a standard difference of 135–168 mm yr−1 across sites.
This total difference also includes errors in the flux tower-
derived estimates (e.g., due to a lack of energy balance clo-
sure) and differences arising because the tower footprint is
not representative of the grid cell.

Observation-based estimates of large-area evaporation
(i.e., > 0.05◦) from waterbodies, wetlands and irrigated ar-
eas are scarce. Some site measurements of wetland and irri-
gation evaporation have been published (e.g., Guerschman et
al., 2009) but typically reflect an environment with very high
spatial variation and therefore often cannot easily be com-
pared to estimates at 0.05◦. A coordinated effort that col-
lates observations of secondary evaporation and combines
these with historical time series remote sensing imagery
(cf. Fig. 1a) to generate estimates at a more representative
spatial scale would appear necessary and valuable.

Errors in the estimation of surface water evaporation are
the combined result of errors in the estimation of open wa-
ter evaporation rate and the mapping of surface water extent.
Open water evaporation rate was estimated using the Priest-
ley and Taylor (1972) approach. An important uncertainty
in this approach is that it does not account for strong con-
trasts in near-surface water temperatures. The surface water
extent was mapped using 8-day MODIS shortwave infrared
(SWIR) reflectance composites (Van Dijk et al., 2016). Sys-
tematic overestimation of water extent can occur in low-relief
regions with very low SWIR reflectance (e.g., lava fields),
whereas underestimation can occur in regions with a dense
elevated canopy that prevents water detection (e.g., flood-
plain forests or mature flooded crops). Values of the updated
λE′ were constrained to positive values below or equal to po-
tential evaporation E0. Therefore, any gross underestimation
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of E0 by the model due to errors in meteorological forcing
data would have resulted in an underestimation of the true
evaporation rate.

The LST assimilation mitigates estimation errors in back-
ground and open water evaporation but is also subject to un-
certainties of its own. The technique developed here relies
on the assumption that there is a perfect correlation between
spatial LST anomalies at the time-of-overpass (around 10:00
local time) and daytime (sunrise–sunset) average values, at
least for the low-relief areas where LST was assimilated. A
systematic bias in the global estimates of governing vari-
ables (radiation, air temperature and humidity, wind speed)
are likely to be less problematic than spatially variable dif-
ferences in those low-relief areas. Spatial differences in the
temporal rate of LST change can arise, for example, from
spatial differences in heat storage capacity and aerodynamic
conductance (Kalma et al., 2008). Furthermore, we assumed
a constant, maximum bias-adjusted error of 1 K in the differ-
ence between observed and model background LST. Each of
these choices could have affected the efficacy of the assimi-
lation.

Nonetheless, the assessment of temporal patterns in E′

(such as in Fig. 1e) and the spatial patterns in secondary
evaporation (Figs. 6–9) agree with known areas receiving
lateral inflows (e.g., wetlands) or irrigation. Less expected
were the widespread high secondary evaporation rates in the
northern Yucatán peninsula in Mexico and the Southern In-
terior in southern Africa. The northern Yucatán peninsula
is a low-lying region with karst geology where forest trees
are known to access shallow groundwater (Bauer-Gottwein
et al., 2011). The Southern Interior includes several termi-
nal wetlands (e.g., the Okavango delta) and has unconsoli-
dated alluvial deposits that contain productive aquifers (Mac-
Donald et al., 2012). It is plausible that at least some of the
vegetation has access to deeper soil moisture or groundwa-
ter. In both cases, the background evaporation estimate (E)
is constrained by precipitation and the corresponding simu-
lated presence of soil- and groundwater within the root zone
(E). Any underestimation of E leads to an increased es-
timate E′−E and therefore an increased estimate of sec-
ondary evaporation without necessarily implying that all the
water involved is derived from lateral inflows. An alterna-
tive measure of the importance of secondary evaporation is
E′−P (Fig. 11). These results suggest that period-average
E′ exceeds P in the order of 100 to 200 mm yr−1. For the
Southern Interior basin, we found an apparent overestima-
tion of ca. 72 mm yr−1 (Table 1), which supports that at least
some of this difference is realistic. The underestimation of
precipitation may also partially explain these differences.
We analyzed global water cycle reanalysis data integrating
GRACE gravity observations from an earlier study (Van Dijk
et al., 2014) for a largely overlapping period (2003–2012)
to test this. For the African Southern Interior, the reanalysis
demonstrated a clear increasing trend in subsurface storage
(+12.3 mm yr−1) that was not reproduced by an ensemble of

models (+2.0 mm yr−1). This suggests that the global precip-
itation estimates used by models were indeed too low for this
period, as also concluded by Van Dijk et al. (2014). For the
Yucatán peninsula, a slight storage decrease (−3.3 mm yr−1)

was inferred from the reanalysis, whereas the model ensem-
ble suggested a slight increase (2.7 mm yr−1). This does not
indicate any underestimation of precipitation. A net use of
groundwater does appear plausible in this case, though likely
not of sufficient magnitude to explain the secondary evapo-
ration rates estimated here.

4.2 Uncertainty in irrigation water requirement
estimation

The total estimate of the minimum irrigation water require-
ment (I0) at the global scale was about a third lower than
previous model-based estimates (Siebert et al., 2010; Wada
et al., 2014; Siebert and Döll, 2010). There are some likely
explanations for this. Firstly, the diffuse distribution of areas
equipped for irrigation (Fig. 3) means that the LST signal
from irrigation will likely have been too small to estimate
the associated I0 correctly everywhere. An insufficient LST
signal is most likely for grid cells and countries with a tem-
perate, humid climate and highly distributed irrigation, such
as the US, where our estimate of I0 was twice as small as
published previously. Conversely, irrigation evaporation es-
timates should be more accurate in hot, arid regions with
large and concentrated irrigation, such as Egypt’s Nile delta
(Fig. 1). The temporal pattern of the evaporative fraction for
this grid cell corresponds well with that of the vegetation
cover (Fig. 1e) and reaches values that appear realistic, even
more so when considering that only around 80 % of the grid
cell was irrigated (Fig. 1a).

Second, previous studies have estimated crop water use
(and I0 from that) using the FAO method of Allen et
al. (1998). This method assumes a crop growing well, which
is unaffected by ineffective or insufficient irrigation, un-
favourable weather, nutrition and soil, pests and diseases or
other growth-limiting factors. The resulting crop water use
estimates are likely to represent idealized conditions and may
be higher than actual water use.

Third, errors in irrigation area mapping are also likely to
have played a role. It is noteworthy that the MIRCA2000
mapping used here (Portmann et al., 2010) indicated that
100 % of the grid cell in Fig. 1a was equipped for irrigation.
This is not the case, as most unirrigated areas are settlements.
Previous studies assumed the entire area was available for ir-
rigation and this difference alone caused their I0 estimates
for this particular grid cell to be 25 % higher. While these
numbers relate to a single grid cell, they serve to demonstrate
that incorrect mapping of irrigation areas can have a consid-
erable impact on I0 estimates. In another example, any irri-
gation outside the grid cells indicated as having at least some
irrigable area in the MIRCA2000 mapping would be wholly
attributed to non-irrigation forms of secondary evaporation.
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Figure 12. Mean difference between total evaporation and precipitation for 2001–2014 for (a) Botswana, (b) the Yucatán peninsula and
surrounding areas.

Despite these caveats, it is highly likely that true irriga-
tion water application is greater than our estimate I0, as it
was defined as a hypothetical quantity that might occur under
conditions of optimally efficient irrigation. Previous studies
have made similar assumptions. In reality, field-level irriga-
tion efficiency is reduced by additional drainage below the
root zone and any surface runoff that may occur. Further un-
certainties are introduced through the necessary assumptions
about rooting depth and root zone storage capacity. The com-
parison with FAO-reported W estimates suggests project ef-
ficiencies that are lower than those assumed in previous stud-
ies, but the overall correlation between country I0 andW vol-
umes was high and cannot solely be attributed to differences
in irrigated area (Fig. 6). A comparison of country I0 and W
expressed as area-average rates indicates contrasts in project
efficiency that are expected in several cases. In other cases,
values are outside a plausible range. At least some of these
poor estimates are likely related to the aforementioned in-
accuracies in irrigation mapping (e.g., Chile and the United
Arab Emirates in Fig. 6b).

Overall, the method developed here shows a promising ap-
proach for estimating irrigation water use. Estimation at an
even higher spatial resolution should help to detect the LST
signal more accurately where irrigation areas are dispersed
and will thus produce better estimates of E′. This provides
a powerful argument in support of “hyper-resolution” wa-
ter balance observation and modelling (Wood et al., 2011).
All satellite-derived inputs are available at a resolution that
is about an order of magnitude finer (500–1000 m) than used
here, and computational data assimilation at this resolution
is also already feasible. The main impediment is the reso-
lution and quality of irrigation area mapping, which is re-
quired to attribute secondary evaporation to irrigation and

other sources. The E′ estimates themselves may assist in
mapping, along with information on temporal vegetation pat-
terns and open water mapping and relief, among others. This
is an avenue we hope to pursue in future.

4.3 Importance of secondary evaporation in the global
water cycle

Our analysis suggests that secondary evaporation makes a
meaningful contribution to global evaporation (8.1 %) and
reduces the amount of discharge to the oceans by ca. 16 %.
At the global scale, irrigation is responsible for only a small
fraction of this reduction (ca. 5 %), with the remainder oc-
curring from waterbodies and wetlands. These global aver-
ages hide significant regional variation. For example, irriga-
tion plays an important role in the evaporation of river flows
in the Nile, Indus and Murray–Darling basins, where most of
the discharge is evaporated before reaching the ocean. About
half of the total global secondary evaporation is from per-
manent freshwater bodies, including from some very large
waterbodies such as the Caspian sea, the Great Lakes and the
African Rift Valley lakes.

There is a strong seasonal cycle in secondary evaporation
at the global scale, driven by evaporation from extensive sur-
face waterbodies in formerly glaciated regions in the North-
ern Hemisphere. This illustrates the profound impact that
glaciation has had on regional landscape hydrology and its
influence at the global scale.

We estimated global terrestrial evaporation to be
508 mm yr−1 per unit land area or 75.5× 1012 m3 yr−1 to-
tal for 2001–2014, made up of 467 mm yr−1 or 69.6×
1012 m3 yr−1 primary evaporation and 41.2 mm yr−1 or 6.1×
1012 m3 yr−1 secondary evaporation. This is close to esti-
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Table 4. Estimated percentage of total (or primary between brack-
ets) terrestrial evaporation (E) contributed by different pathways,
compared with estimates from two recent studies.

Percent of total E this study Zhang et al. Miralles et al.
(2016) (2016)

wet canopy E 16 (17) 10 10–24
transpiration 57 (60) 65 24–76
soil E 21 (23) 25 14–52
open water E 4 (0) – –

mates derived from previous studies. For example, Miralles
et al. (2016) reported 13 estimates of terrestrial E derived
from a variable combination of satellite observations and
modelling, with an average value of 69.2× 1012 m3 yr−1

and coefficient of variation (CV) of ±10 %. Schellekens et
al. (2017) reported a mean of 74.5× 1012 m3 yr−1 (CV of
±6 %) for an ensemble of ten state-of-the-art global hydro-
logical models and land surface models. Some of these dif-
ferences are attributable to the differences in total area and
period considered, but the different datasets also include sec-
ondary evaporation losses to different degrees. Given that
these represent 8 % of total evaporation, such inconsistencies
help to explain differences between estimates.

The partitioning between primary evaporation components
is within the range of recently published estimates, though
it is noted that those ranges are broad (Table 4). Secondary
evaporation is fully responsible for open water evaporation
and has no impact on wet canopy evaporation; both are a
logical consequence of the way these terms are conceptual-
ized. It is estimated that global transpiration and soil evap-
oration are both enhanced by about 4.5 % due to secondary
evaporation of surface and groundwater resources. Irrigation
is responsible for a tenth of this increase, with the remainder
due to natural processes. Because of the coupling between
transpiration and carbon uptake, it can be assumed that these
enhancements will increase the global carbon uptake by a
similar proportion. Once again, these small contributions ap-
ply at global scale, but there are strong differences locally
and regionally.

Thiery et al. (2017) simulated the global impact of ir-
rigation using coupled land surface and atmosphere mod-
els. They estimated an evaporation increase from irrigation
of 418 km3 yr−1, which was of a similar magnitude to the
300 km3 yr−1 we found. Despite this small contribution to
total global evaporation, their modelling did predict small
but meaningful reductions in high-temperature extremes over
and near large irrigation areas; irrigation rates tend to be
highest during hot and dry conditions. To the best of our
knowledge, there have been no studies on the impact of wet-
lands and waterbodies on regional and global climates so far.
Given that we estimate these other forms of secondary evap-

oration to be 20 times greater than that from irrigation, their
impact on the atmosphere should be significant.

5 Conclusions

We presented a methodology to assimilate thermal satellite
observations into the global hydrological model W3 at a res-
olution of 0.05◦ to estimate the secondary evaporation of sur-
face and groundwater resources. In addition, we used a sim-
ple irrigation water balance model to estimate the minimum
irrigation requirement (I0) globally. Our main conclusions
are as follows:

1. The method developed produces realistic temporal and
spatial patterns in secondary evaporation. Accounting
for secondary evaporation measurably improved water
balance estimates for large closed and open basins, re-
ducing bias in the overall water balance closure from
+38 to +2 mm yr−1.

2. Our I0 estimates were lower than country-level esti-
mates of irrigation water use produced by other model
estimation methods for three reasons. Firstly, at the
0.05◦ resolution, much of global irrigated land occupies
only a small part of individual grid cells and may not
reduce LST sufficiently to be accurately estimated. Sec-
ond, our I0 estimates reflect actual evaporation, which
can be lower than idealized crop water use estimates
used in previous studies. Third, spatial errors in irri-
gation area mapping directly affect the attribution of
secondary evaporation to irrigation. Overall, actual ir-
rigation application will most likely be higher than esti-
mated here but possibly lower than reported previously.

3. The role of irrigation water use in secondary evapora-
tion is minor at the global scale, accounting for 5 % of
total secondary evaporation and 0.4 % of total terrestrial
evaporation. Nonetheless, water withdrawals and irriga-
tion evaporation are an important part of the water bal-
ance in some regions.

4. Around 16 % of globally generated water resources
evaporate before reaching the oceans or from closed
basins, enhancing total terrestrial evaporation by 8.8 %.
Of this secondary evaporation, 5 % is evaporated from
irrigation areas, 58 % from waterbodies and 37 % from
other surfaces.

5. Lateral inflows of surface and water resources were
estimated to increase global plant transpiration by
ca. 4.5 %. The impact on global carbon uptake would
be expected to be of similar magnitude. Previous stud-
ies have predicted that irrigation evaporation affects re-
gional and global climate. Given evaporation from wet-
lands and permanent waterbodies is an order of magni-
tude larger, their impact on the climate system should
be pronounced.
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There is scope for further improvement in accounting for
natural and anthropogenic secondary losses by applying the
model-data assimilation approach developed here at higher
resolution. This is conceptually straightforward and com-
putationally achievable. Key developments required include
more accurate and detailed dynamic observational data on
surface water dynamics and more accurate mapping of areas
equipped for irrigation.
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