Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1583-2023
https://doi.org/10.5194/hess-27-1583-2023
Research article
 | 
17 Apr 2023
Research article |  | 17 Apr 2023

Improving regional climate simulations based on a hybrid data assimilation and machine learning method

Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng

Related authors

A post-processed carbon flux dataset for 34 eddy covariance flux sites across the Heihe River Basin, China
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-370,https://doi.org/10.5194/essd-2024-370, 2024
Preprint under review for ESSD
Short summary
Investigation of the characteristics of low-level jets over North America in a convection-permitting Weather Research and Forecasting simulation
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024,https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024,https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-56,https://doi.org/10.5194/gmd-2024-56, 2024
Revised manuscript accepted for GMD
Short summary
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023,https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024,https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Machine learning and global vegetation: random forests for downscaling and gap filling
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024,https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024,https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Ecohydrological responses to solar radiation changes
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768,https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary

Cited articles

Ahmad, S. K., Kumar, S. V., Lahmers, T. M., Wang, S., Liu, P., Wrzesien, M. L., Bindlish, R., Getirana, A., Locke, K. A., Holmes, T. R., and Otkin, J. A.: Flash Drought Onset and Development Mechanisms Captured with Soil Moisture and Vegetation Data Assimilation, Water Resour. Res., 58, e2022WR032894, https://doi.org/10.1029/2022WR032894, 2022. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. 
Buizza, C., Quilodrán Casas, C., Nadler, P., Mack, J., Marrone, S., Titus, Z., Le Cornec, C., Heylen, E., Dur, T., Baca Ruiz, L., Heaney, C., Díaz Lopez, J. A., Kumar, K. S. S., and Arcucci, R.: Data Learning: Integrating Data Assimilation and Machine Learning, J. Comput. Syst. Sci., 58, 101525, https://doi.org/10.1016/j.jocs.2021.101525, 2022. 
Campo, L., Castelli, F., Entekhabi, D., and Caparrini, F.: Land-atmosphere interactions in an high resolution atmospheric simulation coupled with a surface data assimilation scheme, Nat. Hazards Earth Syst. Sci., 9, 1613–1624, https://doi.org/10.5194/nhess-9-1613-2009, 2009. 
Cazes Boezio, G. and Ortelli, S.: Use of the WRF-DA 3D-Var Data Assimilation System to Obtain Wind Speed Estimates in Regular Grids from Measurements at Wind Farms in Uruguay, Data, 4, 142, https://doi.org/10.3390/data4040142, 2019. 
Download
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.