Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1583-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1583-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
Xinlei He
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Yanping Li
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
Shaomin Liu
CORRESPONDING AUTHOR
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Tongren Xu
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Fei Chen
National Center for Atmospheric Research, Boulder, CO, USA
Zhenhua Li
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
Zhe Zhang
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
Rui Liu
Institute of Urban Study, School of Environmental and Geographical
Sciences (SEGS), Shanghai Normal University, Shanghai, China
Lisheng Song
School of Geography and Tourism, Anhui Normal University, Wuhu, China
Ziwei Xu
CORRESPONDING AUTHOR
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Zhixing Peng
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Chen Zheng
Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing, China
Related authors
No articles found.
Fei Huo, Yanping Li, and Zhenhua Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-4720, https://doi.org/10.5194/egusphere-2025-4720, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
In this study, we find that global freshwater storage on land (excluding Greenland and Antarctica) will likely decrease much more than raw models suggest – about 83 millimeters less water by 2100. This means that earlier studies may have overestimated future water availability. When we correct the models using observations, the results consistently show significant declines in freshwater, which could worsen water stress worldwide if demand continues to grow.
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data, 17, 3835–3855, https://doi.org/10.5194/essd-17-3835-2025, https://doi.org/10.5194/essd-17-3835-2025, 2025
Short summary
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various timescales. This comprehensive dataset can strongly support ET modeling, water–carbon cycle monitoring, and long-term climate change analysis.
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data, 17, 1329–1346, https://doi.org/10.5194/essd-17-1329-2025, https://doi.org/10.5194/essd-17-1329-2025, 2025
Short summary
Short summary
In this study, carbon flux and auxiliary meteorological data are post-processed to create an analysis-ready dataset for 34 sites across six ecosystems in the Heihe River basin. Overall, 18 sites have multi-year observations, while 16 were observed only during the 2012 growing season, totaling 1513 site months. This dataset can be used to explore carbon exchange, assess ecosystem responses to climate change, support upscaling studies, and evaluate carbon cycle models.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024, https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Short summary
This study uses 4 km Weather Research and Forecasting simulations to investigate the features of low-level jets (LLJs) in North America. It identifies significant LLJ systems, such as the Great Plains LLJ. It also provides insight into LLJs poorly captured in coarser models, such as the northerly Quebec LLJ and the small-scale, low-level wind maxima around the Rocky Mountains. Furthermore, the study examines different physical mechanisms of forming three distinct types of LLJs.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023, https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
Short summary
Unoccupied aerial vehicles (UAVs) provide a versatile platform for eddy covariance (EC) flux measurements at regional scales with low cost, transport, and infrastructural requirements. This study evaluates the measurement performance in the wind field and turbulent flux of a UAV-based EC system based on the data from a set of calibration flights and standard operational flights and concludes that the system can measure the georeferenced wind vector and turbulent flux with sufficient precision.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Mengmeng Cao, Kebiao Mao, Yibo Yan, Jiancheng Shi, Han Wang, Tongren Xu, Shu Fang, and Zijin Yuan
Earth Syst. Sci. Data, 13, 2111–2134, https://doi.org/10.5194/essd-13-2111-2021, https://doi.org/10.5194/essd-13-2111-2021, 2021
Short summary
Short summary
We constructed a temperature depth and observation time correction model to eliminate the sampling depth and temporal differences among different data. Then, we proposed a reconstructed spatial model that filters and removes missing pixels and low-quality pixels contaminated by clouds from raw SST images and retrieves real sea surface temperatures under cloud coverage based on multisource data to generate a high-quality unified global SST product with long-term spatiotemporal continuity.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Cited articles
Ahmad, S. K., Kumar, S. V., Lahmers, T. M., Wang, S., Liu, P., Wrzesien, M. L., Bindlish, R., Getirana, A., Locke, K. A., Holmes, T. R., and Otkin, J. A.: Flash Drought Onset and Development Mechanisms Captured with Soil Moisture and Vegetation Data Assimilation, Water Resour. Res., 58, e2022WR032894, https://doi.org/10.1029/2022WR032894, 2022.
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data
assimilation and machine learning to emulate a dynamical model from sparse
and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020.
Buizza, C., Quilodrán Casas, C., Nadler, P., Mack, J., Marrone, S.,
Titus, Z., Le Cornec, C., Heylen, E., Dur, T., Baca Ruiz, L., Heaney, C.,
Díaz Lopez, J. A., Kumar, K. S. S., and Arcucci, R.: Data Learning:
Integrating Data Assimilation and Machine Learning, J. Comput. Syst. Sci., 58, 101525, https://doi.org/10.1016/j.jocs.2021.101525, 2022.
Campo, L., Castelli, F., Entekhabi, D., and Caparrini, F.: Land-atmosphere
interactions in an high resolution atmospheric simulation coupled with a
surface data assimilation scheme, Nat. Hazards Earth Syst. Sci., 9,
1613–1624, https://doi.org/10.5194/nhess-9-1613-2009, 2009.
Cazes Boezio, G. and Ortelli, S.: Use of the WRF-DA 3D-Var Data Assimilation
System to Obtain Wind Speed Estimates in Regular Grids from Measurements at
Wind Farms in Uruguay, Data, 4, 142, https://doi.org/10.3390/data4040142, 2019.
CDS: ECMWF Reanalysis v5 (ERA5) Data, https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset, last access: 8 January 2022.
Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao,
L., Deng, J., Jin, R., Ma, M., Wang, J., and Yang, X.: Integrated hydrometeorological, snow and frozen-ground observations in the alpine
region of the Heihe River Basin, China, Earth Syst. Sci. Data, 11,
1483–1499, https://doi.org/10.5194/essd-11-1483-2019, 2019.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State – NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Wether. Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, R., Song, Y., Kang, E., Han, C., Liu, J., Yang, Y., Qing, W. W., and
Liu, Z. W.: A cryosphere-hydrology observation system in a small alpine
watershed in the Qilian mountains of China and its meteorological gradient,
Arct. Antarct. Alp. Res., 46, 505–523, https://doi.org/10.1657/1938-4246-46.2.505, 2014.
Chen, Y. Y., Yang, K., Tang, W. J., Qin, J., and Zhao, L.: Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci. China Earth Sci., 55, 1001–1011,
https://doi.org/10.1007/s11430-012-4433-0, 2012.
Comellas Prat, A., Federico, S., Torcasio, R. C., Fierro, A. O., and Dietrich, S.: Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy, Atmos. Res., 247, 105246, https://doi.org/10.1016/j.atmosres.2020.105246, 2021.
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O.,
Attinger, S., and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J.
Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016.
Erlandsen, H. B., Haddeland, I., Tallaksen, L. M., and Kristiansen, J.: The
Sensitivity of the Terrestrial Surface Energy and Water Balance Estimates in
the WRF Model to Lower Surface Boundary Representations: A South Norway Case
Study, J. Hydrometeorol., 18, 265–284, https://doi.org/10.1175/JHM-D-15-0146.1, 2017.
Forman, B. A. and Xue, Y.: Machine learning predictions of passive microwave
brightness temperature over snow-covered land using the special sensor
microwave imager (SSM/I), Phys. Geogr., 38, 176–196, https://doi.org/10.1080/02723646.2016.1236606, 2017.
Gao, Y., Chen, F., Barlage, M., Liu, W., Cheng, G., Li, X., Yu, Y., Ran, Y.,
Li, H., Peng, H., and Ma, M.: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China, J. Geophys. Res., 113, D20S90, https://doi.org/10.1029/2008JD010359, 2008.
Gentine, P., Massmann, A., Lintner, B. R., Hamed Alemohammad, S., Fu, R.,
Green, J. K., Kennedy, D., and Vilà-Guerau de Arellano, J.: Land–atmosphere interactions in the tropics-a review, Hydrol. Earth Syst.
Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, 2019.
GLASS: Download of the GLASS products, http://www.glass.umd.edu/, last access: 8 January 2022.
Gottwald, G. A. and Reich, S.: Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations,
Chaos, 31, 101103, https://doi.org/10.1063/5.0066080, 2021.
Grzeschik, M., Bauer, H.-S., Wulfmeyer, V., Engelbart, D., Wandinger, U.,
Mattis, I., Althausen, D., Engelmann, R., Tesche, M., and Riede, A.: Four-dimensional variational analysis of water-vapor Raman lidar data and
their impact on mesoscale forecasts, J. Atmos. Ocean. Tech., 25, 1437–1453,
https://doi.org/10.1175/2007JTECHA974.1, 2008.
He, J., Yang, K., Tang, W. Lu, H., Qin, J., Chen, Y. Y., and Li, X.: The
first high-resolution meteorological forcing dataset for land process studies over China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
He, X., Xu, T., Bateni, S. M., Ek, M., Liu, S., and Chen, F.: Mapping Regional Evapotranspiration in Cloudy Skies via Variational Assimilation of
All-Weather Land Surface Temperature Observations, J. Hydrol., 585, 124790,
https://doi.org/10.1016/j.jhydrol.2020.124790, 2020.
He, X., Xu, T., Bateni, S. M., Ki, S. J., Xiao, J., Liu, S., Song, L., and
He, X.: Estimation of Turbulent Heat Fluxes and Gross Primary Productivity by Assimilating Land Surface Temperature and Leaf Area Index, Water Resour. Res., 57, e2020WR028224, https://doi.org/10.1029/2020WR028224, 2021.
He, X., Liu, S., Xu, T., Yu, K., Gentine, P., Zhang, Z., Xu, Z., Jiao, D.,
and Wu, D.: Improving predictions of evapotranspiration by integrating multi-source observations and land surface model, Agr. Water Manage., 272,
107827, https://doi.org/10.1016/j.agwat.2022.107827, 2022.
Hu, Y. Q., Gao, Y. X., Wang, J. M., Ji, G. L., Shen, Z. B., Cheng, L. S., Cheng, J. Y., and Li, S. Q.: Some achievements in scientific research during HEIFE, Plateau Meteorol., 13, 225–236, 1994.
Janjic, Z.: The Step-mountain eta coordinate model: Further developments of
the convection, viscous sublayer, and turbulence closure schemes. Mon.
Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jia, X., Willard, J., Karpatne, A., Read, J. S., Zwart, J. A., Steinbach, M.,
and Kumar, V.: Physics-Guided Machine Learning for Scientific Discovery: An
Application in Simulating Lake Temperature Profiles, ACM/IMS Trans. Data Sci., 2, 1–26, https://doi.org/10.1145/3447814, 2021.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N.,
Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K.,
Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A.,
O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J.,
Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and
Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe:
synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17,
1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Koppa, A., Rains, D., Hulsman, P., Poyatos, R., and Miralles, D. G.: A deep
learning-based hybrid model of global terrestrial evaporation, Nat. Commun.,
13, 1912, https://doi.org/10.1038/s41467-022-29543-7, 2022.
Levis, S., Bonan, G. B., Kluzek, E., Thornton, P. E., Jones, A., Sacks, W. J., and Kucharik, C. J.: Interactive Crop Management in the Community Earth
System Model (CESM1): Seasonal Influences on Land–Atmosphere Fluxes, J.
Climate, 25, 4839–4859, https://doi.org/10.1175/jcli-d-11-00446.1, 2012.
Li, X., Li, Xiaowen, Li, Z., Ma, M., Wang, J., Xiao, Q., Liu, Q., Che, T., Chen, E., Yan, G., Hu, Z., Zhang, L., Chu, R., Su, P., Liu, Q., Liu, S., Wang, Jindi, Niu, Z., Chen, Y., Jin, R., Wang, W., Ran, Y., Xin, X., and Ren, H.: Watershed Allied Telemetry Experimental Research, J. Geophys. Res., 114, D22103, https://doi.org/10.1029/2008JD011590, 2009.
Li, X., Cheng, G., and Liu, S.: Heihe watershed allied telemetry experimental research (HiWATER): scientifc objectives and experimental design, B. Am. Meteorol. Soc., 94, 1145–1160, https://doi.org/10.1175/BAMS-D-12-00154.1, 2013.
Li, X., Yang, K., and Zhou, Y.: Progress in the study of oasis-desert
interactions, Agr. Forest Meteorol., 230, 1–7, https://doi.org/10.1016/j.agrformet.2016.08.022, 2016.
Li, X., Cheng, G., Lin, H., Cai, X., Fang, M., Ge, Y., Hu, X., Chen, M., and
Li, W.: Watershed System Model: The Essentials to Model Complex Human-Nature
System at the River Basin Scale, J. Geophys. Res.-Atmos., 123, 3019–3034,
https://doi.org/10.1002/2017JD028154, 2018.
Li, X., Zhang, L., Zheng, Y., Yang, D., Wu, F., Tian, Y., Han, F., Gao, B.,
Li, H., Zhang, Y., Ge, Y., Cheng, G., Fu, B., Xia, J., Song, C., and Zheng, C.: Novel hybrid coupling of ecohydrology and socioeconomy at river basin
scale: A watershed system model for the Heihe River basin, Environ. Model.
Softw., 141, 105058, https://doi.org/10.1016/j.envsoft.2021.105058, 2021.
Li, X., Cheng, G., Fu, B., Xia, J., Zhang, L., Yang, D., Zheng, C., Liu, S., Li, X., Song, C., Kang, S., Li, X., Che, T., Zheng, Y., Zhou, Y., Wang, H., and Ran, Y.: Linking Critical Zone With Watershed Science: The Example of the Heihe River Basin, Earth's Future, 10, e2022EF002966, https://doi.org/10.1029/2022EF002966, 2022.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface Satellite (GLASS) Product Suite, B. Am. Meteorol. Soc., 102, E323–E337,
https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Ling, X. L., Fu, C. B., Guo, W. D., and Yang, Z. L.: Assimilation of remotely
sensed LAI into CLM4CN using DART, J. Adv. Model. Earth Syst., 11, 2768–2786, https://doi.org/10.1029/2019MS001634, 2019.
Liu, R., Liu, S., Yang, X., Lu, H., Pan, X., Xu, Z., Ma, Y., and Xu, T.: Wind Dynamics Over a Highly Heterogeneous Oasis Area: An Experimental and Numerical Study, J. Geophys. Res.-Atmos., 123, 8418–8440, https://doi.org/10.1029/2018JD028397, 2018.
Liu, R., Sogachev, A., Yang, X., Liu, S., Xu, T., and Zhang, J.: Investigating microclimate effects in an oasis-desert interaction zone, Agr. Forest Meteorol., 290, 107992, https://doi.org/10.1016/j.agrformet.2020.107992, 2020.
Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia, Z., and Zhang, F.: Upscaling evapotranspiration measurements from multi-site
to the satellite pixel scale over heterogeneous land surfaces, Agr. Forest
Meteorol., 230–231, 97–113, https://doi.org/10.1016/j.agrformet.2016.04.008, 2016.
Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated Observatory
Network: A Basin-Scale Land Surface Processes Observatory in China, Vadose
Zone J., 17, 180072, https://doi.org/10.2136/vzj2018.04.0072, 2018.
Liu, L., Ma, Y., Menenti, M., Su, R., Yao, N., and Ma, W.: Improved parameterization of snow albedo in Noah coupled with Weather Research and
Forecasting: applicability to snow estimates for the Tibetan Plateau, Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, 2021.
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop:
Introducing dynamic crop growth in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 13953–13972, https://doi.org/10.1002/2016jd025597, 2016.
Ma, X., Yang, K., La, Z., Lu, H., Jiang, Y., Zhou, X., Yao, X., and Li, X.:
Importance of Parameterizing Lake Surface and Internal Thermal Processes in
WRF for Simulating Freeze Onset of an Alpine Deep Lake, J. Geophys. Res.-Atmos., 127, e2022JDO36759, https://doi.org/10.1029/2022JD036759, 2022.
Meng, X., Lü, S., Gao, Y., and Guo, J.: Simulated effects of soil moisture on oasis selfmaintenance in a surrounding desert environment in
Northwest China, Int. J. Climatol., 35, 4116–4125, https://doi.org/10.1002/joc.4271, 2015.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Moosavi, A., Rao, V., and Sandu, A.: Machine learning based algorithms for
uncertainty quantification in numerical weather prediction models, J. Comput. Syst. Sci., 50, 101295, https://doi.org/10.1016/j.jocs.2020.101295, 2021.
NASA: Welcome to AppEEARS!, https://appeears.earthdatacloud.nasa.gov/, last access: 5 December 2020.
Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., and Peters-Lidard,
C.: Benchmarking and Process Diagnostics of Land Models, J. Hydrometeorol., 19, 1835–1852, https://doi.org/10.1175/JHM-D-17-0209.1, 2018.
Nelli, N. R., Temimi, M., Fonseca, R. M., Weston, M. J., Thota, M. S., Valappil, V. K., Branch, O., Wulfmeyer, V., Wehbe, Y., Al Hosary, T., Shalaby, A., Al Shamsi, N., and Al Naqbi, H.: Impact of Roughness Length on WRF Simulated Land-Atmosphere Interactions Over a Hyper-Arid Region, Earth Space Sci., 7, e2020EA001165, https://doi.org/10.1029/2020EA001165, 2020.
Ozdogan, M. and Salvucci, G. D.: Irrigation-induced changes in potential
evapotranspiration in Southeastern Turkey: Test and application of Bouchet's
complementary hypothesis, Water Resour. Res., 40, W04301, https://doi.org/10.1029/2003WR002822, 2004.
Pan, X., Li, X., Yang, K., He, J., Zhang, Y., and Han, X.: Comparison of
Downscaled Precipitation Data over a Mountainous Watershed: A Case Study in
the Heihe River Basin, J. Hydrometeorol. 15, 1560–1574, https://doi.org/10.1175/JHM-D-13-0202.1, 2014.
Pan, X., Li, X., Cheng, G., and Hong, Y.: Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin, Remote Sens., 9, 963, https://doi.org/10.3390/rs9090963, 2017.
Pan, X. D., Guo, X. J., Li, X., Niu, X. L., Yang, X. J., Feng, M., Che, T., Jin, R., Ran, Y. H., Guo, J. W., Hu, X. L., and Wu, A. D.: National Tibetan Plateau Data Center: Promoting Earth System Science on the Third Pole, B. Am.
Meteorol. Soc., 102, E2062–E2078, https://doi.org/10.1175/BAMS-D-21-0004.1, 2021a.
Pan, X., Ma, W., Zhang, Y., and Li, H.: Refined Characteristics of Moisture
Cycling over the Inland River Basin Using the WRF Model and the Finer Box
Model: A Case Study of the Heihe River Basin, Atmosphere, 12, 399, https://doi.org/10.3390/atmos12030399, 2021b.
Pilguj, N., Taszarek, M., Pajurek, Ł., and Kryza, M.: High-resolution
simulation of an isolated tornadic supercell in Poland on 20 June 2016, Atmos. Res., 218, 145–159, https://doi.org/10.1016/j.atmosres.2018.11.017, 2019.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Rahman, A., Maggioni, V., Zhang, X., Houser, P., Sauer, T., and Mocko, D. M.:
The Joint Assimilation of Remotely Sensed Leaf Area Index and Surface Soil
Moisture into a Land Surface Model, Remote Sens., 14, 437, https://doi.org/10.3390/rs14030437, 2022.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat.: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Sawada, Y., Koike, T., and Walker, J. P.: A land data assimilation system for
simultaneous simulation of soil moisture and vegetation dynamics: LDAS For
Ecohydrological Model, J. Geophys. Res.-Atmos., 120, 5910–5930, https://doi.org/10.1002/2014JD022895, 2015.
Seo, E., Lee, M. I., and Reichle, R. H.: Assimilation of SMAP and ASCAT soil
moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter, Remote Sens. Environ., 253, 112222, https://doi.org/10.1016/j.rse.2020.112222, 2021.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A
Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR, NCAR, 145 pp., https://doi.org/10.5065/1dfh-6p97, 2019.
Smedman, A., Högström, U., Sahlee, E., and Johansson, C.: Critical
re-evaluation of the bulk transfer coefficient for heat over the ocean, Q.
J. Roy. Meteorol. Soc., 133, 227–250, https://doi.org/10.1002/qj.6, 2007.
Song, X., Liu, F., Zhang, G., Li, D., and Zhao, Y.: Estimation of soil
texture at a regional scale using local soil-landscape models, Soil Sci., 181, 435–445, https://doi.org/10.1097/SS.0000000000000180, 2016.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008mwr2387.1, 2008.
Sun, S., Zheng, D., Liu, S., Xu, Z., Xu, T., Zheng, H., and Yang, X.: Assessment and improvement of Noah-MP for simulating water and heat exchange
over alpine grassland in growing season, Sci. China Earth Sci., 64, 536–552, https://doi.org/10.1007/s11430-021-9852-2, 2021.
Tian, J., Qin, J., Yang, K., Zhao, L., Chen, Y., Lu, H., Li, X., and Shi, J.: Improving surface soil moisture retrievals through a novel assimilation algorithm to estimate both model and observation errors, Remote Sens. Environ., 269, 112802, https://doi.org/10.1016/j.rse.2021.112802, 2022.
Wang, G. X. and Cheng, G. D.: Water resource development and its influence
on the environment in arid areas of China-the case of the Hei River basin,
J. Arid Environ., 43, 121–131, https://doi.org/10.1006/jare.1999.0563, 1999.
Wang, L., Chen, R., Song, Y., Yang, Y., Liu, J., Han, C., and Liu, Z.:
Precipitation–altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains, Theor. Appl. Climatol., 134, 875–884, https://doi.org/10.1007/s00704-017-2316-1, 2018.
Wang, X., Pang, G., Yang, M., Wan, G., and Liu, Z.: Precipitation changes in
the Qilian Mountains associated with the shifts of regional atmospheric
water vapour during 1960–2014, Int. J. Climatol., 38, 4355–4368, https://doi.org/10.1002/joc.5673, 2018.
Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: WRF-based dynamical
downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new
version of the High Asia Refined analysis, Int. J. Climatol., 41, 743–762,
https://doi.org/10.1002/joc.6686, 2021.
Wen, X., Lu, S., and Jin, J.: Integrating Remote Sensing Data with WRF for
Improved Simulations of Oasis Effects on Local Weather Processes over an
Arid Region in Northwestern China, J. Hydrometeorol., 13, 573–587, https://doi.org/10.1175/JHM-D-10-05001.1, 2012.
WRF: Weather Research and Forecasting Model, GitHub [code], https://github.com/wrf-model, last access: 28 December 2021.
Wu, D., Liu, S., Wu, X., Xu, T., Xu, Z., He, X., and Shi, H.: Evaluation of
the intrinsic temperature sensitivity of ecosystem respiration in typical
ecosystems of an endorheic river basin, Agr. Forest Meteorol., 333, 109393,
https://doi.org/10.1016/j.agrformet.2023.109393, 2023.
Wu, W. Y., Yang, Z. L., Zhao, L., and Lin, P.: The impact of multi-sensor
land data assimilation on river discharge estimation, Remote Sens. Environ.,
279, 113138, https://doi.org/10.1016/j.rse.2022.113138, 2022.
Xia, Y., Hao, Z., Shi, C., Li, Y., Meng, J., Xu, T., Wu, X., and Zhang, B.:
Regional and Global Land Data Assimilation Systems: Innovations, Challenges,
and Prospects, J. Meteorol. Res., 33, 159–189, https://doi.org/10.1007/s13351-019-8172-4, 2019.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of general regression neural networks for generating the GLASS leaf area
index product from time-series MODIS surface re?ectance, IEEE Trans. Geosci.
Remote, 52, 209–223, https://doi.org/10.1109/TGRS.2013.2237780, 2014.
Xie, Y., Wang, P., Bai, X., Khan, J., Zhang, S., Li, L., and Wang, L.: Assimilation of the leaf area index and vegetation temperature condition
index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model, Agr. Forest Meteorol., 246, 194–206, https://doi.org/10.1016/j.agrformet.2017.06.015, 2017.
Xie, Z., Liu, S., Zeng, Y., Gao, J., Qin, P., Jia, B., Xie, J., Liu, B., Li,
R., Wang, Y., and Wang, L.: A High-Resolution Land Model With Groundwater
Lateral Flow, Water Use, and Soil Freeze-Thaw Front Dynamics and its Applications in an Endorheic Basin. J. Geophys. Res.-Atmos., 123, 7204–7222, https://doi.org/10.1029/2018JD028369, 2018.
Xu, T., Valocchi, A. J., Choi, J., and Amir, E.: Use of Machine Learning
Methods to Reduce Predictive Error of Groundwater Models, Groundwater, 52,
448–460, https://doi.org/10.1111/gwat.12061, 2014.
Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J., Zhang, Y., Ma, Y., and Song, L.: Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale, J. Geophys. Res.-Atmos., 123, 8674–8690, https://doi.org/10.1029/2018JD028447, 2018.
Xu, T., He, X., Bateni, S. M., Auligne, T., Liu, S., Xu, Z., Zhou, J., and
Mao, K.: Mapping regional turbulent heat fluxes via variational assimilation
of land surface temperature data from polar orbiting satellites, Remote Sens. Environ., 221, 444–461, https://doi.org/10.1016/j.rse.2018.11.023, 2019.
Xu, T., Chen, F., He, X., Barlage, M., Zhang, Z., Liu, S., and He, X.: Improve the Performance of the Noah-MP-Crop Model by Jointly Assimilating Soil Moisture and Vegetation Phenology Data, J. Adv. Model. Earth Syst., 13, e2020MS002394, https://doi.org/10.1029/2020MS002394 2021.
Xu, Z., Liu, S., Zhu, Z., Zhou, J., Shi, W., Xu, T., Yang, X., Zhang, Y.,
and He, X.: Exploring evapotranspiration changes in a typical endorheic basin through the integrated observatory network, Agr. Forest Meteorol., 290, 108010, https://doi.org/10.1016/j.agrformet.2020.108010, 2020.
Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011.
Yi, L., Yong, B., Chen, J., Zheng, Z., and Li, L.: Impact of 4D-Var Data
Assimilation on Performance of the Coupled Land–Atmosphere Model WRF–TOPX:
A Case Study of a Flood Event in the Wangjiaba Watershed, China, J. Hydrometeorol., 22, 689–701, https://doi.org/10.1175/JHM-D-20-0161.1, 2021.
Yue, S., Yang, K., Lu, H., Zhou, X., Chen, D., and Guo, W.: Representation
of Stony Surface-Atmosphere Interactions in WRF Reduces Cold and Wet Biases
for the Southern Tibetan Plateau, J. Geophys. Res.-Atmos., 126, e2021JD035291, https://doi.org/10.1029/2021JD035291, 2021.
Zhang, G., Chen, F., and Gan, Y.: Assessing uncertainties in the Noah-MP
ensemble simulations of a cropland site during the Tibet Joint International
Cooperation program field campaign: Uncertainty In NOAH-MP Simulations, J.
Geophys. Res.-Atmos. 121, 9576–9596, https://doi.org/10.1002/2016JD024928, 2016.
Zhang, M., Luo, G., Hamdi, R., Qiu, Y., Wang, X., Maeyer, P. D., and Kurban,
A.: Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia, Atmosphere, 8, 212, https://doi.org/10.3390/atmos8110212, 2017.
Zhang, M., Luo, G., Cao, X., Hamdi, R., Li, T., Cai, P., Ye, H., and He, H.: Numerical Simulation of the Irrigation Effects on Surface Fluxes and Local Climate in Typical Mountain–Oasis–Desert Systems in the Central Asia Arid Area, J. Geophys. Res.-Atmos., 124, 12485–12506, https://doi.org/10.1029/2019JD030507, 2019.
Zhang, X., Xiong, Z., and Tang, Q.: Modeled effects of irrigation on surface
climate in the Heihe River Basin, Northwest China: Modeling Effects of Irrigation, J. Geophys. Res.-Atmos., 122, 7881–7895, https://doi.org/10.1002/2017JD026732, 2017.
Zhang, Y., Liu, S., Song, L., Li, X., Jia, Z., Xu, T., Xu, Z., Ma, Y., Zhou,
J., Yang, X., He, X., Yao, Y., and Hu, G.: Integrated Validation of Coarse
Remotely Sensed Evapotranspiration Products over Heterogeneous Land Surfaces, Remote Sens., 14, 3467, https://doi.org/10.3390/rs14143467, 2022.
Zhang, Z., Barlage, M., Chen, F., Li, Y., Helgason, W., Xu, X., Liu, X., and
Li, Z.: Joint Modeling of Crop and Irrigation in the central United States
Using the Noah-MP Land Surface Model, J. Adv. Model. Earth Syst., 12, e2020MS002159, https://doi.org/10.1029/2020MS002159, 2020.
Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., Shang, S., and Kunstmann,
H.: Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: impact of boundary layer- and lateral flow parameterizations on land–atmosphere interactions, Clim. Dynam., 59, 1355–1376, https://doi.org/10.1007/s00382-021-06044-9, 2021a.
Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., and Kunstmann, H.: Diurnal cycle of surface energy fluxes in high mountain terrain: High-resolution fully coupled atmosphere-hydrology modelling and impact of lateral flow, Hydrol. Process., 35, e14454, https://doi.org/10.1002/hyp.14454, 2021b.
Zhang, Z., Chen, F., Barlage, M., Bortolotti, L. E., Famiglietti, J., Li, Z.,
Ma, X., and Li, Y.: Cooling effects revealed by modeling of wetlands and
land-atmosphere interactions, Water Resour. Res., 58, e2021WR030573, https://doi.org/10.1029/2021WR030573, 2022.
Zhao, J., Feng, H., Xu, T., Xiao, J., Guerrieri, R., Liu, S., Wu, X., He, X., and He, X.: Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere, Sci. Total Environ., 758, 143599, https://doi.org/10.1016/j.scitotenv.2020.143599, 2021.
Zhao, L. and Yang, Z. L.: Multi-sensor land data assimilation: Toward a
robust global soil moisture and snow estimation, Remote Sens. Environ., 216,
13–27, https://doi.org/10.1016/j.rse.2018.06.033, 2018.
Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin,
C., Li, X., and Qiu, G. Y.: Physics-Constrained Machine Learning of Evapotranspiration. Geophys. Res. Lett., 46, 14496–14507, https://doi.org/10.1029/2019GL085291, 2019.
Zheng, C., Liu, S., Song, L., Xu, Z., Guo, J., Ma, Y., Ju, Q., and Wang, J.:
Comparison of sensible and latent heat fluxes from optical-microwave
scintillometers and eddy covariance systems with respect to surface energy
balance closure, Agr. Forest Meteorol., 331, 109345, https://doi.org/10.1016/j.agrformet.2023.109345, 2023.
Zhong, B., Ma, P., Nie, A., Yang, A., Yao, Y., Lü, W., Zhang, H., and Liu, Q.: Land cover mapping using time series HJ-1/CCD data, Sci. China Earth Sci., 57, 1790–1799, https://doi.org/10.1007/s11430-014-4877-5, 2014.
Zhou, Y., Liao, W., and Li, X.: The contributions of individual factors to the oasis cold island effect intensity in the Heihe River Basin, Agr. Forest
Meteorol., 312, 108706, https://doi.org/10.1016/j.agrformet.2021.108706, 2022.
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
This study highlights the role of integrating vegetation and multi-source soil moisture...