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Abstract. This study investigates the use of a nonparamet-
ric, tree-based model, quantile regression forests (QRF), for
combining multiple global precipitation datasets and charac-
terizing the uncertainty of the combined product. We used
the Iberian Peninsula as the study area, with a study period
spanning 11 years (2000–2010). Inputs to the QRF model
included three satellite precipitation products, CMORPH,
PERSIANN, and 3B42 (V7); an atmospheric reanalysis pre-
cipitation and air temperature dataset; satellite-derived near-
surface daily soil moisture data; and a terrain elevation
dataset. We calibrated the QRF model for two seasons and
two terrain elevation categories and used it to generate en-
semble for these conditions. Evaluation of the combined
product was based on a high-resolution, ground-reference
precipitation dataset (SAFRAN) available at 5 km1h−1 res-
olution. Furthermore, to evaluate relative improvements and
the overall impact of the combined product in hydrolog-
ical response, we used the generated ensemble to force
a distributed hydrological model (the SURFEX land surface
model and the RAPID river routing scheme) and compared
its streamflow simulation results with the corresponding sim-
ulations from the individual global precipitation and refer-
ence datasets. We concluded that the proposed technique
could generate realizations that successfully encapsulate the
reference precipitation and provide significant improvement
in streamflow simulations, with reduction in systematic and
random error on the order of 20–99 and 44–88 %, respec-
tively, when considering the ensemble mean.

1 Introduction

Accurate estimates of precipitation on a global scale, which
are essential to hydrometeorological applications (Stephens
and Kummerow, 2007), rely primarily on satellite-based ob-
servations and atmospheric reanalysis simulations. Although
advancement in both satellite retrievals and reanalysis-based
precipitation datasets has been continuous (Seyyedi et al.,
2014; Dee et al., 2011; Huffman et al., 2007; Mo et al.,
2012), they are still associated with several sources of er-
ror (Derin et al., 2016; Mei et al., 2014; Seyyedi et al., 2014;
Gottschalck et al., 2005; Peña-Arancibia et al., 2013) that
limit their use in water resource applications. Quantifying
and correcting the sources of the error and characterizing its
propagation are important for improving and promoting the
use of satellite and reanalysis precipitation estimates in hy-
drological applications on a global scale.

During the past two decades, research investigations have
focused on characterizing the error in satellite precipita-
tion products and its propagation in streamflow simulations
(Hossain and Anagnostou, 2004; Li et al., 2009; Bitew and
Gebremichael, 2011; Nikolopoulos et al., 2013; Mei et al.,
2016). These studies have highlighted the dependence of the
error on a multitude of factors, including seasonality, topog-
raphy, soil wetness, and vegetation cover (Derin et al., 2016;
Mei et al., 2014; Seyyedi et al., 2014; Hou et al., 2014). Other
studies have used stochastic satellite rainfall error models
to investigate uncertainty characteristics and their depen-
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dencies (Hossain and Anagnostou, 2006; Teo and Grimes,
2007; Maggioni et al., 2014; Adler et al., 2001; AghaK-
ouchak et al., 2009) and have used stochastically generated
ensemble rainfall fields as input in hydrological models to
study the satellite precipitation uncertainty propagation in
the simulation of various hydrological variables. The two-
dimensional satellite rainfall error model, SREM2-D (Hos-
sain et al., 2006), has been used to evaluate the significance
of surface soil moisture (Seyyedi et al., 2014) and seasonal-
ity (Maggioni et al., 2017) in modeling the error structure of
satellite rainfall products.

Given the multidimensionality of error dependence and
the lack of a clear winner among the various precipitation
datasets established by these studies, we argue that, to mit-
igate the errors and uncertainties, one should combine the
different precipitation datasets, taking into account the differ-
ent climatological and land surface factors. A promising ap-
proach to modeling appears to be the application of statistical
nonparametric techniques, which efficiently combine infor-
mation on several factors (Ciach et al., 2007; Gebremichael
et al., 2011). In fact, although nonparametric statistical tech-
niques are not widely used in rainfall estimation, some no-
table examples exist in the literature, with encouraging re-
sults. Ciach et al. (2007) established a nonparametric estima-
tion technique based on weather radar data to characterize the
uncertainties in radar precipitation estimates as a function of
range, temporal scale, and season. Lakhankar et al. (2009) in-
troduced a nonparametric technique to retrieve soil moisture
from satellite remote sensing products in reliable ways with
sufficient accuracy. Moreover, Gebremichael et al. (2011) de-
veloped a nonparametric technique for satellite rainfall er-
ror modeling using rain-gauge-adjusted, ground-based radar
rainfall and reported improved satellite precipitation perfor-
mance with relatively large variation at low and high rainfall
rates.

The use of nonparametric statistical techniques in error
modeling has also gained popularity in weather forecasting,
climate change prediction, and the modeling of hydrologi-
cal processes (Croley, 2003; Brown et al., 2010; Mujumdar
et al., 2008; Yenigun et al., 2013). Recently, a wide variety of
nonparametric techniques have been developed for error ana-
lytics (Taillardat et al., 2016; He et al., 2017). Nonparametric
statistical techniques require fewer assumptions for the form
of the relationship and data. The advantages over parametric
techniques for prediction are explained in detail in Guikema
et al. (2010). Specifically, the authors exhibited better re-
sults (lower prediction error) with nonparametric techniques
than with parametric analysis models. The techniques they
used were classification and regression trees (CART) and
Bayesian additive regression trees (BART) (Chipman et al.,
2010). Another nonparametric technique, random forest (RF)
regression, which provides information about the full con-
ditional distribution of the response variable, was used by
Breiman (2001) and found to yield more robust predictions
by stretching the use of the training data partition.

This paper investigates the use of a nonparametric statis-
tical technique for optimally combining globally available
precipitation sources from satellite and reanalysis products.
Specifically, we use the quantile regression forests (QRF)
tree-based regression model (Meinshausen, 2006) to com-
bine dynamic (for example, temperature and soil moisture)
and static (for example, elevation) land surface variables with
multiple global precipitation sources to stochastically gener-
ate improved precipitation ensemble. The proposed frame-
work provides a consistent formalism for optimally combin-
ing several rainfall products by using information from these
datasets. It is, furthermore, able to characterize uncertainty
through the ensemble representation of the combined pre-
cipitation product. We present the development of the pro-
posed framework and evaluate relative improvements in the
combined rainfall product in detail. We also evaluate the new
combined product in terms of hydrological simulations to as-
sess the importance of precipitation improvement for stream-
flow simulations, thus highlighting the usefulness of this ap-
proach for global hydrological applications.

The paper is structured as follows: Sect. 2 briefly explains
the study area and the datasets used. Section 3 describes the
QRF model, the rainfall error analysis, and the hydrological
model setup. Performance evaluation of the combined prod-
uct in precipitation and corresponding hydrological simula-
tions is presented in Sect. 4. Conclusions and recommenda-
tions are discussed in Sect. 5.

2 Study area and data

The study area we selected for this investigation is the Iberian
Peninsula, which has three main climatic zones: Mediter-
ranean, oceanic, and semiarid. The peninsula’s climate is pri-
marily Mediterranean, except in its northern and southern
parts, which are characterized mostly as oceanic and semi-
arid, respectively. The topography varies from almost zero
elevation to altitudes of 3500 m in the Pyrenees. For the
hydrological analysis, we focused the study over the Ebro
River basin and, specifically, on five subbasins of different
spatial scale: (1) the Ebro River at Tortosa (84 230 km2);
(2) the Ebro River at Zaragoza (40 434 km2); (3) the Cinca
River at Fraga (9612 km2); (4) the Segre River at Lleida
(11 369 km2); and (5) the Jalon River at Grisen (9694 km2)
(Fig. 1). The datasets we used are described below.

2.1 Reference precipitation (SAFRAN)

The default reference dataset was recently created by
Quintana-Seguí et al. (2016, 2017) using the SAFRAN me-
teorological analysis system (Durand et al., 1993), which
is the same as the one used in earlier studies over France
(Quintana-Seguí et al., 2008; Vidal et al., 2010). SAFRAN
uses optimal interpolation to combine the outputs of a me-
teorological model and all available observations, which in
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Figure 1. Map of the Iberian Peninsula case study area.

this case were provided by the Spanish State Meteorolog-
ical Agency (AEMET). The variables analyzed were pre-
cipitation, temperature, relative humidity, wind speed, and
cloudiness. In the case of precipitation, the first guess was
deduced from the observations themselves instead of coming
from a numerical model, like the other variables. The obser-
vations were analyzed daily (as opposed to every 6 h for the
other variables), but the resulting product had a time resolu-
tion of 1 h. This was achieved by an interpolation method that
used relative humidity to distribute precipitation throughout
the day. Spatially, the outputs are presented on a regular
grid with 5 km resolution. The dataset (Quintana-Seguí et al.,
2016), which spans 35 years, covers mainland Spain and the
Balearic Islands.

2.2 Satellite-based precipitation

We used three gauge-adjusted quasi-global satellite precip-
itation products – CMORPH, PERSIANN, and 3B42 (V7)
– in this study. CMORPH (Climate Prediction Center Mor-
phing technique of the National Oceanic and Atmospheric
Administration, or NOAA) is a global precipitation prod-
uct based on passive microwave (PMW) satellite precipita-
tion fields spatially propagated by motion vectors calculated
from infrared (IR) data (Joyce et al., 2004). PERSIANN (Pre-
cipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks) is IR-based and uses a neu-
tral network technique to connect IR observations to PMW
rainfall estimates (Sorooshian et al., 2000). TMPA (Tropi-
cal Rainfall Measuring Mission Multisatellite Precipitation
Analysis), or 3B42 (V7), is a merged IR and passive mi-
crowave precipitation product from NASA that is gauge-
adjusted and available in both near-real time and post-real
time (Huffman et al., 2010). Spatial and temporal resolutions

of the satellite precipitation products are 0.25◦ and 3-hourly
time intervals, respectively.

2.3 Atmospheric reanalysis

For meteorological forcing, we selected the WATCH1 (Wa-
ter and Global Change FP7 project) Forcing Dataset ERA-
Interim (hereafter WFDEI) (Weedon et al., 2014), a contem-
porary state-of-the-art database. WFDEI, a dataset that fol-
lows up on the European Union’s WATCH project (Hard-
ing et al., 2011), is built on the ECMWF ERA-Interim re-
analysis (Dee et al., 2011) with a geographical resolution of
0.5◦×0.5◦ and a sequential frequency of 3 h for the time span
1979–2012, with particular bias corrections using gridded
monitoring. Finally, we chose two atmospheric products (at-
mospheric precipitation and air temperature) among WFDEI
variables as predictors for the nonparametric statistical tech-
nique.

2.4 Soil moisture

The soil moisture information used in this study was ob-
tained from the satellite-based soil moisture estimates pro-
duced by the European Space Agency (ESA) Climate
Change Initiative (CCI) project under the ESA Programme
on Global Monitoring of Essential Climate Variables (ECV)
(Liu et al., 2011; Owe et al., 2008; De Jeu, 2003; http://www.
esa-soilmoisture-cci.org/node/145). The ESA CCI (v02.0)
soil moisture product is derived from passive and active mi-
crowave satellite-based sensors (Liu et al., 2011, 2012; Wag-
ner et al., 2012) and provides information on daily surface
soil moisture at 0.25◦ spatial resolution and quasi-global
scale.
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2.5 Terrain elevation

The Shuttle Radar Topography Mission (SRTM) dataset in-
cluded in this study has, in recent years, been one of the
most extensively used publicly accessible terrain elevation
datasets. Available at ∼ 90 m spatial resolution, it was ob-
tained using 1◦ digital elevation model (DEM) tiles from the
US Geological Survey and interpolated to the 0.25◦ grid res-
olution to match the resolution of precipitation and soil mois-
ture products.

3 Methodology

3.1 Blending technique

In this study, we applied a nonparametric, tree-based re-
gression model, quantile regression forests (QRF) (Mein-
shausen, 2006), to produce a rainfall ensemble with respect
to the reference precipitation. The model input includes the
three global satellite precipitation datasets (CMORPH, PER-
SIANN, and 3B42-V7), the global reanalysis rainfall and air
temperature datasets, and the satellite near-surface soil mois-
ture and terrain elevation datasets, described in the previous
section. The atmospheric products were interpolated in space
using the nearest neighbor interpolation technique to match
the resolution of precipitation satellite precipitation datasets.
The spatial and temporal resolutions of the atmospheric prod-
ucts are 0.25◦ and 3-hourly time intervals, correspondingly.
The high-resolution SAFRAN data were matched to the
satellite precipitation datasets on a pixel-by-pixel basis by
averaging all high-resolution pixels within a 0.25◦ pixel. Fi-
nally, all 3-hourly data were mapped to the grid resolution of
0.25◦ chosen to be the final spatial resolution for the com-
bined product.

QRF is derived from random forest regression (Mein-
shausen, 2006), which is capable of handling data from large
samples; it has desirable built-in features, such as variable se-
lection, interaction detection, incorporation of missing data,
and the ability to save the trained model for future predic-
tion (Nateghi et al., 2014). QRF uses a bagged version (boot-
strapped aggregating) of decision trees by randomly sam-
pling from the bootstrapped sample, which reduces variance
and helps to avoid overfitting that improves the stability and
accuracy of the algorithm (Meinshausen, 2006). QRF pro-
vides a nonparametric way to evaluate conditional quantiles
for high-dimensional predictors of variables. The conditional
distribution function of Y is defined by

F̂ (y|X = x)= P (Y ≤ y|X = x)= E
(
1{Y≤y}|X = x

)
, (1)

where Y refers to observations of the response variable, X
is a covariate or predictor variable, and E is the condi-
tional mean,E(1{Y≤y}|X = x), which is approximated by the
weighted mean over the observation of 1{Y≤y} (Meinshausen,
2006). Then Eq. (1) can be expressed as

F̂ (y|X = x)=

n∑
i=1

ωi (x)1{Yi≤y}, (2)

where weight vector ωi (x)= k−1∑k
i=1ωi (x, θt ) using ran-

dom forest regression; k indicates the number of single trees
(t = 1, . . ., k); and each tree is built with an independent and
identically distributed vector θt (Meinshausen, 2006).

This nonparametric technique utilizes the weighted aver-
age of all trees to compute the empirical distribution func-
tion. It keeps not only the mean but also all observation val-
ues in nodes and, building on this information, it calculates
the conditional distribution. In this method, consistency of
the empirical quantities is induced based on a large num-
ber of instances in terminal nodes. The overall framework
of the QRF scheme is shown in Fig. 2. Higher number of
trees reduces the variance of the model. So, increasing the
number of trees in the ensemble will not have any impact on
the bias of the model. Furthermore, a higher variance reduc-
tion can be achieved by decreasing the correlation between
trees in the ensemble. Therefore, QRF utilizes the optimal
number “mtry” (size of the random subset of predictors) for
split point selection at each node. This approach introduces
randomness in the ensemble to reduce the correlation be-
tween trees, which helps to avoid overfitting (Meinshausen,
2006). In this study we used the default value (k = 1000)
(Meinshausen, 2006) throughout all simulations to create the
empirical distribution at each grid cell and used the cross-
validation experiments (see next section) to demonstrate sta-
bility of the method.

Specifically, we initialized a random forest of 1000 trees
for each terminal node of each of the classified dataset and
calculated the 95 % prediction intervals at each grid cell.
QRF utilizes the same weights to calculate the empirical dis-
tribution function and a weighted average of all trees for the
predicted expected response values to calculate the empirical
distribution. To conduct the hydrological simulations in this
study, we resampled from the empirical distribution function
20 times per grid cell to obtain “reference”-like rainfall en-
semble members.

To build the rainfall error model, we grouped available
rainfall estimates from all input datasets (three satellite and
reanalysis) into three subsets: (1) all rainfall products that re-
port rainfall greater than zero; (2) all rainfall products that
report zero rainfall; and (3) at least one product that re-
ports nonzero rainfall. We categorized each case into two
seasons: the “warm season”, which included data from May
through October, and the “cold season”, which included data
from November through April. We then classified each sea-
son category into two levels based on two terrain eleva-
tion ranges: above (high) and below (low) 1000 ma.s.l. Fi-
nally, for each subset, we prepared four groups (warm-high,
warm-low, cold-high, cold-low) for the error model. For each
group, leave-one-pixel-out cross-validation is applied where
each point in the statistics is not included in the calibra-
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Figure 2. A schematic representation of the quantile regression forests (QRF) framework used.

tion of the technique. In general, prominent “mtry” is ob-
tained by this method by extending the sample size and there-
fore preventing overfitting. Applying this validation method,
the model exhibits great skill on both the training dataset
and the unseen test data. Similarly, to strengthen the valida-
tion results, we also performed a test using leave-one-year-
out cross-validation. Namely, for each year of the database
hold out for validation, we calibrated on the rest of the
years (10 years) and repeated the experiment for all 11 years
of the study period. The model validation results based on
leave-one-pixel-out and leave-one-year-out are described in
Sect. 4.2.

3.2 Hydrological modeling

To perform the streamflow simulations, we used the SASER
(SAfran-Surfex-Eaudyssée-Rapid) hydrological modeling
suite. SASER is a physically based and distributed hydro-
logical model for Spain based on SURFEX (Surface Ex-
ternalisée), a land surface modeling platform developed by
Météo-France (Masson et al., 2013) that integrates several
schemes for different kinds of surfaces (natural, urban, lakes,
and so on). The scheme for natural surfaces, ISBA (Noilhan
and Planton, 1989; Noilhan and Mahfouf, 1996), has differ-
ent versions, with differing degrees of complexity. Within
SASER we used the explicit multilayer version (Boone,

2000; Decharme et al., 2011) with prescribed vegetation.
The physiography was provided by the ECOCLIMAP dataset
(Champeaux et al., 2005).

Since SURFEX has no river routing scheme,
we chose the RAPID river routing scheme (David
et al., 2011a, b) within the Eau-dyssée framework
(http://www.geosciences.mines-paristech.fr/fr/equipes/
systemes-hydrologiques-et-reservoirs/projets/eau-dyssee).
Eau-dyssée transfers SURFEX runoff (surface and sub-
surface or drainage) from the SURFEX grid cells to the
river cells using its own isochrony algorithm. Then, RAPID
uses a matrix-based version of the Muskingum method
to calculate flow and volume of water for each reach of
a river network. The current application of SASER uses
HYDROSHEDS (Lehner et al., 2008) to describe the
river network. As the current setup cannot simulate dams,
canals, or irrigation, the resulting river flows are estimations
of the natural system (that is, the system without direct
human intervention in the form of irrigation or hydraulic
infrastructure, such as dams or canals).

It is important to note that, since the current version of
SASER uses the default parameters for its different schemes,
it has not been specifically calibrated for the target basin.
This has some implications. The benefit is that the model is
not overfitted, which makes it directly comparable to global
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applications of SURFEX, which are not calibrated either. The
downside is that the model might not perform optimally. In
the future, we plan to improve the options used in the land
surface model to adapt its structure better to the necessary
physical processes that take place in the basin, while limiting
the need for parameter calibration. For the purpose of this
study, which involved the relative comparison of multiple
rainfall forcing-based simulations, the current model setup
was considered adequate.

3.3 Metrics of model performance evaluation

We based quantification of the systematic and random error
of model-generated ensemble on different error metrics. We
evaluated the random error component based on the normal-
ized centered root mean square error (NCRMSE), which is
defined as

NCRMSE=

√
1
n

∑n
i=1

[
ŷi − yi −

1
n

∑n
i=1

(
ŷi − yi

)]2

1
n

∑n
i=1yi

. (3)

Note that yi is reference rainfall, ŷi is estimated rainfall
for times i from the blended technique, and n is the total
number of data points used in the calculations. An NCRMSE
value of 0 indicates no random error, while 1 indicates that
the random error is equal to 100 % of the mean reference
rainfall.

To measure the systematic error, we used the bias ratio
(BR) metric, which indicates the mean of the ratio of esti-
mated rainfall to reference rainfall and is defined as

BR=
1
n

n∑
i=1

(
ŷi

yi

)
. (4)

For an unbiased model, the BR would be 1.
To assess the ability of the QRF-generated ensemble to

encapsulate the reference rainfall, we used the exceedance
probability (EP) metric, which indicates the probability that
the reference value will exceed the prediction interval:

EP= 1−
1
n

n∑
i=1

1{
Qloweri<yi<Qupperi

}. (5)

Here, Qlower and Qupper denote lower and upper boundaries
of prediction interval, respectively. The EP would be 0 for an
ideal model; that means a perfect encapsulation of the refer-
ence within the prediction interval.

To evaluate the accuracy of the QRF-generated ensemble,
we used the uncertainty ratio (UR), which measures uncer-
tainty from the prediction interval (Qlower, Qupper), as used
in Eq. (3):

UR=

∑n
i=1

(
Qupper−Qlower

)∑n
i=1yi

. (6)

To achieve accurate and successful prediction, compara-
tively small prediction intervals are expected. A UR value of

1 means the best estimate of the actual uncertainty which in-
dicates the maximum possible uncertainty of the prediction
interval. The UR quantifies the prediction interval width rel-
ative to the magnitude of observations. A UR value close to
1 indicates confidence intervals being in the order of magni-
tude of the predicted values.

For the evaluation of the accuracy of the ensemble, we also
calculated the rank histogram, which is computed by count-
ing the rank of observations and comparing this with values
from a compiled ensemble, in ascending order. The rank of
the actual value is denoted by rj (r1, r2, . . ., rm+1) and rj is
expressed as follows:

rj = P̂ {ŷi,j−1 < yi < ŷi,j }. (7)

A flat rank histogram diagram means precise prediction of
error distribution (Hamil, 2001; Hamil and Colucci, 1997).
A U-shaped rank histogram (convex) represents conditional
biases, and a concave shape means an over-spread. Skewing
to the right denotes negative bias and vice versa.

The Nash–Sutcliffe efficiency (NSE) is widely used in hy-
drology to assess model performance (Nash and Sutcliffe,
1970) and is defined as

NSE= 1−

∑n
i=1
(
ŷi − yi

)2∑n
i=1(yi − y)

2 . (8)

The NSE bounds from negative infinity to positive 1,
where positive 1 means ideal consistency. A negative value
of NSE denotes the performance of the estimator being worse
than the mean of reference.

4 Results and discussion

4.1 Sensitivity analysis

In this paper we present a blending technique that leads to
an improved characterization of precipitation estimation un-
certainty through an optimal combination of precipitation
and other datasets. The technique is designed to evaluate the
sensitivity of the blending technique to the different forc-
ing variables. The selection of variables was based upon re-
cent research works (Seyyedi et al., 2014; Bhuiyan et al.,
2017; Mei et al., 2016) that have examined the factors re-
lated to precipitation error characteristics and have shown
that soil moisture, temperature, precipitation products, and
elevation are important predictors in the error modeling of
rainfall estimates. Bhuiyan et al. (2017) have recently used
a nonparametric statistical technique (QRF) to evaluate the
significance of surface soil moisture in modeling the error
structure of satellite products and successfully assessed the
impact of surface soil moisture information on the model’s
performance. Therefore, soil moisture is identified as a po-
tential factor for the proposed blending technique instead of
the vegetation indicator. In addition, we have daily quality
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controlled surface soil moisture data with a global coverage
and 0.25◦ spatial resolution while the available vegetation
indices are provided at much coarser (multi-day) temporal
scales. Also the precipitation products, despite using similar
observations to some extent, exhibit different error character-
istics and could provide complementary information. There-
fore, dynamic (temperature and soil moisture) and static (el-
evation) land surface variables were used as input along with
the multiple global precipitation sources (CMORPH, PER-
SIANN, and 3B42 (V7); and atmospheric reanalysis precipi-
tation).

After choosing these predictor variables, for any nonpara-
metric statistical technique, it is essential to know the sen-
sitivity of the result to the different input predictor vari-
ables and to quantify the impact of change from one variable
to another. The variable importance methodology (Breiman,
2001) is a measure of sensitivity in that case, which helps
to recognize crucial input variables that demonstrate the rel-
ative contribution of each variable. The importance of the
predictor variables depends on the magnitude of the per-
centage increase in mean square error (% IncMSE) of the
model (Breiman, 2001). Higher values of % IncMSE indi-
cate higher importance of the predictor variables. Briefly,
the mean squared error (MSE) computed from the original
model (i.e., considering all variables) is compared against
MSE from a new model that holds all variables the same as
the original model except one, the one of which we want to
determine its relative importance.

Results from the variable importance test show that all
variables used in this technique contribute valuable infor-
mation in the modeling process. Results from the variable
importance test for two groups included in our methodol-
ogy (for warm and cold periods, high elevation and rainfall
greater than zero for all products) are presented in Fig. 3,
which shows the variable importance of the seven predictor
variables. According to these results all variables are impor-
tant but the level of significance varies considerably among
the different variables. Soil moisture, reanalysis, and the
three satellite precipitation datasets were ranked as the most
important predictor variables (Fig. 3), showing their strong
impact in model prediction. Similar results (not shown) were
obtained from examination of the other scenarios (e.g., for
low elevation cases). From the variable importance test, it is
argued that all variables selected have a significant impact
on the model prediction, justifying our choice for including
them.

4.2 Evaluation of the blending technique

We first evaluated the method by applying a leave-one-pixel-
out cross validation, where each pixel was treated as an inde-
pendent dataset and was predicted based on QRF parameters
determined based on the remaining pixels in the database.
The time series of 20 ensemble members’ cumulative rain-
fall simulated by QRF for high and low elevations in warm

Figure 3. Variable importance plot, where % IncMSE is the percent-
age increase in mean square error. (a) Warm period–high elevation.
(b) Cold period–high elevation.

and cold seasons are shown in Fig. 4. The ensemble enve-
lope encapsulates the actual rainfall time series, with better
convergence of QRF ensemble members for the warm season
but with overall satisfying results for the cold season as well.
As is shown, the model was capable of generating stochastic
realizations that successfully encapsulated the reference pre-
cipitation dynamics. Apart from the ensemble performance,
one can note from the results in Fig. 4 the variability in the
performance of different precipitation products and their in-
consistencies relative to the reference precipitation. For ex-
ample, PERSIANN overestimated high elevation in the warm
season, while CMORPH, 3B42 (V7), and atmospheric re-
analysis precipitation underestimated it. Overall, CMORPH
underestimated the most for both seasons, which indicated
poor performance of the QRF ensemble.

Figure 5 compares the combined rainfall product precip-
itation accumulation maps to the corresponding reference
rainfall accumulation maps for the warm and cold seasons. In
general, the spatial distribution of rainfall was consistent for
both seasons, with the northwestern part of the study area,
which is near to the ocean, associated with more precipita-
tion. In the cold season, the combined product gave higher
precipitation in the southwestern and northwestern parts of
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Figure 4. Time series of cumulative rainfall of CMORPH, PERSIANN, 3B42 (V7), reanalysis rainfall, and QRF ensemble (blue envelope)
for warm and cold seasons.

Figure 5. QRF-generated mean ensemble and reference rainfall maps for warm and cold seasons.
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Figure 6. Normalized centered root mean square error for warm and cold seasons. The relative error reductions for the combined product
(relative to other products) are shown above the bars.

the Iberian Peninsula than in the warm season. These pat-
terns were consistent with those presented in the reference
dataset.

We calculated NCRMSE for the various precipitation
products (Fig. 6) for five reference precipitation categories,
with values in the percentile ranges of< 25th, 25th–50th,
50th–75th, 75th–95th, and> 95th. The results showed the
QRF-based combined product could reduce the random er-
ror for all rainfall rate categories in both seasons. It is also
shown that the random error reduced consistently in all prod-
ucts as the rainfall rate increased.

To quantify the performance of the combined product in
contrast to the individual precipitation datasets, we calcu-
lated the relative reduction of the NCRMSE for the differ-
ent precipitation ranges; Fig. 6 presents these performance
metric statistics. The relative reduction of the values was
defined as the difference between the average of the dif-
ferent datasets and the combined product over the average
NCRMSE of the datasets. We noted that relative NCRMSE
reduction was greater during the cold season, particularly in
regions of low elevation (75 to 99 %). During the warm sea-
son, the relative reduction varied between 53 and 81 % for
both high and low elevations. Overall, results from all met-
rics examined showed that the random error of the combined

product was significantly lower than those of the individual
global precipitation datasets used in the technique.

The combined product’s accuracy was further assessed us-
ing BR for both seasons (Fig. 7). The results indicated QRF
improved accuracy for rain rates beyond the 50th percentile
threshold, exhibiting lower BR values. For moderate to high
rainfall in both seasons, all individual rainfall datasets ex-
hibited underestimation, which was reduced in the combined
product. For the low rainfall, the systematic error reduction
for the combined product was not prominent, resulting in a
comparatively higher BR value. Generally, the QRF model is
expected not to capture very low and extremely high values
well due to the weakness of the empirical distribution func-
tion to model probabilities close to 0 or 1. The sample size
plays an important role in empirical distribution function.
Therefore, very large sample sizes are required for low values
to quantify the rate of convergence to the underlying cumula-
tive distribution function. Moreover, studies have shown that
QRF can perform better in generating one-sided prediction
intervals, which is the case in Juban et al. (2007), Francke
et al. (2008), and Zimmermann et al. (2012). In terms of el-
evation, the magnitude of BR was considerably less for the
high elevations in the warm season. The model used elevation
as a control parameter, which reflected its ability to reduce
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Figure 7. Bias ratio for warm and cold seasons.

the systematic error at high elevations noticeably. For the
higher rain rate category (> 95th percentile), the BR value
in the warm season ranged between 0.5 and 0.6, which was
close to estimations for the cold season over the study area.
The relative reduction was high for the combined product,
varying from 17 to 76 % for both seasons. Overall, the com-
bined product exhibited BR values closer to 1 than the indi-
vidual precipitation datasets did, demonstrating superior per-
formance.

Results for exceedance probability (EP) values (Fig. 8),
which are used to assess the ability of the QRF-generated
ensemble to encapsulate the reference data, suggest that ref-
erence precipitation is captured well within the ensemble en-
velope. Specifically, considerably reduced exceedance prob-
ability values (< 0.26) were reported for rain rates below the
95th percentile threshold for both seasons. A season-based
comparison revealed that cold-season EP values were smaller
than the corresponding values for the warm season across all
rain rate thresholds. Even for the high rain rates (> 95th per-
centile), EP values were found to be acceptable (∼ 0.5).

Analysis of UR showed the QRF ensemble envelope was
associated with slightly wider prediction intervals in the
warm season than in the cold season, indicating varying de-

grees of uncertainty throughout the year (Fig. 8). A UR closer
to 1 was exhibited for higher rain rates, demonstrating that
the ensemble envelope represented the uncertainty for the
moderate to high rain rates well, while the variability of the
ensemble envelope for rain rates below the 50th percentile
threshold overestimated the product uncertainty.

Finally, to evaluate the accuracy of the QRF ensemble, we
calculated the rank histogram for the cold and warm seasons.
Figure 9 shows the rank histogram of reference values in
the posterior sample of QRF ensemble prediction for both
seasons. QRF produced a nearly uniformly distributed rank
histogram for low to moderate rain rates, which means the
rank test was more promising for QRF ensemble predictions
for these rain rates. However, the rank histogram exhibited
larger values on the right-hand side, indicating underestima-
tion of high rain rates in the ensemble prediction, which is
potentially attributed to the inclusion of the entire spectrum
of values in the training dataset (i.e., large sample of zeroes
and low values) that although allow for reproducing certain
important features of precipitation (e.g., intermittency), im-
pact the simulation of high rainfall regime.

As an additional evaluation step, we applied a leave-one-
year-out cross-validation, where we kept a whole year as an
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Figure 8. Exceedance probability and uncertainty ratio for warm and cold seasons.

Figure 9. Rank histogram for warm and cold seasons.
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Figure 10. Normalized centered root mean square error for warm and cold season. The relative error reductions for the combined product
(relative to other products) are shown above the bars.

independent dataset and the model was trained on the re-
maining years of the study period. Results for NCRMSE are
shown in Fig. 10, which are consistent with the leave-one-
pixel-out cross-validation analysis in terms of the reduction
of the random error for both seasons (warm and cold) and
precipitation percentile ranges. The random error decreases
with increasing scale, and for all cases, results from the com-
bined product are associated with an error reduction (relative
to other products) on the order of 52–98 %. Overall, results
indicate that the random error of the combined product was
significantly lower than those of the individual precipitation
products used in this study.

The performance of the estimates for the model was also
evaluated in terms of systematic error, as shown in Fig. 11.
Results show that the magnitude of systematic error for the
combined product is substantially lower than for the individ-
ual precipitation products. Overall, BR values are closer to 1
for moderate to high rain rates in both seasons for the com-
bined product, which indicates that QRF is able to reduce the
systematic error in moderate to high rain rates.

In summary, both validation approaches demonstrated that
the QRF model is able to reduce the systematic and random
error of precipitation estimates exhibited by individual pre-
cipitation products significantly, which indicates that QRF
was appropriately trained and does not exhibit limitations
due to overfitting. To conduct the hydrological simulations
in this study, the validation of the results based on the leave-
one-pixel-out method is provided in Sect. 4.3.

4.3 Evaluation of ensemble hydrological simulations

This section summarizes the results of the streamflow sim-
ulations associated with the different precipitation forcing
data (satellite, reanalysis, and combined product). We car-
ried out the evaluation using the SAFRAN-based simulations
for reference. Comparisons allowed us to understand the per-
formance of each individual precipitation product in terms
of streamflow simulations and to evaluate the impact of the
QRF-based blending technique in terms of hydrological sim-
ulations. The NCRMSE and BR quantitative statistics are
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Figure 11. Bias ratio for warm and cold seasons.

used here to assess the performance of basin-scale precipita-
tion forcing data and corresponding generated streamflows.

Since SASER does not simulate dams or canals or irriga-
tion, the simulated streamflow reflects how the flow would be
if the water resources of the basin were not managed (that is,
naturalized streamflow). The Ebro basin is heavily managed,
with hundreds of dams and an important canal network. This
raised the problem that model flows could not be compared
to the observed flows on those subbasins that are influenced
by water management, which is most of them. The Spanish
Ministry of Agriculture, Fisheries, Food, and the Environ-
ment (MAPAMA) had, however, produced monthly natural-
ized river flows using the SIMPA rain-runoff model (Ruiz
et al., 1998; Álvarez et al., 2004). These are the reference val-
ues used by the managers, and they currently offer the only
means of reference for validating SASER results.

Table 1 compares the bias and NSE of SASER to those
of SIMPA. In terms of monthly accumulation of precipita-
tion, the precipitation data used by SIMPA were similar to
SAFRAN’s; thus, the difference may have resided in evap-
otranspiration, which is calculated differently in both mod-

els, in terms of both formulation and land-use maps. In terms
of NSE, the scores are acceptable at the outlet (between 0.4
and 0.6) and better at most Pyrenean basins (between 0.4 and
0.8), with some exceptions.

Although SASER had room for improvement, mainly with
regard to bias, the model was generally able to simulate the
main dynamics of the basin. In fact, given that it is essen-
tially evaluated against another model (SIMPA) the reported
bias cannot be attributed with certainty to a deficiency of the
SASER model, and therefore this evaluation exercise mostly
shows that the model we used can represent flows consis-
tently (to a certain degree) with another model that is widely
used in the region. As this study aimed to evaluate stream-
flow simulations in a relative sense (that is, with respect to
SAFRAN-based simulations) and not to reproduce the ob-
served river flows with precision, the current version of the
SASER model was considered adequate for this purpose. Be-
ing physically based, it simulated the interplay among differ-
ent physical processes realistically, and, thus, it could be used
to assess their impact on uncertainty.
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Table 1. The bias and NSE of high-resolution SAFRAN-SURFEX
simulation.

River Station Area NSE Bias
(km2)

Ega Andosilla 1445 0.735 −13.52
Arga Funes 2759 0.651 −38.068
Aragón Caparroso 5462 0.733 −25.655
Jiloca Daroca 2202 0.069 −23.28
Ebro Zaragoza 40 434 0.716 −29.324
Gállego Ardisa 2040 0.477 −26.613
Ésera Graus 893 0.37 −28.177
Cinca El Grado 2127 0.629 −21.223
Segre Lleida 11 369 0.256 −35.016
Ebro Tortosa 84 230 0.576 −27.2
Najerilla Mansilla 242 0.114 −62.214
Albercos Ortigosa 45 0.193 −45.826
Cidacos Yanguas 223 0.392 −42.551
Salazar Aspurz 396 0.731 −27.012
Irati Liedena 1546 0.721 −30.451
Arga Echauri 1756 0.508 −46.398
Ega Estella 943 0.622 −36.172
Aragón Yesa 2191 0.716 −22.334
Noguera Collegats 1518 −0.768 2.102
Pallaresa
Huerva Mezcalocha 620 0.427 −24.375
Ebro Mendavia 12 010 0.592 −36.507
Ebro Flix 82 416 0.59 −27.564
Ésera Barasona 1511 0.446 −32.846
Ebro Ribarroja 81 060 0.595 −27.604
Jalón Calatayud 6841 0.222 −22.072

To provide an overview of the differences in error mag-
nitude between forcing and response variables, we present
our analysis of error metrics for simulated streamflow along
with corresponding error metrics in basin-average precipita-
tion. Results for NCRMSE are shown in Fig. 12, which notes
that for the two larger basins, Ebro at Tortosa (84 230 km2)
and Ebro at Zaragoza (40 434 km2), the NCRMSE (0.1–0.3)
of the combined product was significantly lower than those
of the other subbasins for all intervals of streamflow values;
this was related to the significant smoothing effect on random
error associated with larger basin scales.

Consistent with streamflow, these two basins also exhib-
ited considerably lower NCRMSE values (0.2–0.5) for the
combined product in terms of basin-average precipitation.
The random component of error was generally slightly higher
for low precipitation rates than for the moderate and higher
rates for the five subbasins. Similar findings in NCRMSE
values for the low streamflow rates were observed. For the
basin-average precipitation, the relative NCRMSE reduc-
tion was high for the combined product, ranging from 84
to 88 % (below the 25th percentile group). A product-wise
comparison showed the combined product had more sig-
nificant error-dampening effects than reanalysis and satel-

lite precipitation products in streamflow simulation for all
the subbasins. Specifically, the combined product (above
the 50th percentile) was characterized by a noticeably rel-
ative error reduction (44 to 78 %) for streamflow. Moreover,
we also observed that relative error reduction for the com-
bined product decreased remarkably (56 to 88 %) for low
streamflow. These results indicated random error was re-
duced through the rainfall–streamflow transformation in all
subbasins. Overall, results show combining information from
reanalysis and satellite precipitation datasets could decrease
random error in streamflow simulations.

The bias ratio (BR) for basin-average precipitation ranges
from overestimation to underestimation as a function of
precipitation magnitude, with precipitation rates above the
50th percentile strongly underestimated (BR in the range of
0.07–0.25) (Fig. 13). The magnitude of BR for precipita-
tion indicated lower systematic errors in estimates of low to
high basin-average precipitation for all subbasins. The corre-
sponding BR values for the simulated streamflows provided
a general appreciation of how the magnitude of systematic
error in basin-average precipitation translates to systematic
error in streamflow simulations. While a one-to-one corre-
spondence between rainfall and streamflow classes was not
possible (note that an event from the highest rainfall class
might have resulted in moderate flow values depending on
antecedent conditions and so on), we could, however, com-
pare the overall range of BR values between basin-average
precipitation and streamflow. As Fig. 13 indicates for the
combined product, BR values were closer to 1 for the dif-
ferent streamflow classes, indicating that streamflow was rel-
atively stable. For the two larger basins, Ebro at Tortosa and
Ebro at Zaragoza, the combined product underestimated ac-
tual values slightly. Overall, the relative systematic error re-
duction for streamflow ranged from 20 to 99 %. These re-
sults highlight the usefulness of optimally combining satel-
lite and reanalysis precipitation datasets. Overall, after reduc-
ing systematic error, the QRF-generated ensemble correc-
tions brought rainfall products closer to the reference rainfall
and simulated runoff.

5 Conclusions

A new framework was presented in this study that uses
a nonparametric technique (QRF) to combine multiple glob-
ally available data sources, including reanalysis and gauge-
adjusted satellite precipitation datasets, for generating an im-
proved ensemble precipitation product. The study investi-
gated the accuracy of the combined product using a high-
resolution reference rainfall dataset (SAFRAN) over the
Iberian Peninsula. The QRF-generated ensemble members
are evaluated in terms of precipitation for both warm- and
cold-season weather patterns, representing a wide variety
of precipitation events. Furthermore, the QRF-based stream-
flow simulations from a distributed hydrological model are

Hydrol. Earth Syst. Sci., 22, 1371–1389, 2018 www.hydrol-earth-syst-sci.net/22/1371/2018/



M. A. E. Bhuiyan et al.: Blending of global precipitation data 1385

Figure 12. Normalized centered root mean square error for basin-average rainfall and streamflow. The relative error reductions for the
combined product (relative to other products) are shown above the bars.

evaluated against the SAFRAN-based simulations for a range
of basin scales of the Ebro River basin.

Results from the analysis carried out demonstrate clearly
that the proposed blending technique has the potential to gen-
erate a realistic precipitation ensemble that is statistically
consistent with the reference precipitation and is associated
with considerably reduced errors. In terms of seasonality ef-
fects, the random error significantly decreased for the com-
bined product with increasing rainfall magnitude, and this
reduction was greater during the cold season. The systematic
error of the combined product varied from over- to underes-
timation as rain rate increased during both seasons. In terms
of elevation, among all individual products, the magnitude of
systematic error for the combined product was noticeably de-
creased for the higher elevations, which is a strong indication
for using the proposed scheme in retrieving global precipita-
tion in high-elevation regions. Overall, the reduction of the
combined product (relative to other products) for the system-

atic and random error ranged between 17 and 76 and 53 and
99 %, respectively.

Evaluation of the impact on streamflow simulations
showed that the magnitude of systematic and random error
for simulations corresponding to the combined product was
significantly lower than for the individual precipitation prod-
ucts. In addition, for the combined product, the large-scale
basins exhibited considerably lower systematic and random
error values than the small-size basins, which shows the de-
pendency on basin scale. Specifically, the relative reduction
for the combined product in systematic and random error
ranged between 20 and 99 and 44 and 88 %, respectively,
which highlights the potential of the proposed technique in
advancing hydrologic simulations.

Our overall conclusion is that the proposed framework of-
fers a robust way of blending globally available precipitation
datasets, providing at the same time an improved precipita-
tion product and characterization of its uncertainty. This can
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Figure 13. Bias ratio of precipitation and streamflow.

have important applications in studies dealing with water re-
sources reanalysis and quantification of uncertainty in hydro-
logic simulations. Future work will include evaluation of the
proposed framework in different hydroclimatic regions, also
considering the sensitivity of its performance to availability
(e.g., record length and spatial coverage) of in situ reference
precipitation.

Data availability. Several datasets were used for this pa-
per. The SAFRAN dataset for Spain was obtained from
the MISTRALS HyMeX database (https://doi.org/10.14768/
MISTRALS-HYMEX.1388). The other datasets are also
available online: CMORPH (ftp://ftp.cpc.ncep.noaa.gov/
precip/CMORPH_V1.0/RAW/0.25deg-3HLY/), PERSIANN
(http://fire.eng.uci.edu/PERSIANN/data/3hrly_adj_cact_tars/),
3B42 (V7) (https://mirador.gsfc.nasa.gov), atmospheric
reanalysis dataset (https://wci.earth2observe.eu/portal/),
satellite-derived near-surface daily soil moisture data
(http://www.esa-soilmoisture-cci.org/node/145/), terrain elevation
data (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp),

and the combined product (https://sites.google.com/uconn.edu/
ehsanbhuiyan/research).
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