Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-1371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula
Md Abul Ehsan Bhuiyan
Department of Civil and Environmental Engineering,
University of Connecticut, Storrs, CT, USA
Efthymios I. Nikolopoulos
Department of Civil and Environmental Engineering,
University of Connecticut, Storrs, CT, USA
Innovative Technologies Center S.A., Athens, Greece
Emmanouil N. Anagnostou
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering,
University of Connecticut, Storrs, CT, USA
Pere Quintana-Seguí
Ebro Observatory, Ramon Llull University – CSIC, Roquetes
(Tarragona), Spain
Anaïs Barella-Ortiz
Ebro Observatory, Ramon Llull University – CSIC, Roquetes
(Tarragona), Spain
Castilla-La Mancha University, Toledo, Spain
Related authors
C. Witharana, M. A. E. Bhuiyan, and A. K. Liljedahl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 111–116, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020, 2020
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, https://doi.org/10.5194/nhess-18-2331-2018, 2018
Short summary
Short summary
Debris flows, following wildfires, constitute a significant threat to downstream populations and infrastructure. Therefore, developing measures to reduce the vulnerability of local communities to debris flows is of paramount importance. This work proposes a new model for predicting post-fire debris flow occurrence on a regional scale and demonstrates that the proposed model has notably higher skill than the currently used approaches.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
EGUsphere, https://doi.org/10.5194/egusphere-2024-1626, https://doi.org/10.5194/egusphere-2024-1626, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study compared global satellite and one reanalysis precipitation dataset to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Kang He, Xinyi Shen, and Emmanouil N. Anagnostou
Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024, https://doi.org/10.5194/essd-16-3061-2024, 2024
Short summary
Short summary
Forest fire risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a global forest burn severity (GFBS) database that provides burn severity spectral indices (dNBR and RdNBR) at a 30 m spatial resolution. This database could be more reliable than prior sources of information for future studies of forest burn severity on the global scale in a computationally cost-effective way.
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-120, https://doi.org/10.5194/nhess-2023-120, 2023
Preprint under review for NHESS
Short summary
Short summary
This study comprehends and predicts the socioeconomic effects of floods in the High Mountain Asia (HMA) region. We proposed a machine-learning strategy for mapping flood damages. We predicted the Lifeyears Index (LYI), which quantifies the financial cost and loss of life caused by floods, using variables including climate, geomorphology, and population. The study's overall goal is to offer useful information on flood susceptibility and subsequent risk mapping in the HMA region.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Mariam Khanam, Giulia Sofia, Marika Koukoula, Rehenuma Lazin, Efthymios I. Nikolopoulos, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 21, 587–605, https://doi.org/10.5194/nhess-21-587-2021, https://doi.org/10.5194/nhess-21-587-2021, 2021
Short summary
Short summary
Compound extremes correspond to events with multiple concurrent or consecutive drivers, leading to substantial impacts such as infrastructure failure. In many risk assessment and design applications, however, multihazard scenario events are ignored. In this paper, we present a general framework to investigate current and future climate compound-event flood impact on coastal critical infrastructures such as power grid substations.
C. Witharana, M. A. E. Bhuiyan, and A. K. Liljedahl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 111–116, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020, 2020
Diego Cerrai, Qing Yang, Xinyi Shen, Marika Koukoula, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 20, 1463–1468, https://doi.org/10.5194/nhess-20-1463-2020, https://doi.org/10.5194/nhess-20-1463-2020, 2020
Short summary
Short summary
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented destruction on the northern Bahamas. Dorian was characterized by extreme winds, extensive coastal flooding, and impressive precipitation. We studied the event through images acquired by the synthetic aperture radars (SARs) mounted on European Space Agency satellites to derive flooding maps showing the extent of the devastation. We found that the flooded area in the Bahamas was at least 3000 km2.
Anaïs Barella-Ortiz and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 23, 5111–5131, https://doi.org/10.5194/hess-23-5111-2019, https://doi.org/10.5194/hess-23-5111-2019, 2019
Short summary
Short summary
Drought is an important climatic risk. This study analyses drought representation and propagation by regional climate models from Med-CORDEX simulations using standardized indices. Results show that these models improve meteorological drought representation, but uncertainties are identified in its propagation and the way soil moisture and hydrological droughts are characterized. These are mainly due to model structure, making further improvements in land surface modelling necessary.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, https://doi.org/10.5194/nhess-18-2331-2018, 2018
Short summary
Short summary
Debris flows, following wildfires, constitute a significant threat to downstream populations and infrastructure. Therefore, developing measures to reduce the vulnerability of local communities to debris flows is of paramount importance. This work proposes a new model for predicting post-fire debris flow occurrence on a regional scale and demonstrates that the proposed model has notably higher skill than the currently used approaches.
Antoine Colmet-Daage, Emilia Sanchez-Gomez, Sophie Ricci, Cécile Llovel, Valérie Borrell Estupina, Pere Quintana-Seguí, Maria Carmen Llasat, and Eric Servat
Hydrol. Earth Syst. Sci., 22, 673–687, https://doi.org/10.5194/hess-22-673-2018, https://doi.org/10.5194/hess-22-673-2018, 2018
Short summary
Short summary
Here, the first assessment of future changes in extreme precipitation in small Mediterranean watersheds is done through three watersheds frequently subjected to flash floods. Collaboration between Spanish and French laboratories enabled us to conclude that the intensity of high precipitation will increase at the end of the century. A high degree of confidence results from the multi-model approach used here with eight regional climate models (RCMs) developed in the Med and Euro-CORDEX project.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
Yiwen Mei, Xinyi Shen, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2277–2299, https://doi.org/10.5194/hess-21-2277-2017, https://doi.org/10.5194/hess-21-2277-2017, 2017
Pere Quintana-Seguí, Marco Turco, Sixto Herrera, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, https://doi.org/10.5194/hess-21-2187-2017, 2017
Short summary
Short summary
The quality of two high-resolution precipitation datasets for Spain at the daily time scale is reported: the new SAFRAN-based dataset and Spain02. ERA-Interim is also included. The precipitation products are compared with observations. SAFRAN and Spain02 have very similar scores, and they perform better than ERA-Interim. The high-resolution gridded products overestimate the number of precipitation days. Both SAFRAN and Spain02 underestimate high precipitation events.
H. Seyyedi, E. N. Anagnostou, E. Beighley, and J. McCollum
Hydrol. Earth Syst. Sci., 18, 5077–5091, https://doi.org/10.5194/hess-18-5077-2014, https://doi.org/10.5194/hess-18-5077-2014, 2014
Short summary
Short summary
The paper presents a methodology for using global precipitation products from satellite remote sensing to error-correct and downscale global atmospheric reanalysis precipitation data sets. It is shown that streamflow simulations from the satellite-adjusted precipitation reanalysis give similar statistics to the ones derived by high-resolution ground-based radar rainfall data sets. This approach can be applied globally to derive improved flood frequency maps over data-poor areas.
M. C. Llasat, M. Turco, P. Quintana-Seguí, and M. Llasat-Botija
Nat. Hazards Earth Syst. Sci., 14, 427–441, https://doi.org/10.5194/nhess-14-427-2014, https://doi.org/10.5194/nhess-14-427-2014, 2014
E. Picciotti, F. S. Marzano, E. N. Anagnostou, J. Kalogiros, Y. Fessas, A. Volpi, V. Cazac, R. Pace, G. Cinque, L. Bernardini, K. De Sanctis, S. Di Fabio, M. Montopoli, M. N. Anagnostou, A. Telleschi, E. Dimitriou, and J. Stella
Nat. Hazards Earth Syst. Sci., 13, 1229–1241, https://doi.org/10.5194/nhess-13-1229-2013, https://doi.org/10.5194/nhess-13-1229-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Water cycle changes in Czechia: a multi-source water budget perspective
A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps
Technical note: A stochastic framework for identification and evaluation of flash drought
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Stochastic daily rainfall generation on tropical islands with complex topography
Modeling seasonal variations of extreme rainfall on different timescales in Germany
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin
Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought
Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues
A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields
Modelling rainfall with a Bartlett–Lewis process: new developments
Nonstationary stochastic rain type generation: accounting for climate drivers
Conditional simulation of surface rainfall fields using modified phase annealing
Climate influences on flood probabilities across Europe
Flood-related extreme precipitation in southwestern Germany: development of a two-dimensional stochastic precipitation model
A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales
Mapping rainfall hazard based on rain gauge data: an objective cross-validation framework for model selection
On the skill of raw and post-processed ensemble seasonal meteorological forecasts in Denmark
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Dealing with non-stationarity in sub-daily stochastic rainfall models
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Design water demand of irrigation for a large region using a high-dimensional Gaussian copula
Modeling the changes in water balance components of the highly irrigated western part of Bangladesh
A classification algorithm for selective dynamical downscaling of precipitation extremes
Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency
Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
Censored rainfall modelling for estimation of fine-scale extremes
An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France
Precipitation extremes on multiple timescales – Bartlett–Lewis rectangular pulse model and intensity–duration–frequency curves
Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?
A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform
Regionalizing nonparametric models of precipitation amounts on different temporal scales
A combined statistical bias correction and stochastic downscaling method for precipitation
Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin
Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme
Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies
Nonstationarity of low flows and their timing in the eastern United States
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024, https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Short summary
Neglecting the scientific rationale behind statistical inference leads to logical fallacies and misinterpretations. This study contrasts a model-based approach, rooted in statistical logic, with a test-based approach, widely used in hydro-climatology but problematic. It reveals the impact of dependence in extreme-precipitation analysis and shows that trends in the frequency of extreme events over the past century in various geographic regions can be consistent with the stationary assumption.
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024, https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Short summary
Most studies that aim to identify the impacts of climate change employ general circulation models. However, due to their low spatial resolution, it is necessary to apply downscaling techniques. This work assesses the performance of three methodologies in developing frequency analyses and estimating the number of rainy days and total precipitation per year. Quantile mapping and regression trees excelled in frequency analysis, and the delta method best estimated multiyear total precipitation.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024, https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Short summary
The work presents the first classification of weather types associated to compound events of extreme rainfall and coastal storms. These are found to be characterized by upper-level lows and troughs in conjunction with Mediterranean cyclones, resulting in severe to extreme coastal storms combined with convective systems. We used objective classification methods coupled with a Bayesian Network, testing different variables, domains and number of weather types.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang
Hydrol. Earth Syst. Sci., 27, 4187–4203, https://doi.org/10.5194/hess-27-4187-2023, https://doi.org/10.5194/hess-27-4187-2023, 2023
Short summary
Short summary
A spatial–temporal projection-based calibration, bridging, and merging (STP-CBaM) method is proposed. The calibration model is built by post-processing ECMWF raw forecasts, while the bridging models are built using atmospheric intraseasonal signals as predictors. The calibration model and bridging models are merged through a Bayesian modelling averaging (BMA) method. The results indicate that the newly developed method can generate skilful and reliable sub-seasonal precipitation forecasts.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023, https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Short summary
Flash drought is referred to the rapid development of drought events with a fast decline of soil moisture, which has serious impacts on agriculture, the ecosystem, human health, and society. While flash droughts have received much research attention, there is no consensus on its definition. Here we used a stochastic water balance framework to quantify the timing of soil moisture crossing different thresholds, providing an efficient tool for diagnosing and monitoring flash droughts.
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022, https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267, https://doi.org/10.5194/hess-26-5241-2022, https://doi.org/10.5194/hess-26-5241-2022, 2022
Short summary
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994, https://doi.org/10.5194/hess-26-4975-2022, https://doi.org/10.5194/hess-26-4975-2022, 2022
Short summary
Short summary
The relationship between atmospheric intraseasonal signals and precipitation is highly uncertain and depends on the region and lead time. In this study, we develop a spatiotemporal projection, based on a Bayesian hierarchical model (STP-BHM), to address the above challenge. The results suggest that the STP-BHM model is skillful and reliable for probabilistic subseasonal precipitation forecasts over China during the boreal summer monsoon season.
Lionel Benoit, Lydie Sichoix, Alison D. Nugent, Matthew P. Lucas, and Thomas W. Giambelluca
Hydrol. Earth Syst. Sci., 26, 2113–2129, https://doi.org/10.5194/hess-26-2113-2022, https://doi.org/10.5194/hess-26-2113-2022, 2022
Short summary
Short summary
This study presents a probabilistic model able to reproduce the spatial patterns of rainfall on tropical islands with complex topography. It sheds new light on rainfall variability at the island scale, and explores the links between rainfall patterns and atmospheric circulation. The proposed model has been tested on two islands of the tropical Pacific, and demonstrates good skills in simulating both site-specific and island-scale rain behavior.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Jamie Towner, Andrea Ficchí, Hannah L. Cloke, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-2021, https://doi.org/10.5194/hess-25-3875-2021, 2021
Short summary
Short summary
We examine whether several climate indices alter the magnitude, timing and duration of floods in the Amazon. We find significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative SST years in the central Pacific Ocean. This response is not repeated when the negative anomaly is positioned further east. These results have important implications for both social and physical sectors working towards the improvement of flood early warning systems.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Sebastian Scher and Stefanie Peßenteiner
Hydrol. Earth Syst. Sci., 25, 3207–3225, https://doi.org/10.5194/hess-25-3207-2021, https://doi.org/10.5194/hess-25-3207-2021, 2021
Short summary
Short summary
In hydrology, it is often necessary to infer from a daily sum of precipitation a possible distribution over the day – for example how much it rained in each hour. In principle, for a given daily sum, there are endless possibilities. However, some are more likely than others. We show that a method from artificial intelligence called generative adversarial networks (GANs) can
learnwhat a typical distribution over the day looks like.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020, https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
Short summary
This research paper proposes a weather generator combining two sampling approaches. A first generator recombines large-scale atmospheric situations. A second generator is applied to these atmospheric trajectories in order to simulate long time series of daily regional precipitation and temperature. The method is applied to daily time series in Switzerland. It reproduces adequately the observed climatology and improves the reproduction of extreme precipitation values.
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020, https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Short summary
A new way to downscale rainfall fields based on the notion of equal-volume areas (EVAs) is proposed. Experiments conducted on 100 rainfall events in the Netherlands show that the EVA method outperforms classical methods based on fixed grid cell sizes, producing fields with more realistic spatial structures. The main novelty of the method lies in its adaptive sampling strategy, which avoids many of the mathematical challenges associated with the presence of zero rainfall values.
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020, https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
Short summary
For applications such as flood forecasting of urban- or town-scale distributed hydrological modeling, high-resolution quantitative precipitation estimation (QPE) with enough accuracy is the most important driving factor and thus the focus of this paper. Considering the fact that rain gauges are sparse but accurate and radar-based precipitation estimates are inaccurate but densely distributed, we are merging the two types of data intellectually to obtain accurate QPEs with high resolution.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Florian Ehmele and Michael Kunz
Hydrol. Earth Syst. Sci., 23, 1083–1102, https://doi.org/10.5194/hess-23-1083-2019, https://doi.org/10.5194/hess-23-1083-2019, 2019
Short summary
Short summary
The risk estimation of precipitation events with high recurrence periods is difficult due to the limited timescale with meteorological observations and an inhomogeneous distribution of rain gauges, especially in mountainous terrains. In this study a spatially high resolved analytical model, designed for stochastic simulations of flood-related precipitation, is developed and applied to an investigation area in Germany but is transferable to other areas. High conformity with observations is found.
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Short summary
Rainfall data are often unavailable for the analysis of water-related problems such as floods and droughts. In such cases, researchers use rainfall generators to produce synthetic rainfall data. However, data from most rainfall generators can serve only one specific purpose; i.e. one rainfall generator cannot be applied to analyse both floods and droughts. To overcome this issue, we invented a multipurpose rainfall generator that can be applied to analyse most water-related problems.
Juliette Blanchet, Emmanuel Paquet, Pradeebane Vaittinada Ayar, and David Penot
Hydrol. Earth Syst. Sci., 23, 829–849, https://doi.org/10.5194/hess-23-829-2019, https://doi.org/10.5194/hess-23-829-2019, 2019
Short summary
Short summary
We propose an objective framework for estimating rainfall cumulative distribution functions in a region when data are only available at rain gauges. Our methodology allows us to assess goodness-of-fit of the full distribution, but with a particular focus on its tail. It is applied to daily rainfall in the Ardèche catchment in the south of France. Results show a preference for a mixture of Gamma distribution over seasons and weather patterns, with parameters interpolated with a thin plate spline.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546, https://doi.org/10.5194/hess-22-6533-2018, https://doi.org/10.5194/hess-22-6533-2018, 2018
Short summary
Short summary
This study investigates the use of gauge precipitation and air temperature observations to ascertain radar precipitation in cold climates. The use of air temperature as an additional variable in a non-parametric model improved the estimation of radar precipitation significantly. Further, it was found that the temperature effects became insignificant when air temperature was above 10 °C. The findings from this study could be important for using radar precipitation for hydrological applications.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Short summary
Rainfall time series are disaggregated from daily to hourly values to be used for rainfall–runoff modeling of mesoscale catchments. Spatial rainfall consistency is implemented afterwards using simulated annealing. With the calibration process applied, observed runoff statistics (e.g., summer and winter peak flows) are represented well. However, rainfall datasets with under- or over-estimation of spatial consistency lead to similar results, so the need for a good representation can be questioned.
Xinjun Tu, Yiliang Du, Vijay P. Singh, Xiaohong Chen, Kairong Lin, and Haiou Wu
Hydrol. Earth Syst. Sci., 22, 5175–5189, https://doi.org/10.5194/hess-22-5175-2018, https://doi.org/10.5194/hess-22-5175-2018, 2018
Short summary
Short summary
For given frequencies of precipitation of a large region, design water demands of irrigation of the entire region among three methods, i.e., equalized frequency, typical year and most-likely weight function, slightly differed, but their alterations in sub-regions were complicated. A design procedure using the most-likely weight function in association with a high-dimensional copula, which built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended.
A. T. M. Sakiur Rahman, M. Shakil Ahmed, Hasnat Mohammad Adnan, Mohammad Kamruzzaman, M. Abdul Khalek, Quamrul Hasan Mazumder, and Chowdhury Sarwar Jahan
Hydrol. Earth Syst. Sci., 22, 4213–4228, https://doi.org/10.5194/hess-22-4213-2018, https://doi.org/10.5194/hess-22-4213-2018, 2018
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018, https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Short summary
The output from numerical weather prediction (NWP) models is known to have errors. River forecast centers in Canada mostly use precipitation forecasts directly obtained from American and Canadian NWP models. In this study, we evaluate the forecast performance of ensembles generated by a Bayesian post-processing approach in cold climates. We demonstrate that the post-processing approach generates bias-free forecasts and provides a better picture of uncertainty in the case of an extreme event.
David Cross, Christian Onof, Hugo Winter, and Pietro Bernardara
Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, https://doi.org/10.5194/hess-22-727-2018, 2018
Short summary
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.
Jérémy Chardon, Benoit Hingray, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/hess-22-265-2018, https://doi.org/10.5194/hess-22-265-2018, 2018
Short summary
Short summary
We present a two-stage statistical downscaling model for the probabilistic prediction of local precipitation, where the downscaling statistical link is estimated from atmospheric circulation analogs of the current prediction day.
The model allows for a day-to-day adaptive and tailored downscaling. It can reveal specific predictors for peculiar and non-frequent weather configurations. This approach noticeably improves the skill of the prediction for both precipitation occurrence and quantity.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
Poulomi Ganguli and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 21, 6461–6483, https://doi.org/10.5194/hess-21-6461-2017, https://doi.org/10.5194/hess-21-6461-2017, 2017
Short summary
Short summary
Using statistical models, we test whether nonstationary versus stationary models show any significant differences in terms of design storm intensity at different durations across Southern Ontario. We find that detectable nonstationarity in rainfall extremes does not necessarily lead to significant differences in design storm intensity, especially for shorter return periods. An update of 2–44 % is required in current design standards to mitigate the risk of storm-induced urban flooding.
Daniele Nerini, Nikola Besic, Ioannis Sideris, Urs Germann, and Loris Foresti
Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, https://doi.org/10.5194/hess-21-2777-2017, 2017
Short summary
Short summary
Stochastic generators are effective tools for the quantification of uncertainty in a number of applications with weather radar data, including quantitative precipitation estimation and very short-term forecasting. However, most of the current stochastic rainfall field generators cannot handle spatial non-stationarity. We propose an approach based on the short-space Fourier transform, which aims to reproduce the local spatial structure of the observed rainfall fields.
Tobias Mosthaf and András Bárdossy
Hydrol. Earth Syst. Sci., 21, 2463–2481, https://doi.org/10.5194/hess-21-2463-2017, https://doi.org/10.5194/hess-21-2463-2017, 2017
Short summary
Short summary
Parametric distribution functions are commonly used to model precipitation amounts at gauged and ungauged locations. Nonparametric distributions offer a more flexible way to model precipitation amounts. However, the nonparametric models do not exhibit parameters that can be easily regionalized for application at ungauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate the usage of daily gauges for sub-daily resolutions.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Kue Bum Kim, Hyun-Han Kwon, and Dawei Han
Hydrol. Earth Syst. Sci., 20, 2019–2034, https://doi.org/10.5194/hess-20-2019-2016, https://doi.org/10.5194/hess-20-2019-2016, 2016
Short summary
Short summary
A primary advantage of using model ensembles for climate change impact studies is to represent the uncertainties associated with models through the ensemble spread. Currently, most of the conventional bias correction methods adjust all the ensemble members to one reference observation. As a result, the ensemble spread is degraded during bias correction. However the proposed method is able to correct the bias and conform to the ensemble spread so that the ensemble information can be better used.
E. P. Maurer, D. L. Ficklin, and W. Wang
Hydrol. Earth Syst. Sci., 20, 685–696, https://doi.org/10.5194/hess-20-685-2016, https://doi.org/10.5194/hess-20-685-2016, 2016
Short summary
Short summary
To translate climate model output from its native coarse scale to a finer scale more representative of that at which societal impacts are experienced, a common method applied is statistical downscaling. A component of many statistical downscaling techniques is quantile mapping (QM). QM can be applied at different spatial scales, and here we study how skill varies with spatial scale. We find the highest skill is generally obtained when applying QM at approximately a 50 km spatial scale.
S. Sadri, J. Kam, and J. Sheffield
Hydrol. Earth Syst. Sci., 20, 633–649, https://doi.org/10.5194/hess-20-633-2016, https://doi.org/10.5194/hess-20-633-2016, 2016
Short summary
Short summary
Low flows are a critical part of the river flow regime but little is known about how they are changing in response to human influences and climate. We analyzed low flow records across the eastern US and identified sites that were minimally influenced by human activities. We found a general increasing trend in low flows across the northeast and decreasing trend across the southeast that are likely driven by changes in climate. The results have implications for how we manage our water resources.
Cited articles
Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M.: Intercomparison of global precipitation products: the third precipitation intercomparison project (PIP–3), B. Am. Meteorol. Soc., 82, 1377–1396, 2001.
AghaKouchak, A., Nasrollahi, N., and Habib, E.: Accounting for uncertainties of the TRMM Satellite Estimates, Remote Sens., 1, 606–619, 2009.
Álvarez, J., Sánchez, A., and Quintas, L.: SIMPA, a GRASS based tool for hydrological studies, in: Proceedings of the FOSS/GRASS Users Conference, Bangkok, Thailand, 2004.
Bhuiyan, M. A. E., Anagnostou, E. N, and Kirstetter, P. E.: A nonparametric statistical technique for modeling overland TMI (2A12) rainfall retrieval error, IEEE Geosci. Remote S., 14, 1898–1902, 2017.
Bitew, M. M. and Gebremichael, M.: Evaluation of satellite rainfall
products through hydrologic simulation in a fully distributed
hydrologic model, Water Resour. Res., 47, W06526,
https://doi.org/10.1029/2010WR009917, 2011.
Boone, A.: Modélisation des processus hydrologiques dans le
schéma de surface ISBA: Inclusion d'un réservoir hydrologique,
du gel et modélisation de la neige, Université Paul Sabatier
(Toulouse III), Toulouse, available at: http://www.cnrm.meteo.fr/IMG/pdf/boone_thesis_2000.pdf, 2000.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Brown, J. D. and Seo, D. J.: A nonparametric postprocessor for bias
correction of hydrometeorological and hydrologic ensemble forecasts,
J. Hydrometeorol., 11, 642–665, 2010.
Champeaux, J. L., Masson, V., and Chauvin, F.: ECOCLIMAP: a global database of land surface parameters at 1 km resolution, Meteorol. Appl., 12, 29–32, 2005.
Chipman, H. A., George, E. I., and McCulloch, R. E.: Bart: Bayesian additive regression trees, Ann. Appl. Stat., 4, 266–298, 2010.
Ciach, G. J., Krajewski, W. F., and Villarini, G.: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data, J. Hydrometeorol., 8, 1325–1347, https://doi.org/10.1175/2007JHM814.1, 2007.
Croley, T. E.: Weighted-climate parametric hydrologic forecasting, J. Hydrol. Eng., 8, 8171–8180, 2003.
David, C. H., Maidment, D. R., Niu, G. Y., Yang, Z. L., Habets, F., and Eijkhout, V.: River network routing on the NHDPlus dataset, J. Hydrometeorol., 12, 913–934, 2011a.
David, C. H., Habets, F., Maidment, D. R., and Yang, Z. L.: RAPID applied to the SIM-France model, Hydrol. Process., 25, 3412–3425, 2011b.
De Jeu, R. A.: Retrieval of land surface parameters using passive microwave remote sensing, PhD Dissertation, VU Amsterdam, the Netherlands, 120 pp., 2003.
Decharme, B., Boone, A., Delire, C., and Noilhan, J.: Local evaluation of the interaction between soil biosphere atmosphere soil multilayer diffusion scheme using four pedotransfer functions, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2011JD016002, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., and Bechtold, P.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., Chang, C. H., Delrieu, G., Hong, Y., Hsu, Y. C., and Lavado-Casimiro, W.: Multiregional satellite precipitation products evaluation over complex terrain, J. Hydrometeorol., 17, 1817–1836, https://doi.org/10.1175/JHM-D-15-0197.1, 2016.
Durand, Y., Brun, E., Merindol, L., Guyomarc'h, G., Lesaffre, B., and Martin, E.: A meteorological estimation of relevant parameters for snow models, Ann. Glaciol., 18, 65–71, 1993.
Francke, T., López-Tarazón, J. A., Vericat, D., Bronstert, A., and Batalla, R. J.: Flood-based analysis of high-magnitude sediment transport using a non-parametric method, Earth Surf. Proc. Land., 33, 2064–2077, 2008.
Gebremichael, M., Liao, G. Y., and Yan, J.: Nonparametric error model for a high resolution satellite rainfall product, Water Resour. Res., 47, W07504, https://doi.org/10.1029/2010WR009667, 2011.
Gottschalck, J., Meng, J., Rodell, M., and Houser, P.: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states, J. Hydrometeorol., 6, 573–598, https://doi.org/10.1175/JHM437.1, 2005.
Guikema, S. D., Quiring, S. M., and Han, S. R.: Prestorm estimation of hurricane damage to electric power distribution systems, Risk Anal., 30, 1744–1752, 2010.
Hamill, T. M.: Interpretation of rank histograms for verifying ensemble forecasts, Mon. Weather Rev., 129, 550–560, 2001.
Hamill, T. M. and Colucci, S. J.: Verification of Eta–RSM short-range ensemble forecasts, Mon. Weather Rev., 125, 1312–1327, 1997.
Harding, R., Best, M., Blyth, E., Hagemann, S., Kabat, P., Tallaksen, L. M., Warnaars, T., Wiberg, D., Weedon, G. P., Lanen, H. V., and Ludwig, F.: WATCH: current knowledge of the terrestrial global water cycle, J. Hydrometeorol., 12, 1149–1156, 2011.
He, J., Wanik, D., Hartman, B., Anagnostou, E., Astitha, M., and Frediani, M. E. B.: Nonparametric tree-based predictive modeling of storm damage to power distribution network,
Risk Anal., 37, 441–458, https://doi.org/10.1111/risa.12652, 2017.
Hossain, F. and Anagnostou, E. N.: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction, J. Geophys. Res., 109, D07102, https://doi.org/10.1029/2003JD003986, 2004.
Hossain, F. and Anagnostou, E. N.: Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data, IEEE Trans. Geosci.
Remote Sens. Lett., 3, 419–423, 2006.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation measurement mission, B. Am. Meteorol. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B.,
Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM multi-satellite precipitation analysis (TMPA), in: Satellite rainfall applications for surface hydrology,
edited by: Gebremichael, M. and Hossain, F., Springer, Dordrecht, 3–22, 2010.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, J. Hydrometeorol., 5, 487–503, 2004.
Juban, J., Fugon, L., and Kariniotakis, G.: Probabilistic short-term
wind power forecasting based on kernel density estimators, in: European Wind
Energy Conference and exhibition, EWEC 2007, 7–10 May 2017, Milan, Italy, 2007.
Lakhankar, T., Ghedira, H., Temimi, M., Sengupta, M., Khanbilvardi, R., and Blake, R.: Non-parametric methods for soil moisture retrieval from satellite remote sensing data, Remote Sens.-Basel, 1, 3–21, https://doi.org/10.3390/rs1010003, 2009.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, Eos, 89, 93–94, 2008.
Li, L., Hong, Y., Wang, J., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Korme, T., and Okello, L.: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia basin, Lake Victoria, Africa, Nat. Hazards, 50, 109–123, https://doi.org/10.1007/s11069-008-9324-5, 2009.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A., Wagner, W., McCabe, M. F., Evans, J. P., and Van Dijk, A. I. J. M.: Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280–297, 2012.
Maggioni, V., Sapiano, M. R., Adler, R. F., Tian, Y., and Huffman, G. J.: An error model for uncertainty quantification in high-time-resolution precipitation products, J. Hydrometeorol., 15, 1274–1292, https://doi.org/10.1175/JHM-D-13-0112.1, 2014.
Maggioni, V., Massari, C., Brocca, L., and Ciabatta, L.: Merging
bottom-up and top-down precipitation products using a stochastic error
model, J. Geophys. Res., 19, 12383, 2017.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Mei, Y., Anagnostou, E. N., Nikolopoulos, E. I., and Borga, M.: Error analysis of satellite rainfall products in mountainous basins, J. Hydrometeorol., 15, 1778–1793, https://doi.org/10.1175/JHM-D-13-0194.1, 2014.
Mei, Y., Nikolopoulos, E. I., Anagnostou, E. N., and Borga, M.: Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins, J. Hydrometeorol., 17, 1407–1423, https://doi.org/10.1175/JHM-D-15-0081.1, 2016.
Meinshausen, N.: Quantile regression forests, J. Mach. Learn. Res., 7, 983–999, 2006.
Mo, K. C., Chen, L. C., Shukla, S., Bohn, T. J., and Lettenmaier, D. P.: Uncertainties in North American land data assimilation systems over the contiguous United States, J. Hydrometeorol., 13, 996–1009, https://doi.org/10.1175/JHM-D-11-0132.1, 2012.
Mujumdar, P. P. and Ghosh, S.: Climate change impact on hydrology and water resources, J. Hydraul. Eng., 14, 1–17, 2008.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – a discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nateghi, R., Guikema, S. D., and Quiring, S. M.: Forecasting hurricane-induced power outage durations, Nat. Hazards, 74, 1795–1811, 2014.
Nikolopoulos, E. I., Anagnostou, E. N., and Borga, M.: Using high-resolution satellite rainfall products to simulate a major flash flood event in Northern Italy, J. Hydrometeorol., 14, 171–185, https://doi.org/10.1175/JHM-D-12-09.1, 2013.
Noilhan, J. and Mahfouf, J. F.: The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145–159, 1996.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res., 113, F01002, https://doi.org/10.1029/2007JF000769, 2008.
Peña-Arancibia, J. L., van Dijk, A. I., Renzullo, L. J., and Mulligan, M.: Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia, J. Hydrometeorol., 14, 1323–1333, https://doi.org/10.1175/JHM-D-12-0132.1, 2013.
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008.
Quintana-Seguí, P., Peral, M. C., Turco, M., Llasat, M.-C., and Martin, E.: Meteorological analysis systems in North-East Spain: validation of SAFRAN and SPAN, J. Environ. Inform., 27, 116–130, https://doi.org/10.3808/jei.201600335, 2016.
Quintana-Seguí, P., Turco, M., Herrera, S., and Miguez-Macho, G.: Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim, Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, 2017.
Ruiz, J. M.: Desarrollo de un modelo hidrológico conceptual
distribuido de simulación continua integrado con un sistema de
información geográfica (Development of a continuous
distributed conceptual hydrological model integrated in a geographic
information system), PhD Thesis, ETS Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Valencia, Spain, 1998.
Seyyedi, H., Anagnostou, E. N., Kirstetter, P. E., Maggioni, V., Hong, Y., and Gourley, J. J.: Incorporating surface soil moisture information in error modeling of TRMM passive Microwave rainfall, IEEE T. Geosci. Remote, 52, 6226–6240, 2014.
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D.: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, B. Am. Meteorol. Soc., 81, 2035–2046, 2000.
Stephens, G. L. and Kummerow, C. D.: The remote sensing of clouds and precipitation from space: a review, J. Atmos. Sci., 64, 3742–3765, 2007.
Taillardat, M., Mestre, O., Zamo, M., and Naveau, P.: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics, Mon. Weather Rev., 144, 2375–2393, 2016.
Teo, C. K. and Grimes, D. I.: Stochastic modelling of rainfall from satellite data, J. Hydrol., 346, 33–50, https://doi.org/10.1016/j.jhydrol.2007.08.014, 2007.
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J. M.: A 50 year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E., and Ertl, M.: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture,
in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 25 August–1 September 2012, Melbourne, Australia, 315–321, 2012.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, 2014.
Yenigun, K. and Ecer, R.: Overlay mapping trend analysis technique and its application in Euphrates Basin, Turkey, Meteorol. Appl., 20, 427–438, 2013.
Zimmermann, A., Francke, T., and Elsenbeer, H.: Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment, J. Hydrol., 428, 170–181, 2012.
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
This study investigates the use of a nonparametric model for combining multiple global...