Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1371–1389, 2018
https://doi.org/10.5194/hess-22-1371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 1371–1389, 2018
https://doi.org/10.5194/hess-22-1371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Feb 2018

Research article | 26 Feb 2018

A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula

Md Abul Ehsan Bhuiyan et al.

Viewed

Total article views: 2,732 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,764 924 44 2,732 40 54
  • HTML: 1,764
  • PDF: 924
  • XML: 44
  • Total: 2,732
  • BibTeX: 40
  • EndNote: 54
Views and downloads (calculated since 06 Jun 2017)
Cumulative views and downloads (calculated since 06 Jun 2017)

Viewed (geographical distribution)

Total article views: 2,626 (including HTML, PDF, and XML) Thereof 2,599 with geography defined and 27 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 27 Sep 2020
Publications Copernicus
Download
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
This study investigates the use of a nonparametric model for combining multiple global...
Citation