Articles | Volume 27, issue 20
https://doi.org/10.5194/hess-27-3733-2023
https://doi.org/10.5194/hess-27-3733-2023
Technical note
 | 
23 Oct 2023
Technical note |  | 23 Oct 2023

Technical note: Seamless extraction and analysis of river networks in R

Luca Carraro

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024,https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Machine learning and global vegetation: random forests for downscaling and gap filling
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024,https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024,https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023,https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary

Cited articles

Altermatt, F.: Diversity in riverine metacommunities: A network perspective, Aquat. Ecol., 47, 365–377, https://doi.org/10.1007/s10452-013-9450-3, 2013. a
Amatulli, G., Garcia Marquez, J., Sethi, T., Kiesel, J., Grigoropoulou, A., Üblacker, M. M., Shen, L. Q., and Domisch, S.: Hydrography90m: a new high-resolution global hydrographic dataset, Earth Syst. Sci. Data, 14, 4525–4550, https://doi.org/10.5194/essd-14-4525-2022, 2022. a
Baldan, D., Cunillera-Montcusí, D., Funk, A., and Hein, T.: Introducing `riverconn': an R package to assess river connectivity indices, Environ. Model. Softw., 156, 105470, https://doi.org/10.1016/j.envsoft.2022.105470, 2022. a, b
Basu, N. B., Rao, P. S. C., Thompson, S. E., Loukinova, N. V., Donner, S. D., Ye, S., and Sivapalan, M.: Spatiotemporal averaging of in-stream solute removal dynamics, Water Resour. Res., 47, W00J06, https://doi.org/10.1029/2010WR010196, 2011. a
Bertuzzo, E., Casagrandi, R., Gatto, M., Rodríguez-Iturbe, I., and Rinaldo, A.: On spatially explicit models of cholera epidemics, J. Roy. Soc. Interf., 7, 321–333, https://doi.org/10.1098/rsif.2009.0204, 2010. a
Download
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.