Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1583-2023
https://doi.org/10.5194/hess-27-1583-2023
Research article
 | 
17 Apr 2023
Research article |  | 17 Apr 2023

Improving regional climate simulations based on a hybrid data assimilation and machine learning method

Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng

Viewed

Total article views: 2,441 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,773 595 73 2,441 51 49
  • HTML: 1,773
  • PDF: 595
  • XML: 73
  • Total: 2,441
  • BibTeX: 51
  • EndNote: 49
Views and downloads (calculated since 14 Dec 2022)
Cumulative views and downloads (calculated since 14 Dec 2022)

Viewed (geographical distribution)

Total article views: 2,441 (including HTML, PDF, and XML) Thereof 2,335 with geography defined and 106 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Download
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.