Articles | Volume 18, issue 12
Hydrol. Earth Syst. Sci., 18, 4897–4912, 2014
https://doi.org/10.5194/hess-18-4897-2014
Hydrol. Earth Syst. Sci., 18, 4897–4912, 2014
https://doi.org/10.5194/hess-18-4897-2014
Research article
08 Dec 2014
Research article | 08 Dec 2014

Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

D. L. Ficklin et al.

Related authors

Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
EGUsphere, https://doi.org/10.5194/egusphere-2022-657,https://doi.org/10.5194/egusphere-2022-657, 2022
Short summary
Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model
Xinzhong Du, Narayan Kumar Shrestha, Darren L. Ficklin, and Junye Wang
Hydrol. Earth Syst. Sci., 22, 2343–2357, https://doi.org/10.5194/hess-22-2343-2018,https://doi.org/10.5194/hess-22-2343-2018, 2018
Short summary
Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies
E. P. Maurer, D. L. Ficklin, and W. Wang
Hydrol. Earth Syst. Sci., 20, 685–696, https://doi.org/10.5194/hess-20-685-2016,https://doi.org/10.5194/hess-20-685-2016, 2016
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022,https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022,https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022,https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022,https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022,https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary

Cited articles

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007.
Al-Chokhachy, R., Alder, J., Hostetler, S., Gresswell, R., and Shepard, B.: Thermal controls of yellowstone cutthroat trout and invasive fishes under climate change, Global Change Biol., 19, 3069–3081, 2013.
Anderson, M. P.: Heat as a ground water tracer, Ground Water, 43, 951–968, 2005.
Angilletta, M. J.: Thermal adaptation: a theoretical and empirical synthesis, Oxford University Press, Oxford, 2009.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Modeling and Assessment Part I: Model Development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Download
Short summary
We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore changes in stream temperature in the Columbia River basin for the late 21st century. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. Our results capture the important, and often ignored, influence of hydrological processes on changes in stream temperature.