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Abstract. The energy and water vapor exchange between
the land surface and atmospheric boundary layer plays a
critical role in regional climate simulations. This paper im-
plemented a hybrid data assimilation and machine learn-
ing framework (DA-ML method) into the Weather Research
and Forecasting (WRF) model to optimize surface soil and
vegetation conditions. The hybrid method can integrate re-
motely sensed leaf area index (LAI), multi-source soil mois-
ture (SM) observations, and land surface models (LSMs) to
accurately describe regional climate and land–atmosphere in-
teractions. The performance of the hybrid method on the re-
gional climate was evaluated in the Heihe River basin (HRB),
the second-largest endorheic river basin in Northwest China.
The results show that the estimated sensible (H ) and latent
heat (LE) fluxes from the WRF (DA-ML) model agree well
with the large aperture scintillometer (LAS) observations.
Compared to the WRF (open loop – OL), the WRF (DA-ML)
model improved the estimation of evapotranspiration (ET)
and generated a spatial distribution consistent with the ML-
based watershed ET (ETMap). The proposed WRF (DA-ML)
method effectively reduces air warming and drying biases in
simulations, particularly in the oasis region. The estimated
air temperature and specific humidity from WRF (DA-ML)
agree well with the observations. In addition, this method
can simulate more realistic oasis–desert boundaries, includ-

ing wetting and cooling effects and wind shield effects within
the oasis. The oasis–desert interactions can transfer water va-
por to the surrounding desert in the lower atmosphere. In con-
trast, the dry and hot air over the desert is transferred to the
oasis from the upper atmosphere. The results show that the
integration of LAI and SM will induce water vapor inten-
sification and promote precipitation in the upstream of the
HRB, particularly on windward slopes. In general, the pro-
posed WRF (DA-ML) model can improve climate modeling
by implementing detailed land characterization information
in basins with complex underlying surfaces.

1 Introduction

Land–atmosphere interactions are an essential component
of the hydrological cycle and factors that influence climate
change (Nelli et al., 2020; Zhou et al., 2022). Terrestrial com-
ponents, such as soil and vegetation, play a crucial role in
atmospheric processes, such as changes in evapotranspira-
tion (ET), which affect the water vapor content in the atmo-
sphere (Gentine et al., 2019; Sawada et al., 2015; Wu et al.,
2023). Soil and vegetation processes directly affect surface
water vapor transport and energy circulation, particularly in
the arid vegetated area (Erlandsen et al., 2017; Gao et al.,
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2008; R. Liu et al., 2018; X. Zhang et al., 2017; Zhang et
al., 2019; Zhao et al., 2021). Such surface variability affects
the available energy distribution at the land surface and has
additional effects on the sensible and latent heat fluxes (H
and LE), surface temperature, and water vapor (Sawada et
al., 2015; Wen et al., 2012). Although land surface mod-
els (LSMs) have been improved incrementally in the past
few decades, it is still challenging to effectively couple LSMs
with atmospheric models to improve the description of land–
atmosphere interactions (Chen and Dudhia, 2001; Liu et al.,
2021). The success of the coupling depends not only on the
sophisticated physical processes of the LSMs but also on soil
and vegetation characteristics and the accurate characteriza-
tion of the water vapor fluxes at the land–atmosphere inter-
face (Gentine et al., 2019; Zhang et al., 2021b; Z. Zhang et
al., 2022).

The development of Earth observation technology has pro-
vided important opportunities to study land–atmosphere in-
teractions using the data assimilation (DA) method (Liang
et al., 2021). The Land Data Assimilation System (LDAS)
has been widely developed and applied in recent years un-
der various hydrological and vegetation conditions (Wu et
al., 2022; Xia et al., 2019). It uses remotely sensed observa-
tions to constrain model physical processes and empirical pa-
rameters to improve water–energy–carbon flux simulations
(Tian et al., 2022; Zhao and Yang, 2018). A series of stud-
ies have assimilated satellite-retrieved leaf area index (LAI),
land surface temperature (LST), soil moisture (SM), and mi-
crowave brightness temperature observations into LSMs and
improved simulations of ET, runoff, and gross primary pro-
ductivity (GPP; Ahmad et al., 2022; X. He et al., 2020, 2021;
Ling et al., 2019; Seo et al., 2021; Xie et al., 2017; Xu et al.,
2019, 2021). In addition, DA can improve the initial condi-
tions of regional climate models (RCMs) and enhance the ca-
pability of the models in the simulation of land–atmosphere
interactions (Pan et al., 2017; Yi et al., 2021). Several studies
have also shown that the assimilation of air pressure, air tem-
perature, humidity, wind speed, and lightning observations
into the Weather Research and Forecasting (WRF) model
can improve the simulation of atmospheric state variables
and the accuracy of weather prediction (Campo et al., 2009;
Cazes Boezio and Ortelli, 2019; Comellas Prat et al., 2021;
Grzeschik et al., 2008; Pilguj et al., 2019).

Machine learning (ML) algorithms have been increasingly
applied in Earth and environmental modeling studies to pre-
dict land surface variables at various spatial and temporal
scales (Jung et al., 2020; Reichstein et al., 2019; Xu et al.,
2018). Compared to physical models, ML technology can
fluently and accurately establish nonlinear and complex re-
lationships between diverse independent variables (Koppa et
al., 2022; Nearing et al., 2018). Thus, ML-based approaches
can create beneficial pathways for knowledge discovery in
process models, based on extensive data (Moosavi et al.,
2021; Reichstein et al., 2019). The main improvements are
focused on model approximation, parameterization, bias cor-

rection, and hybrid modeling (Brajard et al., 2020; He et al.,
2022; Jia et al., 2021; Xu et al., 2014; Zhao et al., 2019). Sev-
eral studies have shown that the integration of the DA and
ML methods can enhance the reliability of predictions and
reduce simulation errors by including physical information
in observed data (Brajard et al., 2020; Buizza et al., 2022;
Forman and Xue, 2017; Gottwald and Reich, 2021; He et al.,
2022). Forman and Xue (2017) integrated a ML model (as a
measurement operator) into a DA system to improve the esti-
mation of the snow water equivalent. Zhao et al. (2019) used
a physics-constrained ML method to improve the LE esti-
mates. He et al. (2022) proposed a hybrid model that can
integrate remotely sensed LAI and multi-source SM observa-
tions to improve the estimation of ET within the coupled DA
and ML framework. In general, the hybrid DA and ML ap-
proach was used in land surface modeling, but it is neglected
in regional climate simulations.

The Heihe River basin (HRB) is a typical endorheic river
basin in the arid and semi-arid regions of Northwest China
(Li et al., 2013). The upstream mountain region is mainly
covered by alpine meadow and Qinghai spruce, has a com-
plex topography, and receives abundant precipitation. The
midstream oasis of the HRB is mainly characterized by ir-
rigated croplands, while the downstream oasis is character-
ized by riparian forests, and at the periphery of the oasis,
there is vast desert (Xu et al., 2020). In the HRB, precipita-
tion is the main water resource input in mountainous areas
and determines the growth of vegetation in the oasis region,
in addition to supporting urban and population development
(Li et al., 2018, 2021). Precipitation, snow, and changes to
permafrost in the upstream mountains can affect mountain
runoff and SM, evaporation, and the groundwater table in the
mid- and downstream oases. Strong land–atmosphere inter-
actions in the HRB affect the water and energy exchange be-
tween the surface and atmosphere and influence the sustain-
ability of the oasis (Gao et al., 2008; Pan et al., 2021b). The
oasis–desert local circulation in the HRB can lead to the mi-
croclimate features in oasis–desert areas, which include the
cooling and wetting effect and wind shield effect of the oa-
sis and the humidity inversion effect within the surrounding
desert (Liu et al., 2020).

In recent decades, several comprehensive experiments
have been implemented over the HRB to study land–
atmosphere interactions, including the Heihe River basin
field experiment (Hu et al., 1994), Watershed Allied Teleme-
try Experimental Research (WATER; Li et al., 2009),
and Heihe Watershed Allied Telemetry Experimental Re-
search (HiWATER; Li et al., 2013). In recent years, many
mesoscale climate models and high-resolution computational
fluid dynamics (CFD) models have been used to analyze the
effects of land–atmosphere interactions on the regional cli-
mate (R. Liu et al., 2018, 2020; Xie et al., 2018; X. Zhang
et al., 2017; Zhang et al., 2021a). X. Zhang et al. (2017)
added an irrigation scheme to the WRF model and identi-
fied strong cooling and wetting effects on irrigated cropland
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in the midstream of the HRB. Liu et al. (2020) investigated
the oasis–desert microclimate effects based on an improved
CFD model and found that the oasis had a cold and wet is-
land effect and wind shield effect. Zhang et al. (2021b) ap-
plied the WRF-Hydro model in the HRB and emphasized
the role of lateral flow in the regional precipitation circu-
lation. These studies illustrate that mesoscale climate mod-
els can be used as essential tools to better understand re-
gional climate and land–atmosphere interactions in the HRB.
However, the advantages of improving the representation of
soil and vegetation processes in affecting regional climate
via the coupled DA and ML framework have not been fully
exploited, especially in basins with complex underlying sur-
faces. Therefore, this study aims to investigate the improve-
ment in the hybrid DA and ML framework for regional cli-
mate and land–atmosphere interactions in the HRB, based
on the WRF model, and to further reveal its physical mecha-
nisms.

The goals of this study were to (1) couple the hybrid DA
and ML (DA-ML) framework to the WRF model and im-
prove the estimation of LAI and SM, (2) validate the H

and LE with the large aperture scintillometer (LAS) observa-
tions and compare the ET estimates with the ML-based wa-
tershed ET, (3) investigate the performance of the air temper-
ature and specific humidity estimates and evaluate the effects
of the hybrid framework on near-surface atmospheric condi-
tions in the mid- and downstream oasis regions, and (4) dis-
cuss the effects of the hybrid framework on wind speed and
precipitation in the HRB.

2 Study area and dataset

The HRB (37.7–42.7◦ N, 97.1–102.0◦ E) is the second-
largest endorheic river basin in Northwest China and has an
area of approximately 143 000 km2, and the elevation ranges
from 800 to 5000 m (Fig. 1). The annual precipitation is ap-
proximately 400 mm, and it gradually decreases from the
upstream region of the HRB (south) to the downstream re-
gion (north). Land cover types exhibit spatial zonation in the
HRB. The upstream region is a typical mountainous envi-
ronment, including extensive alpine meadows, a few Qing-
hai spruces, glaciers, snow, and permafrost. The midstream
region is spatially composed of oasis–desert ecosystems, and
irrigated cropland is the main component of the oasis in this
area. The downstream region of the HRB is covered mainly
by desert and riparian ecosystems (Populus euphratica and
tamarisks). Water vapor transport in this region is predomi-
nantly controlled by midlatitude westerly and polar northerly
winds (Pan et al., 2021b). As a result, precipitation over the
HRB shows strong spatial variability, with more than 70 %
occurring in the upstream mountains (L. Wang et al., 2018;
X. Wang et al., 2018). Nine fluxes and meteorological sta-
tions selected from the Heihe integrated observatory network
were used for comparison with the model results (Fig. 1).

Among them, the Arou, Dashalong, and Hulugou stations in
the upstream region of the HRB are covered by alpine mead-
ows, while the Daman, wetland, and Huazhaizi stations in
the midstream region are covered by irrigated cropland, wet-
lands, and desert, respectively. The Sidaoqiao, mixed forest,
and desert stations in the downstream regions are covered by
Populus euphratica, tamarisk, and desert, respectively. More
details on the in situ information and measurement instru-
ments can be found in Chen et al. (2014), Li et al. (2013),
and S. Liu et al. (2018).

To provide a high-resolution land cover and soil texture
dataset that matched the WRF simulation period, the regional
land cover and soil texture product generated by Zhong et
al. (2014) and Song et al. (2016), with a spatial resolution
of 30 m, was employed. These datasets were downloaded
from the National Tibetan Plateau Data Center (TPDC; Pan
et al., 2021a; https://data.tpdc.ac.cn/en/, last access: 8 Jan-
uary 2022). The elevation data were generated by NASA’s
Shuttle Radar Topography Mission (SRTM3; 90 m), and
these data were obtained from the Geospatial Data Cloud
(http://www.gscloud.cn/, last access: 8 January 2022). The
assimilated LAI data were retrieved from the Global Land
Surface Satellite (GLASS) product with a spatial resolution
of 1 km (Xiao et al., 2014; http://www.glass.umd.edu/, last
access: 5 December 2020). Daily LAI observations were
generated by linearly interpolating the original 8 d GLASS
LAI product. The GLASS product has been demonstrated
to have better accuracy than the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and Advanced Very High
Resolution Radiometer (AVHRR) and provides a continu-
ous time–space LAI estimation (Xiao et al., 2014). The daily
Soil Moisture Active Passive (SMAP) SM product (https:
//appeears.earthdatacloud.nasa.gov/, last access: 5 Decem-
ber 2020), with a spatial resolution of 9 km, was integrated
into the hybrid framework.

In this study, SM observations from the ecohydrological
wireless sensor networks (WSNs) up- and midstream regions
of the HRB are used as an independent validation to evaluate
the SM estimates from the WRF (DA-ML). The validation
SM dataset in the upstream regions was mainly covered by
grassland and obtained by averaging SM observations from
40 nodes. There are nine network nodes installed in the LAS
source area at Daman station that measured SM at the depths
of 10 cm every 5 min (Che et al., 2019; S. Liu et al., 2018)
(https://data.tpdc.ac.cn/en/, last acces: 8 January 2022). The
half-hourly H was measured by the LAS instrument at the
Arou, Daman, and Sidaoqiao sites. LE in these sites was ob-
tained as the residual method of the energy balance equa-
tion (S. Liu et al., 2016). Compared to eddy covariance (EC)
observations, the scintillometer provided kilometer-scale H

and LE and is widely used for the validation of remote sens-
ing products and model simulations (Zheng et al., 2023).
ETMap is a ML-based watershed ET product (daily per
1 km) based on EC observations, remote sensing data, me-
teorological data, and the random forest method (Xu et
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Figure 1. (a) Land surface elevation, (b) meteorological stations, and land cover types in the study area. The solid blue and black lines
represent the river and the boundary of the HRB, respectively.

al., 2018). The retrieved ET from the ETMap agrees well
with the LAS observations. The multi-site-averaged R2, root
mean square error (RMSE), and mean absolute percentage
error (MAPE) values are 0.68, 0.85 mm d−1, and 20.27 %,
respectively. These results confirm that the ETMap can effec-
tively validate watershed ET simulations. In this study, nine
automatic weather station (AWS) observations were used
to validate the WRF meteorological simulations. The AWS
variables at each station include the wind speed/direction,
air temperature/humidity, precipitation, air pressure, four-
component radiation, soil heat flux, and soil temperature/-
moisture profile, etc. (S. Liu et al., 2018). The data recorded
at these stations were obtained from the Heihe-integrated ob-
servatory network released by the TPDC (S. Liu et al., 2018).
The locations of the stations are shown in Fig. 1. Among
them, the Hulugou weather station observations are produced
by Chen et al. (2014). Precipitation datasets from the China
Meteorological Forcing Dataset (CMFD; J. He et al., 2020)
and atmospheric forcing data (AFD) in the HRB (Pan et al.,
2014) were compared with the WRF (DA-ML) simulations.
These datasets were obtained from the TPDC. The CMFD
generates a gridded meteorological dataset with a spatial res-
olution of 0.1◦ and a temporal resolution of 3 h by fusing
observations from 740 operational stations of the China Me-
teorological Administration. Pan et al. (2014) generated grid-
ded atmospheric forcing data using the WRF model over the
HRB at an hourly 0.05◦ resolution. These datasets have been
widely used as input data for various models and for environ-
mental and climate change analyses (Xu et al., 2019; Zhang
et al., 2016).

3 Methodology

3.1 WRF model setup

The advanced research WRF model version 4.0.3 (Ska-
marock et al., 2019) was used in this study. The WRF
is a state-of-the-art numerical weather and climate model
designed by the National Center for Atmospheric Re-
search (NCAR) for meteorological research and numeri-
cal weather predictions (Wang et al., 2021). The model
source code is available at the official repository for WRF
(https://github.com/wrf-model/WRF, last access: 28 Decem-
ber 2021). The model domain covering the HRB con-
sisted of two-way nested domains with 9 and 3 km grid
spacing. Only the simulation results for the 3 km grid
were used in this study (Fig. 1). This high-resolution set-
ting excludes the uncertainty in the cumulus parameteri-
zation and thus simulates the soil–precipitation feedback
more realistically (Prein et al., 2015). In the vertical direc-
tion, 28 vertical sigma levels from the surface to 50 hPa
were used. The atmospheric lateral boundary conditions
in the WRF model were provided by the ERA5 reanaly-
sis dataset, with a 0.25◦ spatial resolution and hourly tem-
poral resolution (https://cds.climate.copernicus.eu/cdsapp#
!/search?type=dataset, last access: 8 January 2022). It is
widely used in WRF simulations and provides boundary and
initial conditions (Liu et al., 2021; Ma et al., 2022). The land
cover, soil texture, elevation, and GLASS LAI dataset were
resampled to 3 km to be consistent with the model simulation
resolution. The physical parameterization schemes selected
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Table 1. WRF model setup. Note that RRTM is for the rapid radiative transfer model.

Simulation period May to September 2015

Horizontal grid spacing 9 km (100× 181 grid points), 3 km (181× 220 grid points)
Vertical levels 28 sigma levels
Forcing data ERA5 (0.25◦, hourly)
Spin-up time April (1 month)
Longwave radiation RRTM scheme (Mlawer et al., 1997)
Shortwave radiation RRTM scheme (Mlawer et al., 1997)
Microphysics (MP) Thompson scheme (Thompson et al., 2008)
Planetary boundary layer (PBL) Mellor–Yamada–Janjic scheme (Janjic, 1994)
Surface layer Eta similarity scheme (Janjic, 1994)
Land surface model (LSM) Noah-MP land surface model (Yang et al., 2011)

in this study included the rapid radiative transfer model
(RRTM) longwave and shortwave radiation scheme (Mlawer
et al., 1997), Thompson microphysics scheme (Thompson et
al., 2008), Mellor–Yamada–Janjic planetary boundary layer
scheme (Janjic, 1994), and Noah-MP land surface scheme
(Yang et al., 2011). The time step was 30 s, and the time res-
olution of the model output was hourly. Further details re-
garding the WRF model setup are presented in Table 1. The
dynamic vegetation parameterization scheme was turned on
in the Noah-MP model to generate dynamic LAI simulations.
We resampled the spatial resolution of the WRF simulations
to 1 km with the bilinear interpolation method for compari-
son with the station observations.

3.2 Hybrid model

In this study, the hybrid model proposed by He et al. (2022)
based on the DA and ML methods was incorporated into
the WRF model to improve the LAI, SM, and ET simula-
tions. The hybrid approach relies on the DA method to up-
date the vegetation dynamics of the Noah-MP model and the
ML method to construct a three-layer SM surrogate model.
Compared with the direct assimilation of coarse-resolution
remotely sensed SM, the hybrid model can improve the es-
timation of SM and ET on the heterogeneous land surface.
This is because in situ SM profile observations are used to
construct an ML-based surrogate model to improve SM and
ET estimation on complex underlying surfaces.

In the DA part, the remotely sensed LAI was assimi-
lated using the ensemble Kalman filter (EnKF) method to
update the leaf biomass (LFMASS) and optimize the spe-
cific leaf area (SLA) in the Noah-MP model. LAI is esti-
mated as the product of leaf biomass predictions and SLA
(LAI=LFMASS×SLA) in the Noah-MP model. Model
ensembles were generated by adding normally distributed
random errors to the model states (LFMASS) and parame-
ters (SLA). The ensemble size is set as 40 to ensure an ac-
curate approximation of the error covariances while main-
taining computational efficiency (Seo et al., 2021). Normally
distributed errors with a mean of zero and a standard devia-

tion of 10 g m−2 were added to the LFMASS (Ahmad et al.,
2022; Xu et al., 2021). The standard deviation of the SLA
was set to 10 % of the default parameter (Xu et al., 2021).
Furthermore, a uniform observation error standard deviation
of 0.1 (–) was added to the remotely sensed LAI (He et al.,
2022; Xu et al., 2021). These relevant statistical values have
been widely used in previous LAI DA studies (Ahmad et al.,
2022; Ling et al., 2019; Rahman et al., 2022).

In the ML part, the normalized soil texture (ST), land
cover (LC), air temperature and humidity (Ta and RH), wind
speed (U ), precipitation (P ), solar radiation (Rs), LAI, and
SM observations were used to construct the SM surrogate
model. ST, LC, Ta, RH, U , P , Rs, and LAI are the predictor
variables. The in situ SM profile observations (from 19 auto-
matic weather stations) and SMAP SM products in the HRB
are used as target variables to train and test the SM surrogate
model. The extreme gradient boosting (XGBoost) method
was chosen in the SM surrogate model to improve multi-
layer SM simulations. The first layer (the top 0.1 m) of in
situ SM observations and SMAP SM were trained to estab-
lish the surface layer ML model. The averaged second (0.1–
0.4 m) and third (0.4–1.0 m) layers of in situ SM observations
were used to construct the root zone ML models. The SM ob-
servations at different depths were averaged to be consistent
with the Noah-MP model soil layer. The number of SM train-
ing samples in the first, second, and third layers are 9824,
7804, and 7793, respectively. A 10-fold testing method is
employed to examine the performance of each ML method.
In each fold, 90 % of the training samples are used to train
the model, and the remaining 10 % of the data is used to
test the model. The SM surrogate model can consider the ef-
fects of midstream irrigation events and downstream shallow
groundwater tables on SM and improve Noah-MP ET esti-
mates. More details regarding this method can be found in
He et al. (2022).

The coupled land–atmosphere DA-ML system consists of
two steps. In the first step, the meteorological forcing data
were generated from the WRF model at time t . Then, the
meteorological forcing data and initial states were input into
the Noah-MP model to simulate the LAI, SM, and ET. In the
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Figure 2. (a) Details of the hybrid DA and ML method and (b) a flowchart of the coupling with the WRF model.

second step, the hybrid DA-ML method was used to update
the LAI and SM estimates in the Noah-MP model at time
t + 1. In this step, the LAI is updated by the DA method,
and the SM is updated via the ML-based surrogate model.
The updated soil and vegetation conditions were re-fed into
the WRF model and affected the atmospheric structure and
state. Eventually, the WRF model and the DA-ML method
are coupled at the daily scale through the cycles of steps one
and two. The flowchart of the hybrid DA and ML method
coupled with the WRF model is shown in Fig. 2.

Two experiments were conducted using the WRF model
to investigate the effects of the DA-ML method. These two
experiments consisted of an experiment under natural con-
ditions without DA and ML (WRF (OL), where OL is
open loop) and another experiment implementing DA and
ML (WRF (DA-ML)). The simulation covered the period of
the vegetation growing season (from 1 April to 30 Septem-
ber 2015), and the first month was used for the spin-up. The
computation details about the WRF (OL) and WRF (DA-
ML) are shown in Table A1. The differences between the
WRF (DA-ML) and WRF (OL) simulations were used to
investigate the effects of LAI and SM integration. The root
mean square deviation (RMSD) and coefficient of determi-
nation (R2) statistical metrics were used to evaluate the per-
formance of the WRF (DA-ML) model, as follows:

RMSD=

√√√√1
n

n∑
i=1

(Pi −Oi)
2 (1)

R2
=

[
n∑

i=1

(
Pi −P

)(
Oi −O

)]2

n∑
i=1

(
Pi −P

)2 n∑
i=1

(
Oi −O

)2 , (2)

where Pi and Oi are the predicted and observed values at
time step i, respectively. P and O represent the mean values
of Pi and Oi .

4 Results and discussion

4.1 Validation of the hybrid model

Figure 3 shows the monthly averaged LAI estimates from the
WRF (OL), WRF (DA-ML), and GLASS products. As indi-
cated, the WRF model failed to capture the magnitude and
seasonality of the LAI. This is because the simulation of LAI
dynamics in Noah-MP is controlled by the planting date, har-
vest date, and growing degree days in the cropland (X. Liu
et al., 2016). In addition, an inaccurate specification of the
SM saturation, Vcmax25, and Clapp–Hornberger b parame-
ter affects photosynthesis and biomass accumulation in veg-
etation (Cuntz et al., 2016; Levis et al., 2012). All these pa-
rameters are site-specific and empirical and cannot be easily
applied across regions. The assimilation systematically in-
creased LAI during the growing season, and a significant in-
crement in LAI was observed in midsummer (June–August).
The seasonal pattern of the WRF (DA-ML) was more con-
sistent with that of the GLASS LAI than the WRF model,
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Figure 3. Seasonal variations in the LAI estimates for cropland,
grassland, forest, and shrubland in the HRB.

which indicates that the WRF (DA-ML) provides essential
information for modeling vegetation dynamics. The simu-
lated LAIs from WRF (OL) in the cropland, grassland, forest,
and shrubland areas were 1.12, 1.05, 1.49, and 0.33 m2 m−2,
respectively, all of which were lower than that of the GLASS
LAI. After assimilation, the simulated bias in the LAI from
WRF (DA-ML) in the HRB can be reduced from 0.94 to
0.11 m2 m−2. The results also show that the WRF (DA-ML)
systematically overestimates the LAI, especially in the crop-
land. This is because, in addition to LAI assimilation, the
integration of multi-source SM observations also affects the
LAI dynamics.

The SM estimates from the WRF (OL) and WRF (DA-
ML) are validated over the up- and midstream WSNs in
Fig. 4. The SM estimates from the WRF model were
markedly lower than WSN observations for cropland because
the impacts of irrigation events on SM estimates are not fully
considered in the Noah-MP model (He et al., 2022; Zhang et
al., 2020). The Noah-MP model also slightly underestimates
SM in the upstream regions because it ignores the effects of
dense root systems and soil organic matter on SM estima-
tion (Chen et al., 2012; Sun et al., 2021). As anticipated,
SM predictions from the WRF (DA-ML) are closer to the
measurements than those of WRF. WRF (DA-ML) SM re-
trievals indicate a reasonable response to the precipitation
and irrigation events in the midstream cropland. Similarly,
the WRF (DA-ML) SM dynamics show a characteristic re-
sponse to precipitation in the upstream regions. The results
also indicate that the SM simulations from the WRF (DA-
ML) model find it hard to capture the observed peak values.
This is because the prediction accuracy of the ML methods
is limited by the training dataset. This also means that if the

model is applied under extremely wet conditions with sparse
training data, then the performance of the hybrid model will
decrease as the number of training samples decreases. In gen-
eral, the WRF (DA-ML) can use the information contained
in remotely sensed LAI and multi-source SM observations to
improve land surface conditions.

Figure 5 shows the spatial patterns of the averaged LAI
and SM estimates from May to September 2015. The WRF
simulation significantly underestimated the LAI, particularly
in the up- and midstream vegetation areas of the HRB. In ad-
dition, it underestimated the SM in the mid- and downstream
vegetation regions. The integration of LAI and SM into the
WRF model improved the estimation of leaf biomass and SM
and increased LAI and SM in the HRB. The maps of esti-
mated LAI and SM from the DA-ML method consistently
resembled the rainfall, vegetation cover, irrigation event, and
shallow groundwater table features (Xu et al., 2018, 2020).
The precipitation in the upstream mountains, irrigation in
the midstream oasis, and shallow groundwater in the down-
stream oasis enhance SM and provide the necessary water
supply for vegetation growth (Li et al., 2022). Figure 5 also
shows the LAI and SM differences between the WRF (DA-
ML) and WRF (OL) simulations. The maximum LAI (SM)
difference from the WRF (DA-ML) and WRF (OL) simula-
tions reaches approximately 2.24 m2 m−2 (0.16 m3 m−3) and
is present in the midstream oasis of HRB. The difference be-
tween the WRF (OL) and WRF (DA-ML) was due to the
effects of irrigation and crop growth. Similarly, this differ-
ence in the downstream oasis is a result of the shallow wa-
ter table and the growth of riparian forests. In the upstream
alpine meadows, the LAI simulated by the WRF (DA-ML)
was greatly increased compared to that of the WRF (OL).
However, the SM enhancement in the WRF (DA-ML) was
not significant due to the sufficient precipitation in moun-
tainous areas.

4.2 Sensible and latent heat fluxes

Figure 6 compares the daily H and LE estimates from the
WRF (OL) and WRF (DA-ML) models with the LAS at
the Arou, Daman, and Sidaoqiao sites. As indicated, the re-
trieved H and LE from the WRF (DA-ML) model agree
well with the observations and mainly fall around the 1 :
1 line. The WRF (DA-ML) model performs better than the
WRF (OL) model because of the improved LAI and SM sim-
ulations. The statistics of turbulent heat flux estimates at
the three sites are summarized in Table 2. The three-site-
averaged RMSD of daily H and LE predictions for the
WRF (OL) model are 53.61 and 63.73 W m−2, respectively.
The WRF (DA-ML) model decreases the abovementioned
RMSDs by 43.74 % and 23.98 %. The relatively low RMSD
values indicate that the WRF (DA-ML) model can accurately
estimate turbulent heat fluxes over different sites with con-
trasting environmental conditions. The results also show that
the simulated H and LE of the WRF (DA-ML) model are
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Figure 4. The time series of SM estimates from the WRF (OL) and WRF (DA-ML) models against the up- and midstream WSN observations
in 2015.

Figure 5. The LAI and SM estimates from the WRF (OL) and WRF (DA-ML) models during the growing season in 2015 and the average
difference in the LAI and SM between the WRF (DA-ML) and WRF (OL) (i.e., WRF (DA-ML) minus WRF (OL)).
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Figure 6. Scatterplot of daily sensible and latent heat flux estimates from the WRF (OL) and WRF (DA-ML) models versus measurements
at the Arou, Daman, and Sidaoqiao sites.

Table 2. Statistical indices of daily H and LE estimates from the WRF (OL) and WRF (DA-ML) models at the Arou, Daman, and Sidaoqiao
sites.

Site H LE

WRF WRF WRF WRF
(OL) (DA-ML) (OL) (DA-ML)

Arou R2 (–) 0.49 0.53 0.46 0.67
RMSD (W m−2) 39.57 29.72 47.21 43.52

Daman R2 (–) 0.16 0.52 0.18 0.65
RMSD (W m−2) 59.74 23.18 61.06 49.69

Sidaoqiao R2 (–) 0.19 0.48 0.12 0.56
RMSD (W m−2) 61.53 37.59 82.93 52.13

Three-site average R2 (–) 0.28 0.51 0.25 0.63
RMSD (W m−2) 53.61 30.16 63.73 48.45

still higher and lower than the observed values at the Sidao-
qiao site. This is because the spatial representation of the
model simulation (3 km) is inconsistent with the LAS mea-
surements (path length of 2350 m). This mismatch will in-
troduce uncertainty in the validation results, especially in
heterogeneous land surfaces (Y. Zhang et al., 2022). The
LE measurements of the LAS instrument are obtained from
the residuals of the surface energy balance equation, which
may lead to uncertainties in the LE observations. In addi-
tion, the higher surface heterogeneity and complex hydro-
logical processes in the downstream oasis affect the training

accuracy of the ML method, which further affects the perfor-
mance of the WRF (DA-ML) model (He et al., 2022).

Figure 7 shows the spatial distribution of ET estimates
from the WRF (OL), WRF (DA-ML), and ETMap over the
HRB. The results indicate that the ET values from the WRF
model were underestimated, especially in the midstream oa-
sis region, which was mainly because the WRF model un-
derestimated the SM and LAI (see Figs. 3 and 4) during the
growing season. Compared with the WRF (OL) model, the
WRF (DA-ML) method improves the estimation of ET, and
the spatial distribution is consistent with that of ETMap be-
cause of the effective information contained in the remote
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Figure 7. Spatial distribution of evapotranspiration estimates obtained from the WRF (OL), WRF (DA-ML), and ETMap during the growing
season in 2015.

sensing LAI and multi-source SM observations. The estima-
tion of ET in the WRF (OL) is sensitive to SM and vege-
tation dynamics, especially in semi-arid regions. Therefore,
the WRF (DA-ML) model will produce more improvements
in the mid- and downstream oasis regions compared to the
WRF (OL) model. The spatial patterns of ET from the DA-
ML method showed a significant gradient from wet to dry,
owing to variations in the precipitation and vegetation cover.
In the upstream regions of the HRB, the spatial pattern of
retrieved ET was mainly controlled by precipitation and veg-
etation cover. The ET values were higher in areas with heav-
ier precipitation and denser vegetation. In the midstream re-
gion, the spatial pattern of ET was well aligned with the oasis
caused by crop growth and irrigation. Meanwhile, the ET val-
ues were higher in the downstream oasis because of shallow
water tables and transpiration from riparian forests (Xu et al.,
2018, 2020). The sparsely vegetated areas covered by desert
and Gobi in the mid- and downstream regions had the lowest
ET values. The results show that the integration of remotely
sensed LAI and multi-source SM observations is essential for
studying land–atmosphere water vapor fluxes (ET) because
of the realistic land surface conditions.

4.3 Air temperature and specific humidity

The monthly averaged 2 m air temperature and specific hu-
midity from the WRF (OL), WRF (DA-ML), and corre-
sponding observations at nine sites are shown in Figs. 8
and 9. As indicated, the WRF model overestimated (un-
derestimated) the air temperature (specific humidity) in the
HRB, especially in the midstream oasis (Daman and wet-
land stations), which was mainly because the WRF model
underestimated the SM and LAI (see Figs. 3 and 4) in the
HRB. Compared to the WRF model, the WRF-(DA-ML)-
simulated seasonal cycles of air temperature and specific hu-

midity at the nine sites were closer to the measurements,
which was because the integration of remotely sensed LAI
and multi-source SM observations improves the estimation
of vegetation dynamics and SM, decreases the air tempera-
ture, and increases the specific humidity. The increased spe-
cific humidity was due to the enhanced evaporation from
the soil and stronger transpiration from the expanded veg-
etation cover. Simultaneously, evaporation absorbs a large
amount of energy, thereby reducing the air temperature (Wen
et al., 2012). The discrepancy between the WRF (OL) and
WRF (DA-ML) was amplified in the middle of the grow-
ing season (June, July, and August) due to dense grow-
ing vegetation and higher SM caused by several irrigation
events. After integrating LAI and SM, the simulated air tem-
perature and specific humidity values from the Daman sta-
tion decreased and increased by approximately 1.75 K and
1.86 g kg−1, respectively. But for Sidaoqiao, the air temper-
ature and specific humidity decrease and increase by about
0.59 K and 0.41 g kg−1, respectively. The results show that
the midstream artificial oasis exhibits a stronger cold and
wet island effect than the downstream natural oasis. The esti-
mated air temperature and specific humidity increased from
May to July and decreased from August to September. The
specific humidity estimated at Daman exhibited significant
seasonal variations due to irrigation events and crop phenol-
ogy.

Tables 3 and 4 further compare the simulated air temper-
ature and specific humidity with the same variables from
the station observations. The WRF (OL) results show a dry
bias in the HRB region, which is reduced by the simulation
of the WRF (DA-ML). The statistical metrics (i.e., R2 and
RMSD) of the daily air temperature and specific humidity
estimates from the WRF (OL) and WRF (DA-ML) methods
are shown in Tables 3 and 4. For the nine sites, the average
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Figure 8. Monthly averaged air temperature simulations from the WRF (OL) and WRF (DA-ML) versus the observations at nine sites in 2015
(error range denotes the standard deviation).

Table 3. Averaged air temperature and R2 and RMSD of the WRF (OL) and WRF (DA-ML) compared with the measurements at the nine
sites. Note that Obs stands for observation and Sim for simulation.

Study site WRF (OL) WRF (DA-ML)

Obs Sim R2 RMSD Sim R2 RMSD
(–) (K) (–) (K)

Arou 281.48 282.15 0.87 1.48 281.44 0.89 1.11
Dashalong 276.32 277.76 0.84 1.97 276.56 0.86 1.75
Hulugou 279.01 280.06 0.86 1.33 279.05 0.90 1.21
Daman 290.75 292.91 0.84 2.36 291.16 0.88 1.52
Wetland 292.49 293.99 0.90 1.98 292.29 0.92 1.31
Huazhaizi 292.09 292.64 0.91 1.33 291.94 0.94 1.12
Sidaoqiao 295.84 296.12 0.92 1.80 295.53 0.94 1.47
Mixed forest 295.68 296.31 0.92 1.83 295.32 0.93 1.56
Desert 296.30 296.79 0.93 2.04 295.77 0.95 1.61

Average 288.88 289.85 0.89 1.79 288.78 0.91 1.41

RMSD of the air temperature (specific humidity) estimates
from the WRF (DA-ML) was 1.41 K (0.82 g kg−1), which
was 21.23 % (24.07 %) lower than the RMSD of 1.79 K
(1.08 g kg−1) from the WRF model.

Figure 10 compares the spatial patterns of the air temper-
ature and specific humidity maps from the WRF (OL) and
WRF (DA-ML). Compared with the WRF (OL), significant

differences were observed in the WRF (DA-ML). The in-
tegration of LAI and SM decreases air temperature and in-
creases specific humidity in the vegetated area of the HRB,
particularly in the midstream oasis region. The spatial distri-
bution of specific humidity from the WRF (DA-ML) is con-
sistent with the LAI and SM maps in Fig. 5 and the ET map
in Fig. 7. The results show that the improved LAI and SM
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Figure 9. Monthly averaged specific humidity simulations from the WRF (OL) and WRF (DA-ML) versus the observations at nine sites
in 2015 (error range denotes the standard deviation).

Table 4. Averaged specific humidity and R2 and RMSD of the WRF (OL) and WRF (DA-ML) compared with the measurements at the nine
sites.

Study site WRF (OL) WRF (DA-ML)

Obs Sim R2 RMSD Sim R2 RMSD
(–) (g kg−1) (–) (g kg−1)

Arou 6.13 5.90 0.85 0.88 6.31 0.88 0.78
Dashalong 5.33 4.78 0.87 0.83 5.42 0.88 0.71
Hulugou 5.74 5.34 0.82 0.82 5.81 0.85 0.78
Daman 7.97 6.12 0.74 2.26 7.98 0.82 1.04
Wetland 7.09 5.94 0.81 1.55 7.57 0.84 1.03
Huazhaizi 6.78 6.05 0.79 1.25 7.13 0.84 1.10
Sidaoqiao 5.14 4.76 0.91 0.73 5.17 0.91 0.64
Mixed forest 4.96 4.75 0.90 0.68 5.09 0.91 0.63
Desert 5.17 4.73 0.91 0.75 5.09 0.91 0.65

Average 6.03 5.37 0.84 1.08 6.17 0.87 0.82

simulations lead to different land surface dynamic and ther-
mal characteristics between the oasis and desert. This dif-
ference leads to oasis–desert interactions and produces mi-
croclimatic effects, including the cooling and wetting effects
of the oasis. The average simulated air temperature from
WRF (OL) and WRF (DA-ML) methods in the midstream
oasis were 293.64 and 291.32 K, respectively. In contrast,

the near-surface air temperatures over the desert are approx-
imately 294.13 and 293.54 K, respectively. The difference in
air temperature between the oasis and desert areas indicates
that the oasis areas represent a cold and wet island compared
to the surrounding desert. This difference is amplified after
the implementation of the DA-ML method. The significant
wetting and cooling effects propagate in desert areas to a
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maximum distance of approximately 5–10 km from the edge
of the oasis. In the midstream oasis, the dominant vegeta-
tion is irrigated cropland, and the vegetation cover was only
approximately 42 % in the original WRF model; however,
the vegetation cover was updated to approximately 70 % in
the WRF (DA-ML). The different land surface dynamic and
thermal characteristics between the oasis and desert can pro-
duce oasis–desert interactions and enhance local circulation.
The oasis–desert interactions create a water vapor flux from
the oasis to the surrounding desert. This transport process is
beneficial for increasing desert water vapor and maintaining
the sustainability of desert vegetation (Li et al., 2016; Liu et
al., 2020). A similar pattern was observed in the downstream
oasis. However, because of the decreased SM and vegetation
cover (Fig. 5), the downstream oasis exhibited a weaker wet
island effect. The results also indicated that enhanced vegeta-
tion transpiration increases specific humidity and reduces air
temperature owing to increased LAI in the upstream region
of the HRB.

The abovementioned findings show that the proposed
WRF (DA-ML) method exhibits strong wetting and cooling
effects in the mid- and downstream oasis. These wetting and
cooling effects reduce the air warming bias and dry bias in
the simulation. Therefore, the WRF (DA-ML) simulation is
much closer to the observations than the WRF (OL) simu-
lation. Two vertical profiles were selected in Fig. 10 to fur-
ther analyze the effect of the DA-ML on the local climate
in the mid- and downstream areas. The difference between
the WRF (DA-ML) and WRF (OL) methods is used to repre-
sent the enhanced cooling and wetting effects after improv-
ing the LAI and SM simulations. As illustrated in Fig. 11, the
enhanced wetting and cooling effects of the midstream oa-
sis were the strongest in the southern irrigated cropland and
gradually decreased in the northern desert areas. The magni-
tudes of the surface wetting and cooling effects were consis-
tent with the differences in LAI and SM estimates from the
WRF (DA-ML) and WRF (OL). For example, the difference
in LAI and SM peaks at 38.08◦ N and the wetting and cooling
effects of midstream irrigated cropland were also stronger in
this region. These results suggest that the wetting and cool-
ing effects caused by irrigation and vegetation growth oc-
cur mainly in the oasis region and do not affect more distant
non-oasis areas. Moreover, the wetting and cooling effects
of the oasis were mainly concentrated in the boundary layer,
gradually decreased from the land surface upward, and were
replaced by slightly warming and drying effects. Such warm-
ing and drying effects may be related to the enhanced subsi-
dence over the oasis. Similar results have been demonstrated
in several previous studies (Liu et al., 2020; Wen et al., 2012;
X. Zhang et al., 2017; M. Zhang et al., 2017).

Figure 12 shows the same wetting and cooling effects in
the downstream oasis. Compared to the midstream irrigated
cropland, the downstream oasis wetting and cooling effects
were mainly influenced by the growth of riparian forests
and shallow groundwater tables. The wetting and cooling

effects showed maximum values at 42.01◦ N owing to the
strong LAI and SM shifts. The results also indicate that the
wetting and cooling effects of the downstream oasis were
weaker than those of the midstream oasis. By integrating LAI
and SM, the air temperature in mid- and downstream oasis
decreases by 0.96 and 0.12 K and the specific humidity in-
creases by 0.52 and 0.06 g kg−1, respectively. In general, the
integration of the LAI and SM data can produce more real-
istic land surface conditions in the oasis region and lead to
stronger wetting and cooling effects.

4.4 Wind speed and precipitation

The mean wind vectors at 10 m during the growing sea-
son from the WRF (OL) and WRF (DA-ML) in the mid-
and downstream oases are shown in Fig. 13. By comparing
the simulated wind speeds in the oasis and the surrounding
desert, we found that crops, shelterbelts, and residential ar-
eas in the midstream oasis produced a wind shield effect. The
wind speed within the oasis is less than that of the surround-
ing desert because the drag force of crops, shelterbelts, and
residential areas reduces the wind speed and also changes the
wind direction (Liu et al., 2020). In Fig. 13, the heat transfer
coefficient (Ch) from the WRF (DA-ML) was used to com-
pare the surface roughness in the oasis with that of the sur-
rounding desert. Ch is an important parameter for calculat-
ing the heat transfer between the land and atmosphere, and it
is mainly related to the length of the surface roughness and
the intensity of the stability of the atmospheric surface layer
(Smedman et al., 2007). The results show that the Ch es-
timates are higher and reduce the wind speed in the mid-
stream oasis compared to the surrounding desert. Ozdogan
and Salvucci (2004) and Liu et al. (2020) also showed that
crop growth enhanced the surface roughness and slow wind
speed. Figure 13 also shows that the wind speed values from
the WRF (DA-ML) scheme are slightly lower than those
from the WRF (OL) scheme. The average wind speed in the
midstream oasis was reduced from 1.92 to 1.23 m s−1 by in-
tegrating the LAI and SM. As mentioned earlier, the different
dynamic and thermal characteristics between the oasis and
desert can produce oasis–desert interactions and generate lo-
cal circulation, which drives the cold and moist airflow from
the oasis to the surrounding desert in the lower atmosphere.
As shown in Fig. 13, the area to the south of the midstream
irrigated cropland is the Qilian Mountains, whereas the area
to the north is a large desert. Therefore, the southerly airflow
generated by the midstream oasis weakened the background
north wind. The mean wind vectors in the downstream oa-
sis are shown in Fig. 13. The wind speed in the downstream
desert regions is slightly higher than in the oasis regions. The
lower wind speed in the mid- and downstream oasis is help-
ful to plant growth, people’s survival in the environment, and
the maintenance of the oasis and desert ecosystem (Wang
and Cheng, 1999). The results also indicated that the wind
vector in the downstream oasis was mainly controlled by the
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Figure 10. Spatial distribution of the air temperature and specific humidity estimates from the WRF (OL) and WRF (DA-ML) during the
growing season in 2015 and the average difference in air temperature and specific humidity between the WRF (DA-ML) and WRF (OL)
(i.e., WRF (DA-ML) minus WRF (OL)). The blue line indicates the mid- and downstream oasis vertical profile used in Figs. 11 and 12.

background northerly wind and the effects of LAI and SM
integration on the wind vectors were weaker.

The integration of the LAI and SM affected the wind speed
at the land surface and the local circulation through oasis–
desert interactions. Figure 14 shows the zonal mean vertical
velocity and local meridional circulation in the midstream
oases from the WRF (OL) and WRF (DA-ML). Compared
with the flat topography of the downstream oasis, the topog-
raphy of the midstream oasis generally varies from plains to
mountains (from low to high altitude) from north to south.
The surface dynamic and thermal characteristics of the oa-
sis and surrounding desert differed significantly; therefore,
strong horizontal temperature and humidity field gradients
were observed at the intersection of the boundary layer of the
mountains, oasis, and surrounding desert (Meng et al., 2015;
Wen et al., 2012). The air humidity and vegetation cover in
the midstream oasis were enhanced by integrating the LAI
and SM, which resulted in stronger evaporation from irri-

gated cropland than from the surrounding desert. As shown
in Fig. 14, the divergence of the lower atmosphere over
the midstream oasis is enhanced, and the wet and cold air
masses are transferred to the surrounding desert through ad-
vection, whereas the dry and hot air is transferred into the oa-
sis from the upper atmosphere. In the upper atmosphere, the
desert-to-oasis air masses enhance the background northerly
winds, which promote atmospheric water vapor transport in
the HRB. However, oasis–desert interactions are weaker in
the downstream region (Fig. A1) than in the midstream re-
gion under actual weather or climate conditions, which is at-
tributed to the local circulation being weakened by stronger
background northerly winds. Overall, the simulation of soil
and vegetation characteristics can be improved by integrating
LAI and SM and enhancing land–atmosphere interactions in
mid- and downstream oases.

Figure 15 exhibits the influence of the DA-ML on precip-
itation in the HRB. The results show that the integrated LAI
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Figure 11. Mean vertical profile of differences in air temperature and specific humidity between the WRF (DA-ML) and WRF (OL)
(i.e., WRF (DA-ML) minus WRF (OL)) and mean LAI and SM during the growing season in 2015 in the midstream oasis. The dashed
and solid lines represent the WRF (OL) and WRF (DA-ML), respectively. The shaded white area represents the change in elevation. The
orange bar represents the oasis area.

Figure 12. Mean vertical profile of differences in air temperature and specific humidity between the WRF (DA-ML) and WRF (OL)
(i.e., WRF (DA-ML) minus WRF (OL)) and mean LAI and SM during the growing season in 2015 in the downstream oasis. The dashed and
solid lines represent the WRF (OL) and WRF (DA-ML), respectively. The orange bar represents the oasis area.

and SM led to increased precipitation in the upstream regions
of the HRB and that the spatial variation in precipitation was
very heterogeneous. The increase in precipitation was mainly
concentrated in the southeastern part of the HRB, where it
reached approximately 1.5 mm d−1, which represented 32 %
of the simulated value of the WRF (OL) experiment. In con-
trast, precipitation increased insignificantly in the mid- and
downstream oasis regions. The increased precipitation in the
upstream region may have been due to the additional wa-
ter vapor supply. Water vapor fluxes in the mountain areas

and midstream oasis regions were enhanced by integrating
the LAI and SM. Driven by background northerly winds
(Fig. 14), more water vapor fluxes from the midstream oasis
region were carried to the upstream region. The wind speed
and precipitation estimates in the upstream region (around
the Babao River basin) are shown in Fig. 15b and c. As
shown, the WRF (DA-ML) enhanced the estimation of pre-
cipitation on windward slopes compared with valleys. Af-
ter integrating the LAI and SM, the land–atmosphere inter-
actions are altered. The DA-ML increased the latent heat
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Figure 13. (a, d) Mean heat transfer coefficient (Ch) from the WRF (DA-ML) and (b, c, e, f) wind vectors at 10 m during the growing season
from the WRF (OL) and WRF (DA-ML) in the midstream (a–c) and downstream (d–f) oasis. Colored contours indicate elevations above
ground level, and shading indicates the extent of the oasis. The black line is the boundary of HRB.

and decreased the sensible heat flux. The water vapor car-
ried by the air masses and lifted on the sloped surface was
more likely to condense and produce precipitation (Yue et
al., 2021). In general, the DA-ML enhanced the precipitation
estimates in the upstream mountain areas, mainly on wind-
ward slopes.

The simulated daily precipitation from the WRF (OL) and
WRF (DA-ML) was compared with that of the AFD and
CMFD references in Fig. 16. Because the water vapor from
the East Asian monsoon was blocked by the Tibetan Plateau,
most of the precipitation was concentrated in the southeast-
ern part of the Qilian Mountains. Figure 16 shows that the
high precipitation zone of the HRB was mainly located in
the mountainous areas below 39.5◦ N due to orographic lift-
ing and convection (Zhang et al., 2021b). The main pre-
cipitation events were consistent between the WRF (OL)
and WRF (DA-ML). The WRF (DA-ML) had higher pre-
cipitation in the southern domain because peak precipita-
tion was enhanced and fewer precipitation events were in-

creased (red rectangle). Both the WRF (OL) and WRF (DA-
ML) captured the temporal and spatial variability in precip-
itation well and were consistent with the reference data, in-
dicating that the 3 km high-resolution grid contains informa-
tion on topography-related heterogeneity and accurately esti-
mates the precipitation distribution. The estimated precipita-
tion in the upstream regions of the HRB was more consistent
with the AFD reference but was overestimated by approxi-
mately 0.43 mm d−1 compared to the CMFD. The discrep-
ancy between the precipitation estimated by the WRF and
CMFD schemes occurred because the China Meteorologi-
cal Administration sites fused by the CMFD product were
mainly distributed at elevations below 3500 m (J. He et al.,
2020). Therefore, there are some uncertainties in the pre-
cipitation simulation of the CMFD products in high-altitude
mountainous areas (Zhang et al., 2021b).
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Figure 14. The zonal mean vertical velocity and meridional circulation from the WRF (OL) and WRF (DA-ML) models during the growing
season in 2015 in the midstream oasis. The shaded white area represents the change in elevation. The orange bar represents the oasis area.

Figure 15. (a) Average difference in precipitation between the WRF (DA-ML) and WRF (OL) (i.e., WRF (DA-ML) minus WRF (OL)) in
the Heihe River basin and (b) the upstream region (around Babao River basin) and (c) wind vectors at 10 m from the WRF (DA-ML) in the
upstream region. The black line is the boundary of HRB.
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Figure 16. Comparisons of the daily precipitation estimates from the WRF (OL) and WRF (DA-ML) with the values from the AFD and
CMFD references during the growing season in 2015.

5 Conclusions

In this paper, a hybrid data assimilation and machine learn-
ing framework (DA-ML approach) was proposed and imple-
mented into the Weather Research and Forecasting (WRF)
model to optimize the initialization of surface soil and veg-
etation variables. Remotely sensed leaf area index (LAI)
and multi-source soil moisture (SM) observations (in situ
SM profile observations and remotely sensed SM prod-
ucts) were integrated into the WRF model to improve the
soil and vegetation characteristics. The performance of the
WRF (DA-ML) framework was tested in the Heihe River
basin (HRB) in northwestern China. The results indicated
that the integration of remotely sensed LAI and multi-
source SM into the WRF model improved the LAI, SM,
and evapotranspiration (ET) estimates and regional climate
and land–atmosphere interactions. The estimated sensible
and latent heat fluxes from the WRF (OL) and WRF (DA-
ML) models are validated with the large aperture scintil-
lometer (LAS) observations at the Arou, Daman, and Sidao-
qiao sites. For the WRF (DA-ML) approach, the three-site-
averaged RMSDs of daily sensible and latent heat fluxes are
30.16 and 48.45 W m−2, respectively, which are 43.74 % and
23.98 % lower than those of WRF (OL). The results indi-
cated that the WRF (DA-ML) method improved the estima-

tion of ET and produced a spatial distribution that was con-
sistent with the results of ETMap.

Compared to the WRF model, the seasonal mean air tem-
perature and specific humidity simulated by the WRF (DA-
ML) at the nine sites were closer to the station measurements.
For the WRF model, the nine-site-averaged root mean square
deviation (RMSD) of the air temperature and specific humid-
ity estimates was 1.79 K and 1.08 g kg−1. The WRF (DA-
ML) reduces the aforementioned RMSDs by 21.23 % and
24.07 %. Strong wetting and cooling effects on vegetated ar-
eas were observed through the integration of LAI and SM,
especially in the midstream oasis. The magnitude of the sur-
face wetting and cooling effects corresponded well with the
differences in the LAI and SM estimates from the WRF (DA-
ML) and WRF (OL). These results indicate that the wetting
and cooling effects gradually decrease from the land surface
upwards and are replaced by slight warming and drying ef-
fects.

The crops, shelterbelts, and residential areas in the mid-
stream oasis produce a wind shield effect because of the
stronger surface roughness. The different land surface dy-
namic and thermal characteristics between the oasis and
desert can produce oasis–desert interactions and generate lo-
cal circulation. In the lower atmosphere, wet and cold air
masses are transferred to the surrounding desert by advec-
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tion, while the dry and hot air over the desert is transferred to
the oasis from the upper atmosphere. The results show that
the integration of LAI and SM will induce water vapor in-
tensification and promote precipitation in the upstream re-
gions of the HRB. The WRF (DA-ML) simulation captured
the temporal and spatial variability in precipitation well and
was consistent with the reference data. The results indicate
that the 3 km high-resolution grid can consider topographic
information and produce accurate precipitation distribution
estimates.

Appendix A

Table A1. The computation details about the WRF (OL) and WRF (DA-ML).

Method Computation Code Processor Parallelization
time

WRF (OL) 76 h Fortran 24-core 2.6 GHz Intel MPI
WRF (DA-ML) 112 h Python and Fortran Intel Xeon Gold (100 cores)

Figure A1. The zonal mean vertical velocity and meridional circulation from the WRF (OL) and WRF (DA-ML) models during the growing
season in 2015 in the downstream oasis. The orange bar represents the oasis area.
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Data availability. ERA5 data for the WRF model are freely
available via the European Centre for Medium-Range Weather
Forecasts (https://cds.climate.copernicus.eu/cdsapp#!/search?type=
dataset; CDS, 2022). The meteorological and flux observations,
ETMap, China Meteorological Forcing Dataset (CMFD), and at-
mospheric forcing data (AFD) dataset in the HRB can be accessed
from the National Tibetan Plateau Data Center (https://data.tpdc.ac.
cn/en/, last access: 8 January 2022; Pan et al., 2021a). The assim-
ilated LAI data are available from the Global Land Surface Satel-
lite (GLASS) website (http://www.glass.umd.edu/; GLASS, 2022).
Soil moisture products can be downloaded from the Soil Moisture
Active Passive (SMAP) website (https://appeears.earthdatacloud.
nasa.gov/; NASA, 2020). The original WRF code can be ob-
tained from the National Center for Atmospheric Research (NCAR)
archive (https://github.com/wrf-model; WRF, 2021).
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