
Hydrol. Earth Syst. Sci., 16, 1151–1169, 2012
www.hydrol-earth-syst-sci.net/16/1151/2012/
doi:10.5194/hess-16-1151-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Dynamic versus static neural network model for rainfall forecasting
at Klang River Basin, Malaysia

A. El-Shafie1, A. Noureldin2, M. Taha1, A. Hussain3, and M. Mukhlisin 1

1Civil and Structural Engineering Dept. University Kebangsaan Malaysia, Malaysia
2Electrical and Computer Engineering, Royal Military College, Kingston, Canada
3Electric, Electronics Systems Engineering Dept. University Kebangsaan Malaysia, Malaysia

Correspondence to:A. El-Shafie (elshafie@vlsi.eng.ukm.my)

Received: 3 June 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 6 July 2011
Revised: 26 March 2012 – Accepted: 27 March 2012 – Published: 10 April 2012

Abstract. Rainfall is considered as one of the major com-
ponents of the hydrological process; it takes significant part
in evaluating drought and flooding events. Therefore, it is
important to have an accurate model for rainfall forecast-
ing. Recently, several data-driven modeling approaches have
been investigated to perform such forecasting tasks as multi-
layer perceptron neural networks (MLP-NN). In fact, the
rainfall time series modeling involves an important tempo-
ral dimension. On the other hand, the classical MLP-NN is a
static and has a memoryless network architecture that is ef-
fective for complex nonlinear static mapping. This research
focuses on investigating the potential of introducing a neural
network that could address the temporal relationships of the
rainfall series.

Two different static neural networks and one dynamic
neural network, namely the multi-layer perceptron neural
network (MLP-NN), radial basis function neural network
(RBFNN) and input delay neural network (IDNN), respec-
tively, have been examined in this study. Those models had
been developed for the two time horizons for monthly and
weekly rainfall forecasting at Klang River, Malaysia. Data
collected over 12 yr (1997–2008) on a weekly basis and 22 yr
(1987–2008) on a monthly basis were used to develop and
examine the performance of the proposed models. Compre-
hensive comparison analyses were carried out to evaluate the
performance of the proposed static and dynamic neural net-
works. Results showed that the MLP-NN neural network
model is able to follow trends of the actual rainfall, however,
not very accurately. RBFNN model achieved better accuracy
than the MLP-NN model. Moreover, the forecasting accu-

racy of the IDNN model was better than that of static net-
work during both training and testing stages, which proves a
consistent level of accuracy with seen and unseen data.

1 Introduction

2 Background

Characteristics and amount of rainfall are not easily known
until it occurs. As rainfall plays a crucial role in evalua-
tion and management of drought and flood events, it is very
important to be able to forecast rainfall.

Developing optimal release policies of multi-purpose
reservoirs is very complex, especially for reservoirs with
an explicit stochastic environment (e.g. uncertainty in future
rainfall that reflects the amount of reservoir inflow). The de-
velopment of management models for identification of opti-
mal operating policies for reservoirs spans over four decades
of research. In a random environment, where climatic fac-
tors such as stream flow are stochastic, the economic re-
turns from reservoir releases defined by the optimal policy
are uncertain. Furthermore, the consequences of release de-
cision cannot be fully realized until future unknown (rain-
fall/inflow) events occur. As a result, rainfall forecasts be-
come an essential requirement for Klang Gate Reservoir op-
eration. Accurate forecasting means better control of water
availability and more refined operation of reservoirs. There-
fore, the problem of forecasting rainfall at Klang River is
of considerable importance for better water management at
Klang Gate Reservoir.
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However, in the past most of the methods used in rain-
fall forecasting are regression or auto-regression linear mod-
els and their ability is limited in dealing with natural phe-
nomenon with a non-linear trend (de Vos and Rientjes, 2005;
Hung et al., 2009; Modarres, 2009). Time variations of rain-
fall rate have always been forecasted for actual use in ad-
vance of the daily activities. It is important to mention that
models for rainfall forecasting are fundamental tools in water
resources studies, since they determine and provide the basis
in establishing future reservoir water inflows (Akhtar et al.,
2009; Anctil and Lauzon, 2004; Awwad et al., 1994). These
predictions are of significant importance in the planning of
water resources systems, being responsible for the optimiza-
tion of the system as a whole. That is why rainfall forecasting
is a fundamental topic in many engineering applications like
constructing dams, analysis and forecasting, planning and
designing of reservoirs, hydro-power generation, irrigation,
water management, controlling floods and others.

The rainfall forecasting problem has been traditionally
tackled using linear techniques, such as AR, ARMAX, and
Kalman filter, but also using nonlinear regression (see Cheng,
1994; Alvisi et al., 2006; Abrahart and See, 2007; Bras
and Rodriguez-Iturbe, 1985; Chiu, 1978; Box and Jenkins,
1970). Most of the forecasting methods consider one day
ahead forecast. For the rainfall a longer term forecast such as
ten days ahead or a month ahead is more of interest, though
it is more difficult than the one day ahead problem. In fact,
there are several considerable drawbacks to the use of KF in
rainfall forecasting application. These include (1) the neces-
sity of accurate stochastic modeling, which may not be pos-
sible in the case for rainfall; (2) the requirement for a priori
information of the system measurement and develop covari-
ance matrices for each new pattern, which could be challeng-
ing to accurately determine and (3) the weak observability
of some of temporal pattern states that may lead to unsta-
ble estimates for the forecasted value (see Noureldin, et al.,
2007, 2011).

In this context, motivation for utilizing non-linear model-
ing approach based on the Artificial Intelligence (AI) tech-
niques has received considerable attention from the hydrolo-
gists in the last two decades (Boucher et al., 2010; de Vos and
Rientjes, 2005; Toth et al., 2000; Weigend et al., 1995; Xiong
et al., 2004). Lapedes and Farber (1987) conducted a study
on detection of nonlinear response and damage detection on
signal processing, and concluded that ANN can be used for
modeling and forecasting nonlinear time series. Recently,
numerous ANN-based rainfall-runoff models have been pro-
posed to forecast streamflow (Hsu et al., 1995; Thirumalaiah
and Deo, 1998, 2000; Campolo et al., 1999; Sajikumar and
Thandaveswara, 1999; Tokar and Johnson, 1999; Zealand et
al., 1999) and reservoir inflow (Saad et al., 1996; Jain et al.,
1999; Coulibaly et al., 2000a, b). In addition, neural net-
works and fuzzy logic have been used as effective modeling
tools in different environmental processes such as wastewa-
ter treatment, water treatment and air pollution. Several wa-

ter quality prediction models have been developed utilizing
ANN and ANFIS methods (Najah et al., 2010a, b, 2011).
Rainfall-runoff models utilizing ANN model showed signif-
icant level accuracy if compared with traditional regression
models (El-Shafie et al., 2011a). Cinar et al. (2006) used
an artificial neural network to predict the performance of a
membrane bioreactor. They were able to estimate concen-
trations of chemical oxygen demand, phosphate, ammonia
and nitrate. Altunkaynak et al. (2005a) used fuzzy logic
modeling to forecast dissolved oxygen concentration. Al-
tunkaynak et al. (2005b) compared the accuracy of fuzzy
logic modeling and autoregressive integrated moving aver-
age (ARIMA) models in predicting water consumption in a
city. They found that relative error rates for fuzzy logic and
ARIMA were 2.5 and 2.8, respectively.

Recently, the authors developed several AI-based inflow
forecasting architectures using multi-layer perceptron neu-
ral networks (MLPNN), radial basis function neural net-
works (RBFNN) and adaptive neuron-fuzzy inference sys-
tems (ANFIS) at Aswan High Dam, Nile River, Egypt
(Elshafie and Noureldin, 2011; El-Shafie et al., 2011b, c).
The main idea behind all of these methods is to mimic the lat-
est inflow pattern to forecast the inflow for 3 months ahead.
The major drawback of such models is the lack of ability to
automatically mimic the temporal inflow pattern trend dur-
ing the model training stage procedure. Therefore, any of the
mentioned AI-based models may not be capable of providing
a reliable and accurate forecasting solution.

2.1 Problem statement

In light of the above literature, it could be concluded that pre-
vious studies on rainfall forecasting models face two major
deficiencies. The first is linearization feature in the modeling
methods, whether in KF and ARMA model, while the rainfall
behavior is a non-linear sequence in nature. Such deficiency
was elucidated by the motivation of the AI-based models;
thus, the non-linearity feature of input/output mapping could
be examined. The second is the temporal feature of the rain-
fall pattern, which is not completely considered in many clas-
sical AI-based models. In fact, in static neural networks the
output is directly calculated from the input through forward
connections. In this context, for the second deficiency, in or-
der to have an accurate rainfall forecasting model, it is nec-
essary to utilize a modeling approach that could consider the
temporal feature in the rainfall pattern. Dynamic neural net-
works include delay lines between the layers. So the output
depends also on previous inputs and/or previous states of the
network. The dynamic neural networks in which all layers
have feedback connections with several time delays mean
that the temporal feature could be considered in the model
structure. More details about the structure of the dynamic
neural network will be reported in Sect. 2.2.
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2.2 Objective

In this research, we aim at developing an AI-based rainfall
forecasting model, taking into consideration the extensive
temporal pattern trend and thus providing a better forecast-
ing accuracy. Such a technique combines the advantages of
some of the existing models with the advantages of dynamic
neural networks in representing the sequential process in the
input data (the latest rainfall pattern). In this way, it should be
possible for the proposed model to mimic the temporal pat-
tern of the rainfall, based on the current and some past pat-
terns. The proposed model will be tested utilizing real rain-
fall records at Klang River, Malaysia. Finally, comprehen-
sive comparative analyses are performed in order to examine
the significance of utilizing the dynamic neural network over
the classical static neural network methods.

3 Rainfall forecasting model

Let us consider a simple forecasting model that attempts
to issue a predictionR(t + T ) of the rainfall in a specified
week/month, based on explanatory variables, say the histori-
cal rainfall records of previous weeks/months with a certain
lengthkR(t + T − k). Given a time series of dataR(t), the
auto regression model is a tool for understanding and pre-
dicting future values in this series. The model is usually then
referred to as below:

R(t + T ) = f (R(t),R(t − 1), ...,R(t − k)) (1)

whereR is the rainfall,T = 1, andk = w (wherew is the
input window length; the selection of the window size will
be described later in Sect. 3). The model basically says that
the rainfall next week (month) is some combination (average)
of the rainfalls observed now and one – two weeks (months)
ago.

3.1 Autoregressive-moving-average (ARMA)

The ARMA model was developed utilizing the same rainfall
data at Klang River. These data were analyzed in the time-
domain while fitting a model of the following form:

yt = φ1yt−1+ ...+φpyt−p +θ1εt−1+ ...φqεt−q +εt +δ, (2)

which best predicts the values of variableY at timet based
on previous observations,yt−1...yt−p, previous error terms
εt−1... εt−q , and a constant,δ. Theq values are collectively
referred to as the autoregressive part of the model (of order
p), whereasθs constitute the moving-average component (of
orderq). The inclusion of a nonzeroδ introduces a determin-
istic trend in the model. We refer to this stochastic process
as an autoregressive-moving-average model (ARMA(p,q)),
and we are concerned with identifying the order of the model
and estimating its coefficients. Models in which there are no

moving-average terms (i.e.q = 0) are simply called autore-
gressive (AR(p)), whereas moving-average models (MA(q))
are those with no autoregressive components. The ARMA
models of order (p,q) yield superior results to either pure
MA or AR forms.

3.2 Artificial neural network

Artificial Intelligence (AI) uses techniques that attempt to
follow some elements of the workings of a human brain.
Many of such techniques, including hugely popular artifi-
cial neural networks (which mathematically can be seen as
non-linear regression models), deal with forecasting non-
linear time series problems, and they have proven to be
an efficient alternative to traditional methods for modeling
qualitatively and quantitatively. In this study, we evaluate
two different static neural network methods, MLP-NN and
RBFNN and one dynamic neural network (IDNN). Hereafter,
a brief explanation of all those neural network methods will
be introduced.

3.2.1 Static neural network

Multi-layer perceptron

The network architecture of the MLP-NN is shown in Fig. 1.
It contains three layers: input, hidden and output layers. Each
layer consists of one or more neurons and there are two types
of them. First, there are passive neurons that consider the
input and output data. Another type is an active neuron
that computes data input using Activation Transfer Function
(ATF) and produces an output. The most common use of
ATF in the hidden and output neuron is the sigmoid func-
tion (Zhang et al., 1998; Fernando et al., 2000). The input
into an active neuron is a summation of the previous neu-
ron’s weighted outputs and the output is a result of applying
the sigmoid function to the input. The process is shown in
Fig. 1 and the equations for the input and output are

input =

n∫
1=0

(
Wij ,Xij

)
where X0 = 1 (3)

output =
1

1+ e−k input
(4)

wherex is the output from the previous neuron,w is the
weight of the output andk is the slope steepness of the sig-
moid function. Extra neuronX0 is added in the input layer
and hidden layer with the output value of 1. This input is
called bias and its function is to stabilize computed output
between 0 and 1. It does not have a link from the previous
neuron.
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Figure 1  MLP-NN model architecture
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Fig. 1. MLP-NN model architecture.

Figure 2: Architecture of Radial basis function neural network
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Fig. 2. Architecture of radial basis function neural network.

Radial basis function neural network

The structure of a RBFNN consists of an input layer, one
hidden layer and an output layer (see Fig. 2). The input layer
connects the inputs to the network. The hidden layer applies
a non-linear transformation from the input space to the hid-
den space. The output layer applies a linear transformation
from the hidden space to the output space (see Orr, 1996).

The radial basis functionsϕ1, ϕ2, . . . . ϕN are known
as hidden functions, while{ϕi (x)}Ni=1 is called the hidden
space. The number of basis functions (N ) is typically less
than the number of data points available for the input data
set. Among several radial basis functions, the most com-
monly used is the Gaussian, which in its one-dimensional
representation takes the following form:

ϕ(x,µ) = e
‖x−µ‖

2

sd2 (5)

whereµ is the center of the Gaussian function (mean value of
x) andd is the distance (radius) from the center ofϕ (x,µ),
which gives a measure of the spread of the Gaussian curve.

The hidden units use the radial basis function. If a Gaus-
sian function is used, the output of each hidden unit depends
on the distance of the inputx from the centerµ. During
the training procedure, the centerµ and the spreadd are the

)(xϕ )(xϕ

[a] [b]

Center

Figure 3: Radial Basis function with different levels of spread
[a] Normal spread [b] Small spread [c] large spread

)(xϕ

[c]

Fig. 3. Radial basis function with different levels of spread.(a) nor-
mal spread,(b) small spread,(c) large spread.

parameters to be determined. It can be deduced from the
Gaussian radial function that a hidden unit is more sensitive
to data points near the center. This sensitivity can be tuned
(adjusted) by controlling the spreadd. Figure 3 shows an
example of a Gaussian radial function. It can be observed
that the larger the spread, the less the sensitivity of the radial
basis function to the input data. The number of radial basis
functions inside the hidden layer depends on the complexity
of the mapping to be modeled and not on the size of the data
set, which is the case when utilizing multi-layer perceptron
ANN (see Ripley,1996; Bishop,1996; and Haykin,1994).

3.2.2 Dynamic neural network

Motivation

The rainfall forecasting models used by KF and/or ARMA
assume linear relationships between variables. In addition,
the extension of those methods to include stochastic pattern
of the rainfall is also linearized in the form of first order
difference equations. The non-linear and the non-stationary
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parts of the rainfall pattern are not modeled for KF or ARMA
and this leads to relatively poor forecasting for the rainfall.

The non-linear AI-based techniques are therefore sug-
gested in this study. Furthermore, the advantage of uti-
lizing the proposed IDNN over the other AI-methods is
that the IDNN method performs a temporal processing that
gives the model extensive information about the temporal
relationship of the input pattern, which is the main chal-
lenge in studying the rainfall patterns that incorporate major
temporal dimension.

Dynamic networks are generally more adequate than static
networks, especially when applied for temporal applications
(although they may be somewhat more difficult to train)
(Ripley, 1996; Bishop, 1996). Because dynamic networks
have memory, they can be trained to learn sequential or time-
varying patterns. In order to predict temporal patterns, an
ANN requires two distinct components: a memory and an
associator. The memory holds the relevant past information,
and the associator uses the memory to predict future events.
In this case the associator can be a static MLPNN network,
and the memory is generated by a time delay unit (or shift
register) that constitutes the tapped delay line (Ripley, 1996;
Bishop, 1996). Traditional MLPNN is a static and memo-
ryless network that is effective for complex non-linear static
mapping, but it or other static neural network type models do
not consider explicitly a complete temporal processing since
the vector space input encoding gives the model fractional in-
formation about the temporal relationship of the inputs (when
using current and historical records in the input). In fact,
rainfall forecasting is a procedure where previous states of
rainfall values have to be explicitly considered. Apparently,
rainfall process modeling involves a major temporal dimen-
sion and in the ANN context, there are efficient methods to
represent and process such models (Haykin, 1994).

Input delay neural network

Figure 4 shows the general architecture of an input delay neu-
ral network (IDNN), with the details of the internal structure
of a single neuron. The case shown in Fig. 4 considers a
tapped delay line that involves theP most recent inputs. In
this example, we show three delay elements represented by
the operatorD. For a case ofp, delay elements and an input
variablex(t), the network processesx(t), x(t − 1), x(t − 2),
. . . .. andx(t −p), wherep is known as the tapped delay line
memory length (Haykin, 1994)(in the Fig. 4), andP is equal
to 3. Therefore, the input rainfallR(t) to the neuroni (Fig. 4)
is given as

Ri(t) =

p∑
k=0

wi(k)x(t − k) + bi (6)

where wi(k) is the synaptic weight for neuroni, andbi is
its bias. Then, the output of this neuron (Ui) is obtained by
processingRi(t) by the non-linear activation functionG(.),

chosen as a sigmoid activation function of neuroni:

Ui = G

(
p∑

k=0

w
′

i(k)x(t − k) + b
′

i

)
(7)

G(Ri(t)) =
1

1+ e−Ri (t)
(8)

The output of the IDNN, assuming that it has one output neu-
ron j , a single hidden layer with m hidden neurons, and one
input variable as shown in Fig. 4, is given by

yj (t) = F

(
m∑

i=1

w
′′

jiUi + αj

)
(9)

whereF (.) is the transfer activation function of the out-
put neuronj (which can be chosen to be a sigmoid or a
linear function),αj is its bias andwji is the weight be-
tween the neurons of the hidden layer and the neuron of the
output layer.

During the update procedure, we use the Levenberg-
Marquardt backpropagation (LMBP). The network training
process is performed by providing input-output data to the
network, which targets minimizing the error by optimizing
the network weights. LMBP uses the second derivative of
the error matrix (E) to update the weights of the network in
a recursive fashion (Haykin, 1994).

The IDNN is a layered feed-forward neural network with
appropriate interconnections between the elements in the in-
put layer. This architecture enables it to learn and repre-
sent relationships between events in a time sequence. Each
sequence provides a pattern to be learned by the network.

Figure 5 shows the architecture of the IDNN. In Figs. 1
and 5 the difference in the input layer for both IDNN and
MLP-NN could be observed. The temporal pattern in IDNN
is achieved by introducing delays 1 time step throughP t . For
simplification,t is dropped and a unit delay operator is rep-
resented. The inputsX1(t),...,XN (t) represent theN dimen-
sions of the vectorXb(t) (in our application the past rainfall
records) at timet andP 1 is the number of the successive
vectorsXb, which defines the temporal window size to which
the neuron reacts. TheseN inputs are multiplied by sev-
eral weights (Wj (0),...,Wj (P ), j 1,...,N ), one for each delay
and one for the undelayed input and the weighted sum,Y ,
is passed through the sigmoid function. ForP 3, andN 3,
for example, 12 weights are needed to compute the weighted
sum of these inputs, with each input measured at four dif-
ferent points in time. In this way, the IDNN unit has the
ability to relate and compare current input to the past history
of events.

Figure 5 shows an example of IDNN architecture. The in-
put layer is constituted of three successive input vectors hav-
ing X 3 dimensions. The input layer is fully interconnected
to the first hidden layer of four time delay hidden units, where
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Fig. 6. Local authorities within Klang River Basin.

X j 3 andP 3 (i.e. three inputs over four steps with time de-
lay 0, 1, 2 and 3). The temporal window, whose sizeP 1 3
is shown as the shaded area, steps down the time axis and
Wij (0) to Wij (2), j 1,...,3 represent the weights of uniti.

3.2.3 Study area and data collection

The Klang River Basin is located on the west coast of
Peninsular Malaysia and encompasses the Federal Territory
of Kuala Lumpur, parts of Gombak, Hulu Langat, Klang,
and Petaling districts in Selangore Stats, and the munici-
pal areas of Ampang Jaya, Petaling Jaya, and Shah Alam.
Klang is geographically located at latitude (3.233 degrees)
3◦13′58′′ North of the equator and longitude (101.75 de-
grees) 101◦45′0′′ East of the Prime Meridian on the map of
Kuala Lumpur. The study area location map is shown in
Fig. 6.

The Klang River originates in the mountainous area about
25 kilometers (km) northeast of Kuala Lumpur. It is joined
by 11 major tributaries while passing through the Federal
Territory and the area downstream of Kuala Lumpur, before
joining the Straits of Malacca at Port Klang. The Klang River
has a total length of about 120 km. The basin is 1290 square

kilometers, about 35 percent of which has been developed for
residential, commercial, industrial, and institutional use. The
upper catchments of the Klang River and its tributaries – the
Gombak and Batu Rivers – are covered with well-maintained
forests. However, the lower reaches of the basin, with ex-
tensive urban land development activities, are major contrib-
utors of sediment load and flood peaks (Tan, 2009; Hiew,
1996; Gibson and Dodge, 1983).

It is also characterized by uniform high temperature, high
relative humidity, heavy rainfall and little wind. All informa-
tion and data that are available about Klang River were based
on Klang Gates Dam data. For this study, the data used were
from years 1986 to 2008 (monthly basis) and between 1997
and 2008 (weekly basis). The available data for catchment
are divided into two groups: training set (calibration) and a
testing set (validation). The rainfall data statistics have been
investigated, including maximum, minimum and mean aver-
ages. The average annual rainfall depth in the study area is
about 2400 mm. The highest rainfall occurs in the month of
April and November with a mean of 280 mm. The lowest
rainfall occurs in the month of June with a mean of 115 mm.
The rainfall data on a monthly and weekly basis are shown

www.hydrol-earth-syst-sci.net/16/1151/2012/ Hydrol. Earth Syst. Sci., 16, 1151–1169, 2012
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Figure 7: Monthly actual rainfall records on Klang River on for period 1987 - 2008
Fig. 7. Monthly actual rainfall records on Klang River on for period
1987–2008.

in Figs. 7 and 8, respectively (Tan, 2009; Hiew, 1996; Gib-
son and Dodge, 1983). For monthly rainfall forecasting, to-
tal monthly rainfall data is 261, containing 237 samples used
for training (number of training records is 237 –(P +1)) and
another 24 samples used to test the generalization ability of
the networks. However, for weekly forecasting, total weekly
rainfall data is 621, containing 571 samples used for train-
ing (number of training records is 571 –(P + 1)) and the rest
containing 50 samples used to test the generalization ability
of the networks.

One of the steps of data preprocessing is data normaliza-
tion. The need to make harmony and balance between net-
work data range and an activation function used causes the
data to be normal in activation function range. Sigmoid ac-
tivation function is used for all layers. By considering Sig-
moid, it can be seen that the range is between 0 and 1, so data
must be normalized between 0 and 1. (Eq. 8) The following
formula was used:

xn =
x − xmin

xmax− xmin
(10)

wherex is actual rainfall data andxmin is minimum value of
original series andxmax is maximum value of original series.

4 Methodology

Most neural network approaches to the problem of forecast-
ing use a multi-layer network trained using the backpropaga-
tion algorithm. Consider a time seriesx(1), ...x(t), where it
is required to forecast the value ofx(t +1). The inputs to the
multi-layer network are typically chosen as the previousw

(w defined here as input window) valuesx(t−w+1), ...,x(t)

and the output will be the forecast. The proposed network
model is accomplished on sufficient training and testing data
sets that are extracted from the historical time series. In ad-
dition to previous time series values, one can utilize as in-
puts the values or forecasts of other time series (or exter-

Figure 8: Weekly actual rainfall records on Klang River on for period 1997 - 2008
Fig. 8. Weekly actual rainfall records on Klang River on for period
1997–2008.

nal variables) that have a correlated or causal relationship
with the series to be forecasted. For our rainfall forecast-
ing problem such time series could be the temperature and
relative humidity at the river basin. For the majority of fore-
casting problems, such external inputs are not available or
are difficult to obtain. As is the case with many neural-
network applications, preprocessing the inputs and the out-
puts can improve the results significantly. Input and output
preprocessing means extracting features from the inputs and
transforming the target outputs in a way that makes it easier
for the network to extract useful information from the inputs
and associate it with the required outputs. Preprocessing is
considered an “art” and there are no set rules to choose it.
Even some very intuitively appropriate transformations may
turn out no value when checking the actual results. For our
case the main inputs are the previous time series values. We
have used normalization as a preprocessing of the inputs (as
described Sect. 2.3).

4.1 Model structure

Generally, formation of an appropriate architecture of a neu-
ral network for a particular application is an essential step
and issue since the network topology directly affects not only
its computational complexity and its generalization capabil-
ity, but also the accuracy level. Different theoretical and
experimental studies have shown that larger-than-necessary
networks tend to over-fit the training samples and thus have
poor generalization performance and a low accuracy level
for the unseen data, while too-small networks (that is, with
very few hidden neurons) will have difficulty learning the
training data. Currently, there is no established methodol-
ogy for selecting the appropriate network architecture prior
to training. Therefore, we resort to the trial-and-error method
commonly used for network design. In addition, the perfor-
mance goal (mean square error MSE) for the model during
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the training stage was forced to be 10−4; thus, the neural net-
work is guaranteed to hedge over-fitting the training data.

One more important step in the model implementation, es-
pecially in the multi-variate ANN forecasting context, is the
selection of appropriate input variables, since it provides the
basic information about the system considered. Bowden et
al. (2005) developed a hybrid genetic algorithm and gen-
eral regression neural network (GAGRNN) in order to de-
termine which inputs have a significant relationship with the
output (dependent) variable. Such a method is suitable when
comprehensive data for different hydrological and metrolog-
ical parameters are available for the study area. In the cur-
rent study, the available data are from the historical rainfall
records; thus, different input pattern in terms of the length
of the previous rainfall records (window size = WS) have
been examined. Five window sizes (WS = 1, 2, 3, 4 and 5)
were considered in this study. In fact, other hydrological and
metrological parameters that affect the rainfall intensity are
not available at the study area, thus, the proposed rainfall
forecasting model structure is designed based on the histor-
ical rainfall model. Searching for the best WS is evaluated
via two statistical indexes during training to determine the
relative importance of each WS on the model accuracy level
and generalization. Details about the model performance
evaluation will be described in the following section.

For the monthly basis rainfall forecasting model, two dif-
ferent scenarios( A and B) are examined. The first scenario
A is developed using the following structure:

R(t,z) = f (R(t,z − 1),R(t − 1,z), ...R(t − w,z)) (11)

whereR(t,z) is the rainfall in a certain month (t) and year
(z),

while the second scenario B is structured based on the fol-
lowing structure:

R(t,z) = f (R(t − 1,z),R(t − 2,z), ...R(t − w,z).) (12)

For the weekly basis rainfall forecasting model, the model is
configured as scenario B for the monthly-based model.

A common method for presenting the input data to the
model is to consider a sliding (or moving) window of in-
put sequences. This approach has been widely used with the
standard MLP-NN. In this case, a fixed number of past items
of information is selected and introduced to the input layer of
the network. For instance, if it is required to model the rain-
fall pattern based on the input at the present instant in time
and the past two samples (window size = 3); the MLP-NN in-
put layer should have three input neurons (see Fig. 9). There-
fore, the network is provided with a static memory, which is
considered as a limitation of the MLP-NN.

The time line index for the proposed model process is pre-
sented in Fig. 10. The upper part of Fig. 10 shows the pro-
cess while utilizing the static neural network (MLP-NN and
RBFNN) models.

Figure 9 Neural network model architecture utilized for rainfall forecasting

Hidden Layer

Output Layer
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Input Layer
With three neurons

Neuron
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)2( −tmR
)1( +tRf
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Fig. 9. Neural network model architecture utilized for rainfall fore-
casting.

The IDNN model with a sliding window input sequence
is shown in the lower part of Fig. 10. In this study, one
and two time step input delay sequences will be considered.
The second-order delay effect will be considered by training
the IDNN model to experience, in the input layer, the previ-
ous one time step sample, in addition to the present rainfall
record. Moreover, the higher-order error can be considered
by having two and three time step delay inputs. In Sect. 4.3,
the impact of using one and two input delay elements will be
demonstrated and discussed.

It should be noted here that a static neural network with
a four input pattern (window size = 4) is not similar to a
dynamic neural network with a three input pattern (win-
dow size = 3) with a one-time step input delay. This is due
to that the dynamic neural network incorporates the asso-
ciator (network weights and bias) procedures at the cur-
rent time step and memorizes the past information (network
weights and bias) from the previous time step, while the
static neural network only handles certain time steps with
longer input patterns.

Recall that our collected rainfall data spanned the period
from 1986 to 2008 on a monthly basis and from 1997 to 2008
on a weekly basis, so the forecasting is performed for these
two time horizons.

4.2 Training algorithm

The neurons in the network architecture are interconnected
between the layers. The computation starts from input neu-
rons where data input is received and then propagates to hid-
den neurons and further to output neurons. A neuron in the
output layer produces model output. If the number of neu-
rons and layers are established, the only unknown parameter
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Figure 10 Model time line index with sliding window methodFig. 10. Model time line index with sliding window method.

in the computation is the weights. The process of data train-
ing determines the weights. Data training is a process of
feeding sample historical data to the input and output of the
network model so that the network model can simulate the
sample data. The data training process involves feed-forward
and backpropagation computation cycles. The backpropaga-
tion computation is an adjustment of output and hidden neu-
ron weights based on the gradient descent method. These
weights are normally initialized with random values to speed
up the data training process to a solution.

For optimization purposes, we use a backpropagation vari-
ation – namely the Levenberg-Marquardt backpropagation
(LMBP) – for the IDNN training. This method uses the ap-
proximate Hessian matrix in the weight update procedure as
follows:

1Wµ = −[H + µI ]
−1Jt r (13)

where r = residual error, µ = variable small scalar that
controls the learning process,J =1E = Jacobian matrix,
E = cost function, andH =JtJ denotes the approximate Hes-
sian matrix. In practice, this method has been found effective
in finding better optima than standard backpropagation and
the conjugate gradient descent method (Hagan and Menhaj,
1994). A detailed description of this algorithm is given by
Masters (1995). Here, the LMBP algorithm is also used to
train the all proposed network models.

Upon successful data training, data forecasting can be
made to new data input. To evaluate forecasting perfor-
mance, validation data are fed only to the input of the net-
work model where single feed-forward computation com-
putes the data. The output of the computation is the model
output. Several performance measures are applied to model
outputs and observed outputs from the validation data set to

determine the accuracy and reliability of the network model
developed.

4.3 Model performance criteria

To compare and evaluate the effectiveness of rainfall fore-
casting model applied at Klang Gates Dam, models were as-
sessed on the basis of important performance measures. Al-
though, all models achieved a MSE of less than 10−4 during
the training process, it is important to examine the model
performance utilizing different input sequences and patterns.
Consequently, statistical analysis for the model output in the
testing session utilizing the inflow data for the period be-
tween 1998 and 2003 was carried out in order to evaluate the
model performances. To analyze the fittingness of forecasted
inflow with the natural inflow during the testing period, two
statistical measures were used to examine the goodness of fit
of the proposed models methods to the testing data. These
measures include the RMSE (Root Mean Square Error) and
the maximum relative error (RE) to examine the relative ac-
curacy of both models for each inflow event as represented
by Eqs. (7) and (8).

RMSE= (
1

N

N∑
1

(Rf − Rm)2)0.5 (14)

MaxRE= max
n∑

n=1

(
Rm − Rf

Rm

)
∗ 100 (15)

whereRf is the rainfall at Klang River,Rm is the actual rain-
fall andN is the number of the months/weeks.

In fact, in developing such a forecasting model using a
neural network, the model could perform well during the
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training period and might provide higher levels of error when
evaluating during either a validation or a testing period. In
this context, in this study the authors used these performance
indices to make sure that the proposed model could provide
a consistent level of accuracy during all periods. The advan-
tage of utilizing these two statistical indices as performance
indicators of the proposed model is first, to make sure that
the highest error while evaluating the performance is within
the acceptable error for such a forecasting model. Utilizing
the RMSE is to ensure that the generalized error distribu-
tion within the validation period is not high. Consequently,
examining these two indices together as model performance
indicators during training is to guarantee that the model could
relatively provide the same level of accuracy while examin-
ing the model for unseen data in the testing stage.

In addition, as the forecasting accuracy of the peak and
low inflow events is of particular interest of the reservoir op-
eration, it is important to evaluate the model performance
considering these inflow events. In order to assess the model
performance during these events, another two error criteria
are also utilized: the peak flow criteria (PFC) and low flow
criteria (LFC), which can be computed by Eqs. (12) and (13).

PFC=

(
Tp∑
i=1

(
Rm − Rf

)2
· (Rm)2

)0.25

(
Tp∑
i=1

(Rm)2

)0.5
(16)

LFC =

(
Ti∑

i=1

(
Rm − Rf

)2
· (Rm)2

)0.25

(
Ti∑

i=1
(Rm)2

)0.5
(17)

whereTp = number of peak rainfall greater than one-third of
the mean peak rainfall observed;Ti = number of low rain-
fall lower than one-third of the mean low rainfall observed.
Coulibaly (2001) reported that both PFC and LFC provide
better performance indicators for assessment of the forecast-
ing model performance for the extreme rainfall events. As
the model can provide low PFC or LFC, the model represents
better fit.

One more index is examined for the proposed model,
which is evaluating the consecutiveness of the rainfall. In
fact, the model could provide a relatively good fit in terms of
the error values; however, the forecasting value might not
follow the sequence changes of the rainfall pattern values
(whether the rainfall increased or decreased), for example,
in case the difference between two consecutive actual val-
ues of rainfall is positive, [Rm(t + 1) − Rm(t) > 0]. On the
other hand, if examined using the forecasted value, it could
be negative [Rm(t + 1) − Rm(t) < 0], whereRf(t + 1) is the

forecasted value by the proposed rainfall forecasting model.
In fact, the error value could be same value but with a dif-
ferent sign,±. Even the model might provide a forecasted
value with a relatively small error value; it might be with a
different sign, which is considered as a major drawback of
the model performance and shows mismatching with the real
rainfall pattern series.

In some cases, the value of RE (Eq. 15) could be rela-
tively small and within the accepted level of accuracy and
that shows that the model performs well. However, theRf

value could show the rainfall will increase, but in reality the
rainfall will decrease or vice versa.

All the development made on this study was implemented
using MATLAB computer-aided design software (Beale and
Demuth, 2001). The neural network toolbox of MATLAB
was utilized and the code was set up to include all the above
procedures.

5 Results and discussions

The forecasting model architecture described in Sect. 4 was
applied on monthly and weekly rainfall data at Klang River,
Malaysia. In fact, the procedure of the study began with uti-
lizing the MLP-NN method searching for best model con-
figuration in terms of input pattern (window size), and then
used this window size in the other methods. In this way
we make sure that the comparative analysis between all pro-
posed methods was adequately performed.

All networks successfully achieved the target MSE of
10−4. For example, the training curve utilizing the MLP-
NN method for the weekly data is demonstrated in Fig. 11,
showing convergence with the target MSE after 563 itera-
tions. This section is organized to present the results for
each method individually, followed by an evaluation of the
optimal model based on the model performance measures
presented in Sect. 4.3.

5.1 Forecasting utilizing MLP-NN

Several trials and error in order to search for the optimal
MLP-NN architecture have been carried out. One and two
hidden layers and number of neurons, ranging between one
to ten, different transfer function (tan sigmoid, log sigmoid,
linear) and finally different window sizes (w = 1 to w = 5)
have been examined in order to attain the optimal model con-
figuration. In fact, the procedure was performed by imple-
menting all trials for number of hidden layers, number of
neurons in each layer and the type of transfer function, while
keeping the window size unchangeable. Then, we repeated
all the trials again in the other window size. Such a proce-
dure was applied for both weekly and monthly time horizon
as the objective for this study.
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Figure 11 Training Curve for monthly basis using MLP-NN model Fig. 11. Training curve for monthly basis using the MLP-NN
model.

In this context, the model configuration that provides the
best performance, in terms of lower maximum relative error
and RMSE while in the training procedure, is selected. For
the weekly basis horizon, the optimal model configuration is
achieved when the window size = 4 (number of neurons in the
input layer), two hidden layers with number of neuron equal
to 8 and 5, respectively, and log sigmoid transfer function
occurs between input layer to hidden layer #1 and from hid-
den layer #1, #2 and linear transfer function between hidden
layer #2 and the output layer. On the other hand, the optimal
architecture for the monthly basis horizon is attained when
window size = 3, with one hidden layer with 7 neurons. The
transfer functions are tan sigmoid and linear between input
layer and hidden layer #1 and from hidden layer #1 to output
layer, respectively.

In order to show how the trial and error procedure for se-
lecting the best parameter set of certain ANN architecture
was performed, an example for weekly basis is presented in
Fig. 11. For better visualization, the inverse value of both
RMSE and maximum error were used (as seen in Fig. 11b
and c) instead of the real values, (Fig. 11a shows the real
value for both indices). Figure 12 shows the changes in the
value of the RMSE and the maximum error versus the num-
ber of neurons when the number of hidden layers is one, as
shown in Fig. 12a and for two hidden layers, as shown in
Fig. 12b (RMSE) and Fig. 12c for the maximum error dur-
ing the training. It is interesting to observe the large number
of local minima that exist in both domains. It can be ob-
served that the best combination of the proposed statistical
indices for evaluating forecasting model for the weekly basis
is when the ANN architecture has 8 neurons in the first layer
and 5 neurons in the second layer, achieving RMSE 37.2 mm
and maximum error 50 %.

With the purpose of examining the performance for both
scenarios A and B for the monthly basis rainfall forecasting

Table 1. Maximum RE% and correlation coefficient associated with
the output of MLP-NN model on a weekly/monthly basis for years
2007 and 2008.

Max Correlation
Model RE% Coefficient

2007 2008 2007 2008

Scenario A 84 87 0.51 0.47
Scenario B 70 65 0.64 0.68

model-based MLP-NN method, Table 1 illustrates the perfor-
mance measures for both scenarios. It can be observed that
scenario B outperformed scenario A and provides a better ac-
curacy level. It might be due to that scenario A includes the
rainfall record of the same month of the previous year, which
might not correlate and relate to rainfall values of the same
month in the current year, and thus, the model scenario A
provides relatively poor forecasting accuracy.

Figure 13 shows the performance of monthly and weekly
rainfall forecasting using the MLP-NN model. Figure 13a
shows the RE for the monthly basis forecasting data used for
training; it could be depicted that the maximum RE is 25 %
while the RMSE is 55.6 mm. However, the performance for
the unseen data during the testing stage is about 65 %, as the
maximum RE and RMSE equal to 79.89 mm(see Fig. 13b).
It should be noticed here that RE during the testing is almost
3 times that of one experienced during the training stage.

On the other hand, Fig. 13c shows the MLP-NN model
while examining the data on a weekly basis during the train-
ing. It could be observed that, although the model provides
maximum RE at 50 % during training (which is relatively
high if compared with the case for monthly basis), the per-
formance of the model during the testing stage (as shown in
Fig. 13d) is also within the same range (except one odd case
at week #17, RE equal to 80 %), which is not the case for
the model on a monthly basis. Such an observation shows
that the model for weekly basis provides higher consistency
level over the monthly basis; it might be due the fact that
the model for weekly basis incorporates large data records
for training that allow the model to mimic several patterns
and able it to provide the same level of accuracy during test-
ing. Such observations could be confirmed when examining
the RMSE during the training and testing stages, which are
37.2 mm and 43.5 mm, respectively.

Moreover, to compare the ANN to existing modeling tech-
niques, we compared the prediction error of the ANN with
the prediction error from the autoregressive-moving-average
(ARMA) models. Table 2 shows the comparison of the per-
formance of the ANN to the ARMA models, using the max-
imum relative error (MaxRE%) (as shown in Eq. (11)) and
the correlation coefficient (Elshafie and Noureldin, 2011)
indicator for each month. It is obvious from Table 2
that the ANN model outperformed the ARMA models with
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Fig. (12). Neural Network Performance “RMSE and maximum error%” utilizing different Architecture, 
(a) one hidden layer (b) & (c) two hidden layersFig. 12. Neural network performance “RMSE and maximum error%” utilizing different architecture,(a) one hidden layer(b) and(c) two

hidden layers.

Table 2. Maximum RE% and correlation coefficient associated with the output of ANN and ARMA models on a weekly/monthly basis for
years 2007 and 2008.

Max Correlation

Model RE% Coefficient

2007 2008 2007 2008

ARMA Model
Weekly 62 84 0.63 0.54
Monthly 81 74 0.54 0.61

ANN Model
Weekly 50 78 0.71 0.58
Monthly 70 65 0.64 0.68

remarkable improvements in the correlation coefficient at
both the weekly and monthly basis.

5.2 Forecasting utilizing RBFNN model

Keep in mind that the optimal window size achieved, based
on MLP-NN model, 3 and 4 for monthly and weekly, re-
spectively. It should be noticed here that the architecture of
RBFNN network is quite simple if compared with MLP-NN.
Once the window size (input pattern) was resolved, adjust-

ment of the spread of the RBFNN model configuration is (as
described in Sect. 2.1.2) the only parameter to be obtained.
The spread (step size) is achieved by trial and error as well.
The optimal values of the spread were found to be equal to
0.07 for the monthly and 0.03 for the weekly model.

Figure 14 illustrates the accomplished results for the
monthly and weekly rainfall forecasting using the RBFNN
model. For monthly basis, as demonstrated in Fig. 14a, the
RE during training is slightly increased if compared with
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Figure 13 Performance of the MLP-NN model for monthly and weekly rainfall 
forecasting during training and testing stages

Fig. 13. Performance of the MLP-NN model for monthly and weekly rainfall forecasting during training and testing stages.

MLP-NN; however, the RE level is improved for the testing
data (Fig. 14b). It could be observed that the maximum RE is
within ±40 %, which means considerable improvement over
the MLP-NN model. In addition, the RMSE is slightly im-
proved to be 68.7 mm, which is almost 90 % of similar value
when using MLP-NN.

For weekly basis horizon model, Fig. 14c shows the per-
formance of the RBFNN during training. If Fig. 14c is care-
fully examined, it could be observed that the pattern of RE
is similar to RE pattern using MLP-NN model, but the RE
value is relatively improved. Consequently, the performance
for the RBFNN model, in terms of RE, is also enhanced when
examining the testing data and if compared with MLP-NN
model (see Fig. 14d).

5.3 Performances of IDNN model

Similar procedures were applied for the rainfall forecasting
utilizing the IDNN model. To investigate the effect of tem-
poral dimension value of the rainfall(t +1) (the output of the
IDNN module) on the present and past rainfall pattern inputs
(the input to the IDNN module), we examined the perfor-
mance of the IDNN model, using one time input delay el-
ement to the case of two input delay elements. In the case
of one time input delay, Fig. 15 shows the performance for

monthly and weekly basis horizon. As can be depicted from
Fig. 15a, significant enhancements took place in the forecast-
ing accuracy in terms of the relative error. The maximum RE
does not go behind 12 %, which is almost one-third of the
maximum RE experienced using MLP-NN and RBFNN. In
addition, it is noticeable that a considerable improvement in
the maximum RE (±20 %) for testing data is achieved, as
shown in Fig. 15b. Similar enhancement while applying the
IDNN for the weekly basis data could be observed as shown
in Fig. 15c and d.

On the other hand, in the case of using two-time input de-
lay, Table 3 shows the maximum RE and RMSE for both
training and testing stages for monthly and weekly basis uti-
lizing one and two input IDNN architecture. The results
clearly show that utilizing two-time input delay elements
has insignificant improvements to the model performance if
compared to the one-time input delay IDNN architecture, es-
pecially for the weekly basis model. While the proposed
IDNN-based model showed a slight accuracy improvement
when using two-time input delay elements instead of one
for the monthly basis model, the additional delay element
significantly complicated the training procedure.

In light of the results presented above, apparently the high-
est RMSE is of the MLP-NN model in monthly rainfall fore-
casting and it is equal to 79.89 mm, whereas the smallest
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Figure 14 Performance of the RBFNN model for monthly and weekly rainfall forecasting 
during training and testing stages

Fig. 14. Performance of the RBFNN model for monthly and weekly rainfall forecasting during training and testing stages.

Table 3. RMSE and maximum RE for monthly and weekly rainfall forecasting model utilizing IDNN.

Type of model
RMSE (mm) Maximum RE%

Monthly Weekly Monthly Weekly

Train Test Train Test Train Test Train Test

IDNN One-time step 9.2 30.3 2.2 7.3 7.4 20.89 7.1 17.1
IDNN two-time step 9.1 28.2 2.4 7.2 7.2 19.1 8.1 19.3

value of RMSE is of the IDNN model in the weekly rainfall
forecasting model with only 7.3 mm. It could be remarked
that, generally, the performance for the weekly rainfall fore-
casting is better than monthly rainfall forecasting. This is due
to the inadequacy of historical data records on the monthly
basis, which is 261 records, while for weekly, historical 621
rainfall records; thus, the model could capture most of tem-
poral dimension of rainfall pattern and be able to provide
lower forecasting error. In addition, it is obvious that the
optimal results were received when using the IDNN method.
Furthermore, with one-time step input delay, the IDNN is
sufficient to achieve a significant level of accuracy. With re-
spect to this observation, in Klang River Basin rainfall pat-
tern, it might be the temporal dimension feature of rainfall
that is in second order level. However, it could be inadequate

for other river basins that might require introducing a higher
order level.

For further assessment, the IDNN model with one-time
step input delay was examined for the peak and low rain-
fall events, so that the comparisons between the forecasted
and actual rainfall values are visually presented using the
45◦ line and two deviation lines, with±15 % deviation from
the 45◦ line and they demonstrate the low, average and peak
rainfall ranges for both monthly and weekly basis as shown
in Figs. 16 and 17, respectively. The scatter plot of fore-
casted rainfall-based monthly (as depicted in Fig. 16) is a
little distant from the ideal line in the case of the high rain-
fall, while it is closer to the ideal line in the low rainfall
range. The same rainfall forecasting features for weekly ba-
sis could be observed from Fig. 17. Apparently, the model
provides better accuracy for low rainfall for either low or
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Figure 15 Performance of the IDNN model for monthly and weekly rainfall forecasting 
during training and testing stages

Fig. 15. Performance of the IDNN model for monthly and weekly rainfall forecasting during training and testing stages.

high rainfall seasons. This is due to the fact that the peak
rainfall events for both low and high rainfall seasons were
not experienced adequately during training period. In order
to validate the previous analysis of the model performance
in providing an accurate inflow forecasting for the peak and
low inflow events, the PFC and LFC statistics, as discussed
above in Sect. 4.3, are presented in Table 4. As presented
in Table 4, it can be observed that the developed model can
perform the function of providing an accurate rainfall fore-
casting at Klang River for even the extreme rainfall events,
with error that does not go above 9.2 % of the actual rainfall.

Finally, the IDNN model with one-time step in the input
delay was evaluated for its ability to model the consecutive
rainfall pattern(see Sect. 4.3). Table 5 shows the results for
this evaluation index. The negative values mean that the
model failed in matching the rainfall consequences and visa
versa for the positive value. It could be observed that the
IDNN model for weekly basis forecasting has outperformed
the other methods.

In light of the above discussion, it could be mentioned
that the use of the input delay lines improves the standard
MLP forecast accuracy. This means that the IDNN model
has taken advantage of the input data at different time steps to
improve the forecast accuracy. However, the IDNN remains
less accurate for the peak and low flows forecasting. This
may indicate the limitation of the IDNN network since there

Figure 16 Forecasted and actual Rainfall on Klang River (weekly Basis)

Low Medium Peak

Fig. 16. Forecasted and actual rainfall at Klang River (weekly ba-
sis).

is no possible modification of the fixed time delays. There-
fore, the IDNN may not be appropriate where accurate peak
and low rainfalls forecastings are needed. It may also point
to the fact that IDNN architecture with fixed time delays may
be not very well-suited for modeling a time-varying process
such as the hydrology extreme events.
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Table 4. IDNN performance based on the peak and low flow error criteria for monthly and weekly forecasting.

Year PFC (%) LFC (%) Average (%)

Monthly
Train 4.20 1.80 3.00
Test 6.15 3.07 4.61

weekly
Train 8.50 2.40 5.45
Test 9.20 6.30 7.75

Table 5. Models performance for matching the rainfall consequences.

Stage Method
Monthly Percentage Weekly Percentage

Positive Negative of corrected (%) Positive Negative of corrected (%)

Train
MLP-NN 240 20 92 522 48 92
RBFNN 248 12 95 528 42 93
IDNN 235 7 90 553 17 97

Test
MLP-NN 15 9 63 38 12 76
RBFNN 17 7 71 41 8 82
IDNN 20 4 83 49 1 98

Figure 17 Forecasted and actual Rainfall on Klang River (Monthly Basis)

Low Medium Peak

Fig. 17. Forecasted and actual rainfall at Klang River (monthly
basis).

6 Conclusions

This study is focused on modeling the temporal dimension
of the rainfall pattern in order to achieve better rainfall fore-
casting results. In this context, this study investigated three
different neural networks. The proposed models were imple-
mented for offering a rainfall forecasting model on Klang
River Basin for monthly and weekly time horizon. The
results reveal that the dynamic (temporal) neural network,
namely IDNN, could be suitable for modeling the tempo-
ral dimension of the rainfall pattern, and thus, provide bet-
ter forecasting accuracy. Our results show that IDNN model,
with one-time step input delay for weekly basis rainfall fore-
casting, achieved the highest accuracy level. This technique

could also be applicable to other studies in other river basins
with different time step input delay, according to how far
is the temporal dimension of rainfall pattern at this river
basin. The results of the present study also show that the pro-
posed IDNN achieves better accuracy than the MLP-NN and
RBFNN for the extreme rainfall pattern events; however, the
IDNN is still less accurate if compared with the forecasting
accuracy for non-extreme events. In addition, the proposed
IDNN showed better accuracy for mimicking the consecutive
rainfall pattern than the classical MLP-NN and /or RBFNN
model.

For future research in applying AI-based models, it is
highly recommended to find a better and more reliable pre-
processing method (rather than using the trial and error
method) that can figure out the best input window size. In
addition, it is recommended also to study the temporal di-
mension order before establishing the IDNN model config-
uration, in order to find the optimal input-delay length in
model architecture. In this study we utilized the backpropa-
gation optimization method, which may suffer from the prob-
lem of local optima. There are many advanced methods of-
fered by researchers to overcome this drawback such as par-
ticle swarm optimization (PSO) and genetic algorithm (GA).
For future research, such PSO and GA optimization methods
could be re-adjusted within different types of training algo-
rithms in the IDNN model in order to avoid a local optima
problem and then enhance the overall forecasting accuracy.
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