Articles | Volume 16, issue 4
https://doi.org/10.5194/hess-16-1151-2012
https://doi.org/10.5194/hess-16-1151-2012
Research article
 | 
10 Apr 2012
Research article |  | 10 Apr 2012

Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

A. El-Shafie, A. Noureldin, M. Taha, A. Hussain, and M. Mukhlisin

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024,https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Global-scale evaluation of precipitation datasets for hydrological modelling
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024,https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Influence of irrigation on root zone storage capacity estimation
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024,https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024,https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024,https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary

Cited articles

Abrahart, R. J. and See, L. M.: Neural network modelling of non-linear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563–1579, https://doi.org/10.5194/hess-11-1563-2007, 2007.
Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607–1618, https://doi.org/10.5194/hess-13-1607-2009, 2009.
Altunkaynak, A., Özger, M., and Çakmakçi, M.: Fuzzy Logic Modeling of the Dissolved Oxygen Fluctuations in Golden Horn, Ecol. Model., 189, 436–446, 2005a.
Altunkaynak, A., Özger, M., and Çakmakçi, M.: Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach, Water Resour. Mange., 19, 641–654, 2005b.
Alvisi, S., Mascellani, G., Franchini, M., and Bárdossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1–17, https://doi.org/10.5194/hess-10-1-2006, 2006.
Download